首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The El Niño–Southern Oscillation (ENSO) phase state is reported to drive interannual variability in sea temperatures along South Africa’s south coast through its influence on wind-induced upwelling processes. Whether ENSO drives the intensity of localised, abrupt, intermittent upwelling is less well known. To explore this relationship, we used an index of localised, extreme (>2 °C anomaly), intermittent upwelling intensity, derived from in situ sea temperature data within the Tsitsikamma National Park Marine Protected Area, and quantified the relationship between annual cumulative upwelling intensities (1991–2013) with an annual ENSO index, namely the Southern Oscillation Index. We found that ENSO phase state modulates the cumulative intensity of extreme intermittent upwelling events during an annual period, with more and greater events during La Niña phases compared with El Niño phases. Furthermore, these extreme upwelling events have increased with time along South Africa’s south coast as ENSO phase state becomes more intense and variable. Our findings support the emerging notion that the biological effects of climate change may be manifested through increased environmental variability rather than long-term mean environmental changes as ENSO is predicted to remain the dominant driver of local climate patterns in the future.  相似文献   

2.
利用1958—2019年的观测和再分析数据集,对冷、暖两类厄尔尼诺-南方涛动(El Niño-Southern Oscillation,ENSO)事件与后期华东地区春季降水之间的关系进行了分析。结果表明:(1)在暖ENSO事件中,华东春季降水量与前冬季ENSO海面温度异常存在较强的正相关关系。在冷ENSO事件中,这种强正相关向内陆地区西移,主要集中在江西和湖南。(2)暖ENSO事件通常会导致浙江、江苏和福建等沿海省份春季降水量过剩,而冷ENSO事件往往导致江西和湖南降水偏少。这归因于ENSO对大气环流的非线性影响。(3)与暖ENSO事件相比,冷ENSO事件引起的海面温度异常中心明显西移,造成异常低层大气环流的西移,最终导致华东降水的西移效应。(4)通过分析和发现,强调了华东春季降水对ENSO的非线性响应,这对华东地区的季节性气候预测具有重要意义。  相似文献   

3.
热带太平洋第二类El Nio事件及其对中国气候的影响   总被引:1,自引:0,他引:1  
基于热带太平洋次表层海温资料,分析了热带太平洋第二类El Nio事件海温异常的分布特征及其形成机制,讨论了与经典El Nio事件、El Nio Modoki、WP(西太平洋暖池)及CT(冷舌)El Nio事件之间的关系,揭示了第二类El Nio事件对中国降水的影响,得到以下结论。(1)第二类El Nio事件表征为热带太平洋次表层海温异常第三模态,占总方差贡献的4.7%。在海洋表面层,第二类El Nio事件暖期赤道东太平洋为沿赤道西伸的冷舌,热带中西太平洋为环绕冷舌的马蹄型大范围暖区。该型具11a和30~40a年代际振荡及3~4a年际变率,峰值多出现在春季。第二类El Nio事件是热带太平洋异常海面风应力场和赤道两侧的风应力旋度共同作用的结果,在赤道东印度洋-中西太平洋与赤道东太平洋-南美洲上空出现以反号垂直运动为特征的异常Walker环流。(2)El Nio Modoki与第二类El Nio事件有密切关系,它实质上是第二类El Nio事件次表层海温与近海面大气相互作用的结果,捕捉了第二类El Nio事件的主要信息。(3)第二类El Nio事件对中国春季及夏初降水有一定影响。在事件暖期,东海地区存在一个显著的异常反气旋性环流,其南侧的中国南方地区盛行异常东北气流,水汽来源减少,导致该地区少雨,其西侧的异常偏南气流北上直达华北地区,异常多水汽向北输送,并与北方的偏北流场相遇,导致该地区降水偏多。在第二类El Nio事件冷期相反。本文结果还指出,WP与CT El Nio事件是由经典El Nio事件第一模态与El Nio Modoki事件组合而成,它们不是独立的El Nio类型。此外,还讨论了夏半年El Nio事件对大气环流影响的物理过程。  相似文献   

