首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Comparison of turbulence statistics within three boreal forest canopies   总被引:5,自引:0,他引:5  
Three-dimensional sonic anemometers were used to measure velocities and temperatures within three natural boreal forest canopies. Vertical profiles of atmospheric turbulence statistics for a black spruce forest, a jack pine forest, and a trembling aspen forest, all located in southeastern Manitoba, were plotted and compared. The canopy structures were quite different, with total leaf-area indices of 2, 4 and 10, for the pine, aspen, and spruce forests, respectively.The profiles of the first and second moments differed among the canopies, where velocities decreased more rapidly in the top portions of the denser canopies. The velocity distributions were skewed and kurtotic within all canopies, and showed some differences among the canopies. Eulerian time scale profiles were generally similar among the canopies, and the vertical and streamwise time scale profiles were almost mirror images of each other. Eulerian length scale profiles showed some differences among canopies caused by differences in the velocity profiles. Ratios of vertical-to-horizontal time and length scales had a maximum in mid-canopy.Shear stress profiles were similar in the top parts of all canopies, and upward momentum fluxes were occasionally observed within the canopy trunk space. Countergradient heat fluxes were also observed sometimes. The countergradient fluxes and the skewed, kurtotic velocity distributions indicate the contribution of intermittent, large-scale eddies that are important for energy and mass transfer within canopies.  相似文献   

2.
Turbulence statistics were measured in a natural black-spruce forest canopy in southeastern Manitoba, Canada. Sonic anemometers were used to measure time series of vertical wind velocity (w), and cup anemometers to measure horizontal wind speed (s), above the canopy and at seven different heights within the canopy. Vertical profiles were measured during 25 runs on eight different days when conditions above the canopy were near-neutral.Profiles of s and of the standard deviation ( w ) of w show relatively little scatter and suggest that, for this canopy and these stability conditions, profiles can be predicted from simple measurements made above the canopy. Within the canopy, a negative skewness and a high kurtosis of the w-frequency distributions indicate asymmetry and the persistence of large, high-velocity eddies. The Eulerian time scale is only a weak function of height within the canopy.Although w-power spectra above the canopy are similar to those in the free atmosphere, we did not observe an extensive inertial subrange in the spectra within the canopy. Also, a second peak is present that is especially prominent near the ground. The lack of the inertial subrange is likely caused by the presence of sources and sinks for turbulent kinetic energy within our canopy. The secondary spectral peak is probably generated by wake turbulence caused by form drag on the wide, horizontal spruce branches.  相似文献   

3.
植物冠层动量交换特征的实验研究   总被引:2,自引:1,他引:2       下载免费PDF全文
使用湍流梯度测试资料,对植物冠层动量交换特征进行了详细研究,结果表明:森林冠层内惯性副区能谱曲线仍可用幂指数描述,但斜率比-2/3更负;森林冠层内湍流尺度有变小的趋势;森林上层的耗散系数比下层大;由植被吸收引起动量及动量通量随冠层深度增加而明显减小;冠层下层的动量通量和耗散系数分别与上层的量有好的正相关;森林冠层内耗散系数和动量通量随大气稳定度有明显变化。  相似文献   

4.
Forested landscapes often exhibit large spatial variability in vertical and horizontal foliage distributions. This variability may affect canopy-atmosphere exchanges through its action on the development of turbulent structures. Here we investigate in neutral stratification the turbulent structures encountered in a maritime pine forest characterized by a high, dense foliated layer associated with a deep and sparse trunk space. Both stand and edge regions are considered. In situ measurements and the results of large-eddy simulations are used and analyzed together. In stand conditions, far from the edge, canopy-top structures appear strongly damped by the dense crown layer. Turbulent wind fluctuations within the trunk space, where the momentum flux vanishes, are closely related to these canopy-top structures through pressure diffusion. Consequently, autocorrelation and spectral analyses are not quite appropriate to characterize the vertical scale of coherent structures in this type of canopy, as pressure diffusion enhances the actual scale of structures. At frequencies higher than those associated with canopy-top structures, wind fluctuations related to wake structures developing behind tree stems are observed within the trunk space. They manifest themselves in wind velocity spectra as secondary peaks in the inertial subrange region, confirming the hypothesis of spectral short-cuts in vegetation canopies. In the edge region specific turbulent structures develop just below the crown layer, in addition to canopy-top structures. They are generated by the wind shear induced by the sub-canopy wind jet that forms at the edge. These structures provide a momentum exchange mechanism similar to that observed at the canopy top but in the opposite direction and with a lower magnitude. They may develop as in plane mixing-layer flows, with some perturbations induced by canopy-top structures. Wake structures are also observed within the trunk space in the edge region.  相似文献   

