首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanisms maintaining community structure following an ecosystem shift are poorly understood and we propose that they must inherently be biological. Over-exploitation can provide a “natural experiment” with man as a predator driving a change in community structure, possibly an ecosystem shift. We examined a possible mechanism that maintains algal beds as an alternative state on the east coast of South Africa where the mussel Perna perna has been overexploited. Even on unexploited shores, about 50% of mussel larvae settle onto algae, but it is unclear whether they later recruit into adult beds. On such shores we used two indirect field approaches to understand the fate of recruits, testing whether inhibition of mussel recruitment by macroalgae could constitute a biological mechanism preventing reversion from the algal to the pre-disturbance mussel-dominated state. First, we examined possible ontogenetic migration of recruits from algae to adult mussels, testing the prediction that the ratio large:small recruits in adult beds is greater where algae are liberally interspersed with mussels. Second, we examined whether, like adults, recruits show spatial structure that is related to the distribution of topographic depressions, testing the hypothesis that large and small recruits show different co-variation with depressions, microhabitats where algae commonly occur. We found no evidence that recruits on algae actively move to nearby mussel beds as neither the ratio large:small recruits nor the abundances of small or large recruits showed any relationship with algal cover/variability. Small and large recruits showed different co-variation with topographic depressions on spatially structured transects. Like adults, large recruits commonly exhibited negative relationships with depressions. Thus, large recruits neither occur on algae nor migrate from algae to the primary substratum or onto adult beds. Consequently our results (a) highlight the importance of post-settlement mortality in structuring these mussel populations, and (b) suggest that the interception of larvae by algae forms a biological mechanism that can maintain macroalgal beds that develop following exploitative disturbance by man, thus preventing or at least drastically delaying the natural recovery of mussel beds.  相似文献   

2.
An experiment was conducted to determine the recruitment pattern of species into disturbed areas of the lower littoral zone. Plots were cleared to rock substratum in two juxtaposing communities, one dominated by the mussel Perna perna (Linn.) and the other by foliose and crustose coralline algae (Rhodophyceae). Subsequent changes in cover were monitored for one year. Undisturbed sectors of these two communities were also monitored for comparative purposes. Evaluations were made by comparing species similarity indices and biomass measures. Within five months all cleared plots had recruited a richer species composition and a biomass comparable to that of an undisturbed community dominated by coralline algae. The mussel Perna perna, during the experiment and up to eight years later, never returned to numerical dominance in the experimental plots. The consequences of this for the welfare of mussel beds are discussed.  相似文献   

3.
Pacific oysters (Crassostrea gigas Thunberg 1793) have been introduced into the Wadden Sea (North Sea), where they settle on native mussel beds (Mytilus edulis L.), which represent the only extensive insular hard substrata in this soft-sediment environment. As abundances of C. gigas rose, some mussel beds became increasingly overgrown with oysters, whereas others did not. Field experiments revealed that recruitment of C. gigas was higher in the lower intertidal than in the upper subtidal zone, that it was higher on conspecifics than on mussels, and that it was not affected by barnacle epigrowth except when settling on mussels. Mussel recruitment is known from inter- and subtidal zones. It occurred equally on oyster and mussel shells but showed a clear preference for barnacle epigrowth over clean shells. Assuming that settlement and recruitment are key processes for species abundances on the North Sea coast, it is predicted that the positive feedback in oyster settlement will lead to rapid reef formation of this invader at the expense of mussel beds. Mussels, however, may escape competitive exclusion by settling between or on the larger oysters especially when barnacles are abundant. Experimental patches with mussels were more often covered by fucoid algae (Fucus vesiculosus forma mytili Nienburg) than patches with oysters, and oyster recruitment was poor underneath such algal canopies. Thus, fucoids may provide the native mussels with a refuge from the invading oysters and the two bivalves may coexist, provided food is not limiting.  相似文献   

4.
Studies on macroalgal communities of the Azores report algal turfs as one of the most conspicuous ecological entities occurring on the rocky shores of these islands. The present study investigates the influence of shore height and substratum on turf composition. Data were analysed using the software PRIMER and results confirmed the previous distinction between calcareous, dominated by articulated coralline algae, and non-calcareous turfs, characterized mainly by small red algae. However, no differences in species composition were found in either type of turf occurring on different substrata or at different shore levels.  相似文献   