4.
ENSO-induced interannual variability in the southeastern South China Sea   总被引:5,自引:0,他引:5  
In this study, El Niño Southern Oscillation (ENSO)-induced interannual variability in the South China Sea (SCS) is documented using outputs from an eddy-resolving data-assimilating model. It is suggested that during an El Niño (La Niña) event, off-equatorial upwelling (downwelling) Rossby waves induced by Pacific equatorial wind anomalies impinge on the Philippine Islands and excite upwelling (downwelling) coastal Kelvin waves that propagate northward along the west coast of the Philippines after entering the SCS through the Mindoro Strait. The coastal Kelvin waves may then induce negative (positive) sea level anomalies in the southeastern SCS and larger (smaller) volume transport through the Mindoro and Luzon Straits during an El Niño (La Niña) event.  相似文献   

5.
A class of coupled system of the El Niño/La Niña-Southern Oscillation (ENSO) mechanism is studied. Using the perturbed theory, the asymptotic expansions of the solution for ENSO model are obtained and the asymptotic behavior of solution for corresponding problem is considered.  相似文献   

6.
The trends of the sea surface temperature(SST) and SST fronts in the South China Sea(SCS) are analyzed during2003–2017 using high-resolution satellite data. The linear trend of the basin averaged SST is 0.31°C per decade,with the strongest warming identified in southeastern Vietnam. Although the rate of warming is comparable in summer and winter for the entire basin, the corresponding spatial patterns of the linear trend are substantially different between them. The SST trend to the west of the Luzon Strait is characterized by rapid warming in summer, exceeding approximately 0.6°C per decade, but the trend is insignificant in winter. The strongest warming trend occurs in the southeast of Vietnam in winter, with much less pronounced warming in summer. A positive trend of SST fronts is identified for the coast of China and is associated with increasing wind stress. The increasing trend of SST fronts is also found in the east of Vietnam. Large-scale circulation, such as El Ni?o, can influence the trends of the SST and SST fronts. A significant correlation is found between the SST anomaly and Ni?o3.4 index, and the ENSO signal leads by eight months. The basin averaged SST linear trends increase after the El Ni?o event(2009–2010), which is, at least, due to the rapid warming rate causing by the enhanced northeasterly wind. Peaks of positive anomalous SST and negatively anomalous SST fronts are found to co-occur with the strong El Ni?o events.  相似文献   

7.
Upwelling from the Benguela Current system on the South African west coast has produced a seaweed flora distinct from that in the region east of Cape Agulhas. The origins of the major red algal component of the West Coast flora appear to be in temperate and polar regions of the southern Pacific Ocean, whereas the South and East Coast floras are more closely related to the floras of the tropical Indian Ocean and of South and West Australia. Although the West Coast flora has a high degree of endemism, recent evidence suggests that events since the initiation of the Benguela system < 12 million years ago have been crucial in its formation. Evidence on the effects of upwelling on growth and physiology suggests that rapid irregular fluctuations in temperature and nutrients on the West Coast have little effect on the strongly seasonal patterns of development, which are probably brought about by aspects of the light regime. Variations in light intensity in the sublittoral caused by upwelling or downwelling conditions appear to have relatively minor effects on seaweed production. Little is known of the effects of high concentrations of available nutrients in upwelled water, although the kelp Ecklonia maxima appears to have evolved both morphologically and physiologically to the West Coast conditions.  相似文献   

8.
We investigate an overlooked mechanism—coastal upwelling—for sea surface temperature (SST) cooling in the western side of the mean location of the Pacific warm pool (WSWP: 5°S–5°N, 140°E–150°E) prior to El Niño onset. We analyze various observed data such as the TRIangle Trans-Ocean buoy Network (TRITON) moored buoy data, Conductivity-Temperature-Depth (CTD) data, satellite data and a hindcast experiment output by a high-resolution ocean general circulation model (OGCM). We focus on the precondition of the 2002/03 El Niño event, for which many datasets are available. Relatively cool water upwelled along the north coast of Papua New Guinea (PNG) during December 2001, prior to the onset of the 2002/03 El Niño event, and then spread out over a wider area to the northeast. Simultaneously, strong west-northerly surface winds occur along the north coast. Heat budget analysis of TRITON buoy data in the WSWP reveals that negative zonal heat advection due to eastward current is the main factor for cooling the mixed layer in the WSWP in contrast to the warming effect of the surface heat flux during the period. This cooling requires a source of colder water to the west. Similar analysis of OGCM outputs also suggests that the upwelled relatively cool water along the PNG north coast, and its northeastward extension to the equatorial region, contributes to cooling of the surface water over the WSWP mainly via negative zonal heat advection. Similar mechanisms are confirmed also for the 1982/83 and 1997/98 El Niño events by analyses of OGCM outputs and historical SST data. The low SST in the WSWP generated a positive zonal SST gradient together with high SST east of the WSWP. It may contribute to enhancement of the westerly surface wind in this region, leading to the onset of the 2002/03 El Niño event.  相似文献   