5.
The deposition velocity (V d) of nitric acid vapor over a fully leafed deciduous forest was estimated using flux/gradient theory. HNO3 deposition velocities ranged from 2.2 to 6.0cm/s with a mean V don the order of 4.0cms-1. Estimates of V dfrom a detailed canopy turbulence model gave deposition velocities of similar magnitude. The model was used to investigate the sensitivity of V dto the leaf boundary-layer resistance and leaf area index (LAI). Although modeled deposition velocities were found to be sensitive to the parameterization of the leaf boundary-layer resistance, they were less sensitive to the LAI. Modeled V d's were found to peak at LAI = 7.  相似文献   

6.
This paper discusses the importance of the aerodynamic characteristics of forest and other similar canopies to modelling of boundary-layer flow and to estimating the diffusivity coefficients of turbulence transfer mechanisms over such canopies.The hypothesis of Marunich (1971) reported by Tajchman (1981) that the zero-plane displacement, d, equals the upward displacement of the flow trajectory, is critically examined. It is concluded that Marunich's hypothesis is conceptually incorrect and that calculations of d based on Marunich's hypothesis are inherently in error.This paper presents a method based on the mass conservation principle and uses wind profiles in and above a forest canopy as the sole input for determining d, z 0 and u *.Sensitivities of calculated results to measurements errors of wind profile data are evaluated. It is found that an error of less than 1% in wind in the logarithmic regime above the canopy can introduce up to 100% errors in calculated values of d, z 0 and u *. It is also found that the high sensitivity to wind data accuracy, characteristic of the present method, can be used as a guide for the selection of high quality canopy wind data.  相似文献   

7.
Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.  相似文献   

8.
A method for the determination of the zero-plane displacement, d, and roughness length, z 0, for tall vegetation is described. A new relationship between d and z 0 is developed by imposing the condition of mass conservation on the logarithmic wind profile. Further, d and z 0 can be evaluated directly if independent measurements of friction velocity are available in addition to wind profile measurements. The proposed method takes into account the existence of a transition layer immediately above the vegetation where the logarithmic wind profile law is not valid. Only one level of wind speed measurements is necessary within the inertial sub-layer.The method is applied to wind profile and eddy correlation measurements taken in and above an 18.5 m pine forest to yield d = 12.7 m and z 0 = 1.28 m. The choice of height for the upper level of measurement and problems with measuring canopy flow are discussed.Work carried out while on leave at the Institute of Hydrology.  相似文献   

9.
Turbulence Spectra And Dissipation Rates Above And Within A Forest Canopy   总被引:4,自引:0,他引:4  
Three velocity componentsand temperature were measured usingthree-dimensional sonic anemometers/thermometers attwo levels, above and within a forest canopy, in theChangbai Mountains of northeast China. Turbulencespectral structure, local isotropy anddissipation rates above and within the forest canopywere calculated using the eddy correlation method.Results show that the normalized turbulent spectralcurves have -2/3 slopes in the inertial subrange.While the shapes of the spectra are in good agreementwith the Kansas flat terrain results, the atmosphericturbulence is anisotropic above the forest canopy. Dueto breaking down of large eddies by the foliage,branches and trunks, the spectral peak frequencies forvelocity and temperature are higher withinthan above the forest canopy. Compared withmeasurements from previous studies over flat terrain,the velocity and temperature spectra above andinside the forest canopy appear to shift toward higherfrequencies. The turbulence is approximately isotropicin the inertial subrange within the forest canopy, and isanisotropic above the forest canopy. The turbulentkinetic energy and heat energy dissipation rates aboveand inside the forest canopy are much larger thanthose obtained by Kaimal and Hogstrom over grasslandand grazing land. The distinct features in the resultsof the present experiment may be attributed to thedynamic forcing caused by the rough surface of the forestcanopy.  相似文献   