5.
To clarify the differences in the growth and gonad size of the sea urchin Hemicentrotus pulcherrimus among algal sere, the study was conducted in June and July, and September 1998 at three fucoid beds in Oga and at three algal turfs in Hachimori, Akita Prefecture in northern Japan. The most rapid growth was observed in a large perennial fucoid bed at the climax stage. Growth in a small perennial Chondrus ocellatus‐dominated bed in algal turfs in the seral stage was then high. The slowest growth was observed in the small perennial Dictyopteris divaricata‐ and Laurencia spp.‐dominated beds which are known to possess chemicals which act as feeding deterrents against the sea urchins. The gonad index (gonad wet weight × 100/body wet weight) at a fucoid bed was high where standing crops exceeded 3 kg·m?2. The gonad index in the Laurencia bed was lower than those at fucoid beds. These results suggest that growth and gonad production are affected by algal sere and differ among species of small perennial algae in the seral stage with or without chemical defense.  相似文献   

6.
Up to 12 marine mollusc and three crab species are thought to have been deliberately or accidentally introduced to South Africa. Of these, only the Mediterranean mussel Mytilus galloprovincialis and the European shore crab Carcinus meanas have become invasive. M. galloprovincialis, probably introduced in the late 1970s, is already the dominant mussel throughout the Cape west coast. As a result, indigenous intertidal mussels Aulacomya ater have been largely displaced, mussel standing stock has increased and the upshore limit of mussel beds has become considerably elevated. Implications include competitive exclusion of large limpets but enhanced recruitment of juvenile limpets, increased habitat availability for mussel infauna, reduction of habitat for algal infauna and enhanced food availability for predators, particularly terrestrial species. C. maenas was first recorded from Table Bay Docks in 1983 and currently ranges from Camps Bay to Saldanha Bay. Although it is a voracious predator, it appears unable to colonize wave-swept shores, so is unlikely to displace indigenous crabs, or to severely impact prey species on the open coast. Valuable conservation areas and mariculture sites in sheltered lagoonal areas are, however, threatened by it.  相似文献   

7.
Intertidal population dynamics are driven by a complex series of processes, including larval supply and the possibility of larval predation by benthic animals such as filter-feeders. We hypothesised that cannibalism by adults could play a major role in the population connectivity of mussel populations by removing larvae as they attempt to settle in the adult habitat. Specifically, we tested hypotheses that consumption of mussel larvae by adults removes a significant proportion of potential settlers and is influenced by both settlement intensity and tidal state (flooding or ebbing). Predation of mussel larvae by adult mussels was investigated on incoming and ebbing tides during four spring tides by analysing the gut contents of adult Perna perna and Mytilus galloprovincialis collected from the low intertidal mussel zone between October 2005 and January 2006. Consumption rates were then compared with estimates of successful settler densities on natural beds. The results showed that mortality of competent mussel larvae through adult ingestion removes up to 77% a of potential settlers. Rates of larval consumption were highest during months of intense settlement, suggesting that mussels feed opportunistically, filtering a relatively fixed volume of water and removing particles, including larvae, in proportion to their densities in the water. Rates of larviphagy were also higher during receding than incoming tides. We suggest that this is due to changes in larval density or, more probably, in adult filtration efficiency that are related to the state of the tide. Despite significant effects of both tidal state and settlement intensity on rates of larval ingestion, neither had a significant effect on the proportion of potential settlers removed. During settlement more than half of all potential settlers are lost through cannibalism, with potentially serious consequences for population maintenance. The results highlight the paradoxical nature of the evolution of settlement mechanisms in mussels, which must balance the advantages of settlement in habitats favourable to adults against the consumption of larvae by adults.  相似文献   

8.
The brown mussel, Perna perna, is an ecologically important species which has a great potential for aquaculture in Ghana. Though it is harvested from the wild for consumption locally, there is no information on its population parameters to guide its management and subsequent culturing. The species inhabiting Iture rocky beach near Cape Coast (Ghana) was therefore investigated to elucidate its growth and other population parameters. Specimens had shell length ranging from 5.00 to 78.0 mm, a modal shell length class of 35.0–39.9 mm, and exhibited negative allometric growth. The asymptotic length (L∞), growth coefficient (K), and growth performance index (Φ') were 80.10 mm, 0.49 per year, and 3.49, respectively. The recruitment pattern showed that P. perna has year-round recruitment with a single peak between April and July. Total mortality (Z) was estimated at 2.79 per year, while natural mortality (M) and fishing mortality (F) were 0.87 and 1.92 per year, respectively. The calculated exploitation level of the population (E = 0.69) suggests possible overfishing of the mussels at Iture rocky beach. These results could serve as baseline information for management of the mussel population in Ghana.  相似文献   