9.
厄尔尼诺和台风共同影响下的7月份黄、东海海温变化   总被引:1,自引:0,他引:1  
张守文  王辉  姜华  宋春阳  杜凌 《海洋学报》2017,39(12):32-41
基于历史海温数据和台风路径数据,研究了厄尔尼诺/拉尼娜(El Niño/La Niña)背景下7月份中国近海海温变化特征。结果表明:7月黄、东海海温异常与El Niño/La Niña有显著相关关系,OISST和GODAS海温数据与Niño3指数同步相关系数分别为-0.32和-0.45。El Niño年7月,黄、东海海表温度异常低于-0.5℃的概率超过60%;La Niña年7月,黄海海温异常高于0.5℃的概率约有60%;正常年7月,海温异常的空间分布与El Niño年相反,但量值偏低。El Niño年7月,中国近海及邻近区域大气异常能够给局地带来更多降水;同时,受El Niño背景场的影响,入侵黄、东海的台风强度更强、影响时间更长。大尺度的降水和台风活动的影响是导致黄、东海海温异常降低的重要原因。因此,分析和预测7月份中国近海海温异常,在充分考虑El Niño/La Niña背景场的基础上,需要结合局地的大尺度降水和台风的影响同时分析,这为特定背景下结合不同时间尺度上的因素共同分析中国近海海温变化提供了一种思路。  相似文献   

10.
This study reveals the physical backgrounds of the geometric centroid and the thermal centroid of the Western Pacific Warm Pool (WPWP) and points out their differences. The geometric centroid (actually a very close approximation to the mass centroid) anomaly of the surface WPWP correlates more closely with the Niño-3 region sea surface temperature anomaly (Niño-3 SSTA, an important indicator of El Niño/La Niña events) than the surface thermal centroid. Taking the WPWP depth (or heat storage) into account, the “real” mass or thermal centroid of the WPWP might correlate better with the El Niño/Southern Oscillation (ENSO) signals.  相似文献   

11.
12.
In this paper a methodology is applied to generate synthetic wave series during mean and extreme conditions. An analysis is carried out that describes mean and extreme wave behavior for several climatic conditions along the Colombian Caribbean Coast. During mean conditions, the most energetic ocean waves are observed during the DJF season for both ENSO phases (El Niño and La Niña) for most of the Caribbean Sea. During the Niño years, there is a reduction in the speed of the north-east trade winds and their associated waves, but only in the DJF and MAM seasons. However, during the JJA season, this situation is reversed with the highest values occurring during El Niño and low values appearing during La Niña. Toward the east around the Guajira region, this general pattern is shown to change significantly. For extreme conditions, the results show a significant influence of extreme events toward the northwest, around La Guajira and the insular zones of San Andres and Providence when compared with other regions along the coast. All of these results (including the synthetic wave series) provide a design and management tool for the successful implementation of any coastal project (scientific or consulting) in Colombia.  相似文献   