10.
We present the power spectra of wind velocity and the cospectra of momentum and heat fluxes observed for different wind directions over flat terrain and a large valley on the Loess Plateau. The power spectra of longitudinal (u) and lateral (v) wind speeds satisfy the −5/3 power law in the inertial subrange, but do not vary as observed in previous studies within the low frequency range. The u spectrum measured at 32 m height for flow from the valley shows a power deficit at intermediate frequencies, while the v spectrum at 32 m downwind of the valley reaches another peak in the low frequency range at the same frequency as the u spectrum. The corresponding peak wavelength is consistent with the observed length scale of the convective outer layer at the site. The v spectrum for flat terrain shows a spectral gap at mid frequencies while obeying inner layer scaling in its inertial subrange, suggesting two sources of turbulence in the surface layer. All the spectra and cospectra from the valley direction show a height dependency over the three levels.  相似文献   

11.
Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies   总被引:1,自引:8,他引:1  
In contrast to atmospheric surface-layer (ASL) turbulence, a linear relationship between turbulent heat fluxes (FT) and vertical gradients of mean air temperature within canopies is frustrated by numerous factors, including local variation in heat sources and sinks and large-scale eddy motion whose signature is often linked with the ejection-sweep cycle. Furthermore, how atmospheric stability modifies such a relationship remains poorly understood, especially in stable canopy flows. To date, no explicit model exists for relating FT to the mean air temperature gradient, buoyancy, and the statistical properties of the ejection-sweep cycle within the canopy volume. Using third-order cumulant expansion methods (CEM) and the heat flux budget equation, a “diagnostic” analytical relationship that links ejections and sweeps and the sensible heat flux for a wide range of atmospheric stability classes is derived. Closure model assumptions that relate scalar dissipation rates with sensible heat flux, and the validity of CEM in linking ejections and sweeps with the triple scalar-velocity correlations, were tested for a mixed hardwood forest in Lavarone, Italy. We showed that when the heat sources (ST) and FT have the same sign (i.e. the canopy is heating and sensible heat flux is positive), sweeps dominate the sensible heat flux. Conversely, if ST and FT are opposite in sign, standard gradient-diffusion closure model predict that ejections must dominate the sensible heat flux.  相似文献   

12.
Summary During the Hartheim Experiment (HartX) 1992 conducted in the Upper Rhine Valley, Germany, we estimated water vapor flux from the understory and the forest floor by several methods. At the vegetation patch level, direct estimates were made with small weighing lysimeters, and water loss was scaled-up to the stand level based on vegetation patchtype distribution. At the leaf level, transpiration flux was determined with a CO2/H2O porometer for the dominant understory plant species,Brachypodium pinnatum, Carex alba, andCarex flacca. Measured leaf transpiration was scaled-up to patch level with a canopy light interception and leaf gas exchange model, and then to stand level as in the case of lysimeter data, but with further consideration of patchtype leaf area index (LAI). On two days, total understory latent heat flux was estimated by eddy correlation methods below the tree canopy.The understory vegetation was subdivided into five major patch-types which covered 62% of the ground area and resulted in a cumulative LAI of approx. 1.54 when averaged over total stand ground area and compared to the average tree canopy LAI of 2.8. The remaining 38% of ground area was unvegetated bare soil and/or covered by moss (mainly byScleropodium purum) or litter. The evapotranspiration from the understory and unvegetated areas equaled approx. 20% of total forest stand transpiration during the HartX period. The understory vegetation transpired about 0.4 mm d–1 (13%) estimated over the period of May 13 to 21, whereas evaporation from moss and soil patches amounted 0.23 mm d–1 (7.0%). On dry, sunny days, total water vapor flux below the tree canopy exceeded 0.66 mm d–1. Using the transpiration rates derived from the GAS-FLUX model together with estimates of evaporation from moss and soil areas and a modified application of the Penman-Monteith equation, the average daily maximum conductance of the understory and the forest floor was 1.7 mm s–1 as compared to 5.5 mm s–1 for the tree canopy.With 6 Figures  相似文献   