9.
Timing, microhabitat selection and behavior from the onset of settlement to recruitment to the adult population of juvenile fishes of the genus Diplodus (Pisces: Sparidae) were investigated along a rocky coastline in the Central Mediterranean Sea. The settlement periods in Diplodus sargus and Diplodus annularis were concentrated in spring, between late May and early June, and the recruits leave the nursery grounds in late September–October. Juvenile fishes of Diplodus puntazzo and Diplodus vulgaris showed a partial time overlapping, sharing the same zones in winter and early spring, from February to May. Multiple correspondence analysis showed that sea breams settle in well‐defined habitats. The smallest juveniles of D. sargus and D. puntazzo settled primarily in the shallowest sheltered pebbly areas, located in sciaphilous crannies covered by red algae. Diplodus vulgaris settlers were observed on a wider range of substrata: rock on sand, gravel and pebbles without algal cover or large boulders, generally in deeper waters. The intermediate‐size juveniles of D. sargus, D. puntazzo and D. vulgaris showed a preference for rocky substrata with substantial algal cover, with arborescent structures (Phaeophyceae). Diplodus annularis juveniles showed high fidelity to seagrass beds (Posidonia oceanica). The home range increased over time in all species, highlighting a loss of substrate specificity: larger juveniles were even observed in deeper and different microhabitats outside nursery grounds. This study suggests that shallow infra‐littoral rocky communities with photophilic algae play a key role in recruitment of sparid fishes, affecting the distribution and abundance of juvenile fishes and therefore determining the renewal of populations and the structure of adult assemblages.  相似文献   

10.
A biochemical genetic study of the mussels Perna perna and Choromytilus meridionalis on the west coast of South Africa revealed the presence of an unreported mytilid mussel that had previously been mistaken, because of its shell colour polymorphism, for either P. perna or a hybrid between P. perna and C. meridionalis. The gene products of 19 protein-coding loci in P. perna. C. meridionalis and in the newly recognized mussel were examined by means of horizontal starch-gel electrophoresis. The results showed that there was no allele-frequency overlap between any of these mussel taxa, thus implying little or no genetic relatedness between them. A morphological examination showed that the previously unreported mytilid has a pitted resilial ridge (similar to that of Perna), an anterior adductor muscle (unlike either Perna or Choromytilus), and an undivided posterior foot retractor-muscle scar (unlike Perna). Such features are diagnostic of the genus Mytilus. The South African Mytilus has morphological traits that are more characteristic of M. galloprovincialis of the Mediterranean Sea than of the more cosmopolitan M. edulis. which occurs in the northern and southern Pacific and Atlantic oceans. A large heterozygosity in Mytilus sp. argues against a recent dispersal from the Mediterranean Sea via a small founder population. Rather, the presence of Mytilus sp. in South Africa may represent a relict population of a wider geographic distribution of M. galloprovincialis resulting from Pleistocene cooling. However, the warmer water at lower latitudes could have still prevented dispersal of M. edulis, a species adapted to colder waters.  相似文献   

11.
Much of coral reef ecology has focused on how human impacts change coral reefs to macroalgal reefs. However, macroalgae may not always be a good indicator of reef decline, especially on reefs with significant sea urchin populations, as found in Kenya and Hawaii. This study tests the effects of trophic interactions (i.e. herbivory by fishes and sea urchins) and spatial competition (between algae and coral) on algal community structure of reefs surrounding two Hawaiian Islands that vary in their level of human impacts. Reef‐building organisms (corals and crustose coralline algae) were less abundant and turf algae were more abundant on Maui as compared to Lanai, where human impacts are lower. In contrast to previous studies, we found no evidence that macroalgae increased with human impacts. Instead, low turf and macroalgal abundance were best explained by the interactive effects of coral cover and sea urchin abundance. Fishing sea urchin predators appeared to have cascading effects on the benthic community. The absence of sea urchin predators and high sea urchin densities correspond to a disproportionately high abundance of turf and crustose coralline algae. We propose that high turf algal abundance is a better indicator of reef decline in Hawaii than high macroalgal abundance because turf abundance was highest on reefs with low coral cover and few fish. The results of this study emphasize that understanding changes in community composition are context‐dependent and that not all degraded reefs look the same.  相似文献   