13.
Limitations in sea surface salinity (SSS) observations and timescale separation methods have led to an incomplete picture of the mechanisms of SSS decadal variability in the tropical Pacific Ocean, where the El Niño Southern Oscillation (ENSO) dominates. Little is known regarding the roles of the North Pacific Gyre Oscillation (NPGO) and the Pacific Decadal Oscillation (PDO) in the large-scale SSS variability over the tropical basin. A self-organizing map (SOM) clustering analysis is performed on the intrinsic mode function (IMF) maps, which are decomposed from SSS and other hydrological fields by ensemble empirical mode decomposition (EEMD), to extract their asymmetric features on decadal timescales over the tropical Pacific. For SSS, an anomalous pattern appeared during 1997 to 2004, a period referred to as the anomalous late 1990s, when strong freshening prevailed in large areas over the southwestern basin and moderate salinization occurred in the western equatorial Pacific. During this period, the precipitation and surface currents were simultaneously subjected to anomalous fluctuations: the precipitation dipole and zonal current divergence along the equator coincided with the SSS increase in the far western equatorial Pacific, while the weak zonal current convergence in the southwestern basin and large-scale southward meridional currents tended to induce SSS decreases there. The dominant decadal modes of SSS and sea surface temperature (SST) in the tropical Pacific both resemble the NPGO but occur predominantly during the negative and positive NPGO phases, respectively. The similarities between the NPGO and Central Pacific ENSO (CP-ENSO) in their power spectra and associated spatial patterns in the tropics imply their dynamical links; the correspondence between the NPGO-like patterns during negative (positive) phases and the CP La Niña (CP El Niño) patterns for SSS is also discussed.  相似文献   

14.
气候模式FIO-ESM对2015/16年厄尔尼诺的预测   总被引:1,自引:0,他引:1  
Recently atmospheric and oceanic observations indicate the tropical Pacific is at the El Ni?o condition. However,it's not clear whether this El Ni?o event of this year is comparable to the very strong one of 1997/98 which brought huge influence on the whole world. In this study, based on the Ensemble Adjusted Kalman Filter(EAKF)assimilation scheme and First Institute of Oceanography-Earth System Model(FIO-ESM), the assimilation system is setup, which can provide reasonable initial conditions for prediction. And the hindcast results suggest the skill of El Ni?o-Southern Oscillation(ENSO) prediction is comparable to other dynamical coupled models. Then the prediction for 2015/16 El Ni?o by using FIO-ESM is started from 1 November 2015. The ensemble results indicate that the 2015/16 El Ni?o will continue to be strong. By the end of 2015, the strongest strength is very like more than 2.0°C and the ensemble mean strength is 2.34°C, which indicates 2015/16 El Ni?o event will be very strong but slightly less than that of 1997/98 El Ni?o event(2.40°C) calculated relative a climatology based on the years1992–2014. The prediction results also suggest 2015/16 El Ni?o event will be a transition to ENSO-neutral level in the early spring(FMA) 2016, and then may transfer to La Ni?a in summer 2016.  相似文献   

15.
The existence and strength of the annual KwaZulu-Natal (KZN) sardine run has long been a conundrum to fishers and scientists alike ― particularly that the sardine Sardinops sagax migrate along the narrow Transkei shelf against the powerful, warm Agulhas Current. However, examination of ship-borne acoustic Doppler current profiler (S–ADCP) data collected during two research surveys in 2005 indicated that northward-flowing coastal countercurrents exist at times between the Agulhas Bank and the KZN Bight, near Port Alfred, East London, Port St Johns and Durban. The countercurrent near Port Alfred extended as far east as the Keiskamma River, within an upwelling zone known to exist there. An ADCP mooring at a depth of 32 m off Port Alfred indicated that the countercurrent typically lasted a few days, but at times remained in the same direction for as long as 10 days. Velocities ranged between 20 and 60 cm s?1 with maximum values of ~80 cm s?1. The S–ADCP data also highlighted the existence of cyclonic flow in the Port St Johns–Waterfall Bluff coastal inset, with a northward coastal current similarly ranging in velocity between 20 and 60 cm s?1. CTD data indicated that this was associated with shelf-edge upwelling, with surface temperatures 2–4 °C cooler than the adjacent core temperature (24–26 °C) of the Agulhas Current. Vertical profiles of the S–ADCP data showed that the countercurrent, about 7 km wide, extends down the slope to at least 600 m, where it appeared to link with the deep Agulhas Undercurrent at 800 m. S–ADCP and sea surface temperature (SST) satellite data confirmed the existence of the semi-permanent, lee-trapped, cyclonic eddy off Durban, associated with a well-defined northward coastal current between Park Rynie and Balito Bay. Analysis of three months (May–July 2005) of satellite SST and ocean colour data showed the shoreward core-boundary of the Agulhas Current (24 °C isotherm) to commonly be close to the coast along the KZN south coast, as well as between the Kei and Mbhashe rivers on the Transkei shelf. The Port St Johns–Waterfall Bluff cyclonic eddy was also frequently visible in these satellite data. Transient cyclonic eddies, which spanned 150–200 km of shelf, appeared to move downstream in the shoreward boundary of the Agulhas Current at a frequency of about once a month. These seemed to be break-away Durban eddies. Data collected by ADCP moorings deployed off Port Edward in 2005 showed that these break-away eddies and the well-known Natal Pulse are associated with temporary northward countercurrents on the shelf, which can last up to six days. It is proposed that these countercurrents off Port Alfred, East London and Port St Johns assist sardine to swim northwards along the Transkei shelf against the Agulhas Current, but that their progress north of Waterfall Bluff is dependent on the arrival of a transient, southward-moving, break-away Durban cyclonic eddy, which apparently sheds every 4–6 weeks, or on the generation of a Natal Pulse. This passage control mechanism has been coined the ‘Waterfall Bluff gateway’ hypothesis. The sardine run survey in June–July 2005 was undertaken in the absence of a cyclonic eddy on the KZN south coast, i.e. when the ‘gate’ was closed.  相似文献   