13.
Air flow was observed above and within canopies of a number of kinds of soybeans. The Clark cultivar and two isolines of the Harosoy cultivar were studied in 1979 and 1980, respectively. Wind speed above the canopy was measured with cup anemometers. Heated thermistor anemometers were used to measure air flow within the canopy. Above-canopy air flow was characterized in terms of the zero-plane displacement (d), roughness parameter (z o) and drag coefficient (C d). d and z o were dependent on canopy height but were independent of friction velocity in the range 0.55 to 0.75 m s?1 · C d for the various canopies ranged from 0.027 to 0.035. Greater C d values were measured over an erectophile canopy than over a planophile canopy. C d was not measurably affected by differences in leaf pubescence. Within-canopy wind profiles were measured at two locations: within and between rows. The wind profile was characterized by a region of great wind shear in the upper canopy and by a region of relatively weak wind shear in the middle canopy. Considerable spatial variability in wind speed was evident, however. This result has significant implications for canopy flow modeling efforts aimed at evaluating transport in the canopy. In the lower canopy, wind speed within a row increased with depth whereas wind speed between two rows decreased with depth. The wind speeds at the two locations tended to converge to a common value at a height near 0.10 m. The attenuation of within-canopy air flow was stronger in canopies with greater foliage density. Canopy flow attenuation seemed to decrease with increasing wind speed, suggesting that high winds distorted the shape of the canopy in such a manner that the penetration of wind into the canopy increased.  相似文献   

14.
Statistics of atmospheric turbulence within and above a corn canopy   总被引:1,自引:2,他引:1  
Two three-dimensional split-film anemometers were used to measure turbulence statistics within and above a corn canopy. Normalised profiles of mean windspeed, root-mean-square velocity, momentum flux, and heat flux were constructed from half-hourly averages by dividing within-canopy measurements by the simultaneous canopy-top measurement. With the exception of the heat flux, these profiles showed consistent shape from day to day. Time series of the three velocity components were recorded on magnetic tape and subsequently analysed to obtain Eulerian time and length scales and the power spectrum of each component at several heights. The timescale was found to have a local minimum value at the top of the canopy. However the length scale L wformed from the timescale and the root-mean-square vertical velocity varied with height as L w 0.1 z. The power-spectra were non-dimensionalised to facilitate comparison of spectra at different heights and times. All spectra had -5/3 regions spanning at least two decades in frequency.  相似文献   

15.
The scaling laws of the vertical (F wc ) and longitudinal (F uc ) velocity-scalar cospectra within the inertial subrange are explored using dimensional arguments and a simplified cospectral budget in the canopy sublayer above three distinct forested ecosystems. The cospectral budget was shown to be consistent with plausible scaling laws originating from dimensional considerations. Using the analytical solution to the novel cospectral budget, it was shown that F wc (k) and F uc (k) are governed by the linear superposition of two terms that scale as k −2/3−α and k β , where k is the wavenumber, −α is the exponent of the velocity spectrum, and β( ≥ 7/3) depends on the ratio of the similarity constants for the pressure-scalar covariance and the flux transport terms. It was also demonstrated that, when the magnitude of the mean scalar concentration gradient is large, the k −2/3−α term dominates the velocity-scalar cospectral budget. For such a case, correcting for biases emerging from high frequency losses in eddy-covariance scalar flux measurements can be readily formulated by using the measured velocity spectral exponent in the inertial subrange.  相似文献   

16.
Most of our knowledge on forest-edge flows comes from numerical and wind-tunnel experiments where canopies are horizontally homogeneous. To investigate the impact of tree-scale heterogeneities (\({>}1\) m) on the edge-flow dynamics, the flow in an inhomogeneous forest edge on Falster island in Denmark is investigated using large-eddy simulation. The three-dimensional forest structure is prescribed in the model using high resolution helicopter-based lidar scans. After evaluating the simulation against wind measurements upwind and downwind of the forest leading edge, the flow dynamics are compared between the scanned forest and an equivalent homogeneous forest. The simulations reveal that forest inhomogeneities facilitate flow penetration into the canopy from the edge, inducing important dispersive fluxes in the edge region as a consequence of the flow spatial variability. Further downstream from the edge, the forest inhomogeneities accentuate the canopy-top turbulence and the skewness of the wind-velocity components while the momentum flux remains unchanged. This leads to a lower efficiency in the turbulent transport of momentum within the canopy. Dispersive fluxes are only significant in the upper canopy. Above the canopy, the mean flow is less affected by the forest inhomogeneities. The inhomogeneities induce an increase in the mean wind speed that was found to be equivalent to a decrease in the aerodynamic height of the canopy. Overall, these results highlight the importance of forest inhomogeneities when looking at canopy–atmosphere exchanges in forest-edge regions.  相似文献   