12.
Feeding behavior of coral reef fishes often determines their species‐specific ecological roles. We studied the two most common Caribbean surgeonfishes (Acanthurus coeruleus and Acanthurus tractus) to examine their species‐specific grazing rates and feeding preferences and how these differed with environmental context. We quantified the feeding activity of both surgeonfishes at four spur and groove reefs in the Florida Keys, USA, that varied in fish abundance, rugosity, algal community composition, and sediment loading. Overall, A. tractus fed twice as fast as A. coeruleus. Both species selected for turf algae but avoided feeding on turf algae that had become laden with sediment. Selectivity for upright macroalgae was more complex with A. tractus targeting Dictyota spp., while A. coeruleus avoided Dictyota spp. relative to the alga's abundance. Both species selected for epiphytes growing on other organisms such as macroalgae and sponges. However, several of these feeding patterns changed with ontogeny. For example, larger individuals of both species fed more frequently on long, sediment‐laden algal turf and less frequently on Dictyota spp. compared to smaller sized individuals. In addition, A. tractus also increased its preference for upright calcareous algae as they attained larger sizes. Overall, the disparity in feeding preferences of surgeonfishes likely indicates subtle differences in species‐specific ecological roles. Both A. coeruleus and A. tractus likely prevent development of turf algae and thus maintain algal communities in the early stages of succession. Additionally, A. tractus may also help reduce macroalgal abundance by targeting common macroalgal species.  相似文献   

13.
The Asian green mussel Perna viridis is an invasive Indo-Pacific species recently reported from South African harbours. To verify the invasion, a phylogenetic (and morphological) analysis of green-shelled mussels (n = 39), found in six South African harbours, was conducted using the mitochondrial cytochrome c oxidase subunit I gene (COI). Estimates of genetic distances using the neighbour-joining analysis identified P. viridis only from Durban Harbour. All other green mussels were more than 3.2% divergent from P. viridis and were identified as green-shelled variants of indigenous P. perna. The only reliable morphological differences distinguishing the two species were the poorly developed mantle papillae and the wavy pallial line in P. viridis. The confirmed occurrence of P. viridis in a South African harbour suggests that there is a possible threat of the species becoming established and then spreading onto the open coast and competing with indigenous P. perna.  相似文献   

14.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

15.
Aspects of the reproductive biology of the brown mussel Perna perna at the Iture rocky beach near Cape Coast, Ghana, were studied from September 2014 to August 2015. The current study was aimed at providing information useful for managing the mussel fishery in this locality and also that would form the basis for designing appropriate culture methods for the species. Microscopic examination of fresh smears of gonadal material, as well as histological preparations of the gonad, were used to study the sexuality and breeding pattern of the species. Monthly gonadal and condition indices were also determined. Perna perna exhibited gonochoristic sexuality with a sex ratio of approximately 1:1 throughout the study period. Sexes were identifiable at shell lengths of 15.0–19.9 mm. Five stages of gonadal development were identified in both sexes. Gametogenic activity was continuous throughout the year, with two major spawning activities, from April to June and from August to December. These periods coincided with the major and minor rainy seasons, respectively, as well as the major upwelling period in August. Condition indices suggest that the mussels were in better condition for harvesting in March and August prior to the major spawning events.  相似文献   

16.
On rocky shores, the relative importance of abiotic and biotic processes that regulate community structure are thought to vary with levels of shore exposure. This can lead to characteristic features found on sheltered and exposed shores. This study identified differences in the population structure of mussels on exposed and sheltered rocky shores on Atlantic coasts of south-west Ireland. Direct interactions between epibiotic algae and their host mussels were also examined to test if potential effects varied with shore exposure. Mussel beds on sheltered shores were less dense and comprised larger mussels with greater rates of individual survival and growth than those on exposed shores. The results of a field experiment showed that algal epibionts had a negative effect on mussel survival on sheltered shores but not on exposed shores. Surprisingly, the presence of algal epibionts had no effect on mussel growth on either shore type. These findings contrast with those of previous studies. The effects of shore exposure and algal epibionts on mussels may be species-specific and may interact with other factors across different regions. This study shows that predictions of effects of exposure on mussel populations and their epibionts should only be based on specific experimental evidence and cannot be generalised across regions.  相似文献   

17.
During the reproduction period of Fucus vesiculosus, which occurs only once a year (in May–June) along the Finnish coast of the northern Baltic Sea, a thick carpet of filamentous algae often covers hard substrates suitable for zygote settlement. By placing out artificial substrates into the field, monthly over a period of eight months prior to F. vesiculosus settlement (October 2001–June 2002), we investigated the autumn/winter/spring colonisation and succession of filamentous algae and their possible relationships with the settlement success of F. vesiculosus under naturally variable field conditions. The substrates exposed in October 2001 became covered by filamentous brown algal Pilayella littoralis mats, which persisted over the settlement period of F. vesiculosus, but now also were accompanied by large amounts of the filamentous green alga Cladophora glomerata. The substrates exposed from November 2001 onwards hosted smaller amounts of P. littoralis during the winter and different filamentous algal communities at the time of F. vesiculosus settlement, i.e. less P. littoralis and C. glomerata, but Dictyosiphon foeniculaceus, Ceramium tenuicorne and Ulva intestinalis instead. We observed recruits of F. vesiculosus on all substrates, except on the ones placed out in October 2001. Significantly more P. littoralis and C. glomerata on the October substrates may explain the failed F. vesiculosus recruitment, although we could not establish direct causal or correlational relationships between filamentous algae and F. vesiculosus settlement. We compared the results with a previous un-replicated pilot study in the same area demonstrating similar response patterns.  相似文献   