16.
《Oceanologica Acta》1999,22(3):249-263
Mean conditions, seasonal, and ENSO-related (El Niño Southern Oscillation) variability in the vicinity of Wallis, Futuna, and Samoa islands (13°–15° S, 180°–170° W) over the 1973–1995 period are analysed for wind pseudo-stress, satellite-derived and in situ precipitation, sea surface temperature (SST) and salinity (SSS), sea level, and 0–450 m temperature and geostrophic current. The mean local conditions reflect the presence of the large scale features such as the western Pacific warm pool, the South Pacific Convergence Zone (SPCZ), and the South Pacific anticyclonic gyre. The seasonal changes are closely related to the meridional migrations of the SPCZ, which passes twice a year over the region of study. During the warm phase of ENSO (El Niño), we generally observe saltier-than-average SSS (of the order of 0.4), consistent with a rainfall deficit (0.4 m yr−1), a hint of colder-than-average surface temperature is also identified in subsurface (0.3°C), a weak tendency for westward geostrophic current anomalies (2 cm s−1 at the surface), a sea level decrease (5–10 cm), together with easterly (5 m2s−2) and well marked southerly (10 m2s−2) wind pseudo-stress anomalies. Anomalies of similar magnitude, but of opposite sign, are detected during the cold phase of ENSO (La Niña). While these ENSO-related changes apply prior to the 1990s, they were not observed during the 1991–1994 period, which appears atypical.  相似文献   

17.
Despite much public awareness surrounding the annual migration of sardine Sardinops sagax northward along the east coast of South Africa in winter each year, relatively little research effort has been expended to improve understanding of the ‘sardine run’. For this reason, a dedicated multidisciplinary survey, timed to coincide with the annual sardine run, was conducted off the East Coast in June and July of 2005. The major objective of the survey was to estimate the biomass of sardine off the East Coast during the run, and to compare this with biomass estimates collected during previous surveys conducted in this area during the late 1980s when the South African sardine population was at a considerably smaller size. We also collected data on the distribution of sardine and other small pelagic fish species and their eggs, the biological characteristics of sardine during the run, and data on the hydrography (temperature and currents) and lower trophic levels (phytoplankton and zooplankton) of the region. Results suggest that the biomass of sardine off the East Coast in winter remains relatively small and consistent, regardless of overall sardine population size. The narrow continental shelf to the east of Port Alfred, which is dominated offshore by the fast-flowing warm Agulhas Current, constrains the amount of suitable habitat for sardine and other clupeoids such as anchovy Engraulis encrasicolus, West Coast round herring Etrumeus whiteheadi and East Coast round herring Etrumeus teres, and hence precludes these species from attaining a high biomass in this region. Additionally, primary and secondary productivity levels are much lower than elsewhere on the western and eastern Agulhas Bank off the south coast of South Africa, suggesting that the sardine run is not a feeding migration. A previous hypothesis that the run is mainly a result of an expansion of the distributional range of these fish as conditions become favourable in winter due to sporadic cooling off the East Coast is also not entirely supported by results from the survey. It is suggested that a migration for the purposes of spawning off this coast when conditions become favourable is a more likely incentive for sardine to undertake this arduous journey, despite increased predation and poor feeding conditions.  相似文献   