17.
Observations were made of turbulence in an extensive deciduous forest on level terrain using a vertical array of seven three-dimensional sonic anemometer/thermometers within and above the canopy. Data were collected through the period of leaf fall and over a range of thermal stabilities. A bulk canopy drag coefficient was nearly independent of the density of the forest but decreased greatly with the onset of nocturnal stability. The depth of penetration of momentum into the forest increased with leaf fall but, again, was greatly curtailed by stable conditions. Turbulent velocities decreased with increasing depth in the forest but relative turbulence intensities increased to mid-canopy levels. Leaf density influenced turbulence levels but not as strongly as did thermal stability. Thermal effects were adequately described by the single parameter h/L, where h is the canopy height and L is the Monin-Obukhov length. The longitudinal and vertical velocity correlation coefficient was larger in magnitude than expected in the upper layers of the forest but decreased to a small value in the lowest layers where the Reynolds stress was small. The ratio w /u *, where u * is the local friction velocity, reflected changes in the uw correlation, becoming smaller than usual in the upper canopy layers. It is believed that these effects result from the intermittent, spatially coherent structures that are responsible for a large fraction of the momentum flux to the forest.  相似文献   

18.
Different flux estimation techniques are compared here in order to evaluate air–sea exchange measurement methods used on moving platforms. Techniques using power spectra and cospectra to estimate fluxes are presented and applied to measurements of wind speed and sensible heat, latent heat and CO2 fluxes. Momentum and scalar fluxes are calculated from the dissipation technique utilizing the inertial subrange of the power spectra and from estimation of the cospectral amplitude, and both flux estimates are compared to covariance derived fluxes. It is shown how even data having a poor signal-to-noise ratio can be used for flux estimations.  相似文献   

19.
The turbulent flow inside dense canopies is characterized by wake production and short-circuiting of the energy cascade. How these processes affect passive scalar concentration variability in general and their spectral properties in particular remains a vexing problem. Progress on this problem is frustrated by the shortage of high resolution spatial concentration measurements, and by the lack of simplified analytical models that connect spectral modulations in the turbulent kinetic energy (TKE) cascade to scalar spectra. Here, we report the first planar two-dimensional scalar concentration spectra (ϕ cc ) inside tall canopies derived from flow visualization experiments. These experiments were conducted within the deeper layers of a model canopy composed of densely arrayed cylinders welded to the bottom of a large recirculating water channel. We found that in the spectral region experiencing wake production, the ϕ cc exhibits directional scaling power laws. In the longitudinal direction (x), or the direction experiencing the largest drag force, the ϕ cc (k x ) was steeper than and followed an approximate at wavenumbers larger than the injection scale of wake energy, where k x is the longitudinal wavenumber. In the lateral direction (y), the spectra scaled as up to the injection scale, and then decayed at an approximate power law. This departure from the classical inertial subrange scaling (i.e., k −5/3) was reproduced using a newly proposed analytical solution to a simplified scalar spectral budget equation. Near the velocity viscous dissipation range, the scalar spectra appear to approach an approximate k −3, a tantalizing result consistent with dimensional analysis used in the inertial-diffusive range. Implications to subgrid modelling for large-eddy simulations (LES) inside canopies are briefly discussed.  相似文献   

20.
Using a mountain meadow as a case study it is the objective of the present paper todevelop a simple parameterisation for the within-canopy variation of the phytoelementdrag (Cd) and sheltering (Pm) coefficients required for Massman's model of momentum transfer by vegetation. A constant ratio between Cd and Pm is found to overestimate wind speed in the upper canopy and underestimate it in the lower canopy.Two simple parameterisations of Cd/Pm as a function of the plant area density and the cumulative plant area index are developed, using values optimised by least-squares regression between measured and predicted within-canopy wind speeds. A validation with independently measured data indicates that both parameterisations work reliably for simulating wind speed in the investigated meadow. Model predictions of the normalised zero-plane displacement height and the momentum roughness length fall only partly within the range of values given in literature, which may be explained by the accumulation of plantmatter close to the soil surface specific for the investigated canopies. The seasonal course of the normalised zero-plane displacement height and the momentum roughness length are discussed in terms of the seasonal variation of the amount and density of plant matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号