18.
In north‐eastern New Zealand, nearshore subtidal reefs are dominated by large brown algae of the orders Fucales and Laminariales. Species of the genera Carpophyllum, Sargasswn, and Landsburgia are the most conspicuous fucaleans, whereas Ecklonia radiata is the only common laminarian. Three categories of events affect the composition of stands of these algae: first, the competitive effects of adult canopies on recruitment to the substratum below; second, the seasonality of spore release and availability of free space; and third, the demographic characteristics of species and their influence on recruitment. Adult canopies suppress recruitment of all species. Both repro‐duction and recruitment are seasonal in occurrence and most recruits appear within a few metres of adults of their own species. A comparison of representative Fucales and Laminariales shows important differences in how these taxa colonise substrata. Propagules of fucaleans are larger at settlement and fewer in number than those of laminarians. Compared to laminarians, however, higher numbers of fucalean adults are generally required to form a closed canopy. The number of recruits and the survival of each life history stage are affected by the population structure of algal stands. The importance of the demographic characteristics of individual species in assessing these processes is highlighted.  相似文献   

19.
Previous field observations have suggested an association between the urchin Parechinus angulosus and juveniles of the abalone Haliotis midae. To test the generality and nature of this association, surveys were carried out at five sites between Cape Point and Danger Point in the kelp beds of the South-Western Cape, South Africa. These showed that both species occupy primarily hard substrata, showing preferences for encrusting coralline algae. They also confirmed a strong, positive relationship between urchins and juvenile abalone. Of the juvenile abalone sampled, more than 98% were found beneath sea urchins. All small (3–10 mm) and medium-sized(11–20 mm) juvenile abalone were under urchins, whether on flat or vertical reef, or in crevices. A small proportion (~10%) of larger juveniles(21–35 mm) was not found under urchins, and in these instances they occupied crevices instead. These findings are of particular importance in terms of their implications for the lucrative commercial abalone fishery in South Africa, indicating that urchins are of critical importance to the continued survival of viable abalone populations. There has been a dramatic decrease in natural populations of sea urchins over the past five years in the heart of the abalone fishing grounds, and the present findings suggest that this will lead to recruitment failure of abalone, because juvenile abalone seem dependent on the urchins. The long-term consequences for the industry may be crucial.  相似文献   

20.
Species lists for vent fields on the Mid‐Atlantic Ridge (MAR) from 14°N to 38°N suggest that there is a northern (>27°N), shallow (<2000 m) fauna and a southern (<27°N), deeper (>3000 m) endemic vent fauna, but little is known about how community structure varies along the ridge axis. In this study, quantitative samples of macrofaunal invertebrates associated with mussels (Bathymodiolus puteoserpentis) were collected at Logatchev (14°45′N), the southern‐most explored vent field on the MAR. Community structure (including species composition, species richness, diversity, and relative species abundances) in mussel beds at Logatchev was compared with that of Snake Pit (23°22′N) and Lucky Strike (37°17′N) mussel beds. The most striking feature of the Logatchev mussel‐bed macrofaunal invertebrate community was the tremendous abundance (up to 2390 individuals per liter of mussel‐volume sampled) and biomass of the ophiuroid, Ophioctenella acies. Logatchev and Snake Pit mussel beds share >50% of their associated macrofaunal species; these two sites share only 20–25% of their macrofaunal species with Lucky Strike. Species–effort curves and univariate measures of diversity (H′, J′) do not support the claim that diversity of vent organisms on the MAR is highest at Logatchev, at least when one assesses this within a habitat type. Multivariate analysis readily differentiates the species‐abundance characteristics of Logatchev, Snake Pit, and Lucky Strike mussel‐bed macrofaunas. The relationship between sea‐floor spreading rate and diversity was explored through comparison of species richness in mussel‐bed habitats on slow‐spreading (MAR), fast‐spreading [northern East Pacific Rise (EPR)], and ultra‐fast‐spreading (southern EPR) mid‐ocean ridges. Species richness was greater in samples from the faster‐spreading ridge axes, where vents are more closely spaced but shorter lived, than on slow‐spreading centers, where vents are further apart but longer lived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号