18.
The surface and subsurface waters of the Angola and Agulhas Current systems significantly influence the Benguela region and its living resources, and it is probable that the movement of Central Water, which plays a key role in the coastal upwelling process, is controlled by circulation of underlying Antarctic Intermediate Water (AIW) as well as by the dynamics of the overlying subtropical water. The movement of AIW can be inferred from a study of the t-s characteristics, and the data holdings and data base of the South African Data Centre for Oceanography facilitated this investigation. Key findings of the investigation, some confirming earlier theories and hypotheses, are as follows. The mean depth of the AIW core in the South-East Atlantic is 750 m, and in the South-West Indian Ocean, 1 100 m. Agulhas Current AIW, which is modified by Red Sea Water, becomes fresher en route because of entrainment and mixing of water from the south and west. Most of the Agulhas Current AIW per se retroflects east of 18°E. A poleward movement of AIW along the West Coast to around 32°S may be inferred from the salinity and oxygen data, with a freshening en route analogous to the Agulhas Current. Relatively fresh AIW (s < 34,35 × 10?3) is present off the South-Western Cape, the only part of the Benguela where the overlying virgin Central Water upwells. No statistically significant seasonal differences could be resolved.  相似文献   

19.
Primary productivity (PP) and phytoplankton structure play an important role in regulating oceanic carbon cycle. The unique seasonal circulation and upwelling pattern of the South China Sea (SCS) provide an ideal natural laboratory to study the response of nutrients and phytoplankton dynamics to climate variation. In this study, we used a three-dimensional (3D) physical–biogeochemical coupled model to simulate nutrients, phytoplankton biomass, PP, and functional groups in the SCS from 1958 to 2009. The modeled results showed that the annual mean carbon composition of small phytoplankton, diatoms, and coccolithophores was 33.7, 52.7, and 13.6 %, respectively. Diatoms showed a higher seasonal variability than small phytoplankton and coccolithophores. Diatoms were abundant during winter in most areas of the SCS except for the offshore of southeastern Vietnam, where diatom blooms occurred in both summer and winter. Higher values of small phytoplankton and coccolithophores occurred mostly in summer. Our modeled results indicated that the seasonal variability of PP was driven by the East Asian Monsoon. The northeast winter monsoon results in more nutrients in the offshore area of the northwestern Luzon Island and the Sunda Shelf, while the southwest summer monsoon drives coastal upwelling to bring sufficient nutrients to the offshore area of southeastern Vietnam. The modeled PP was correlated with El Niño/Southern Oscillation (ENSO) at the interannual scale. The positive phase of ENSO (El Niño conditions) corresponded to lower PP and the negative phase of ENSO (La Niña conditions) corresponded to higher PP.  相似文献   

20.
Time-varying air–sea coupled processes in the central to eastern equatorial Pacific associated with strong El Niño development during the 1997–1998 period are examined using a newly developed reanalysis dataset obtained from four-dimensional variational ocean–atmosphere coupled data assimilation experiments. The time series of this data field exhibits realistic features of El Niño evolution. Our analysis indicates that resonance between eastward-propagating oceanic downwelling Kelvin waves and the seasonal rise of sea-surface temperature (SST) in the central to eastern equatorial Pacific generates relatively persistent high SST conditions accompanied by a deeper thermocline and more relaxed easterly winds than usual. The surface condition resulting from the wave-seasonal SST resonance represents a preconditioned state that leads to an enhancement in incident downwelling Kelvin waves to levels sufficient to induce large-amplitude unstable coupled waves in the central to eastern equatorial region. Heat balance estimates using our reanalysis dataset suggest that the unstable coupled waves are categorized within the intermediate regime of coupled Kelvin and Rossby waves and have the potential to grow rapidly. We argue that the seasonal resonance and the unstable coupled waves should play crucial roles in the development of the largest historical El Niño event, which was recorded between late 1997 and early 1998.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号