首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landslides constitute one of the major natural hazards that could cause significant losses of life and property. Mapping or delineating areas prone to landsliding is therefore essential for land‐use activities and management decision making in hilly or mountainous regions. A landslide hazard map can be constructed by a qualitative combination of maps of site conditions, including geology, topography and geomorphology, by statistical methods through correlating landslide occurrence with geologic and geomorphic factors, or by using safety factors from stability analysis. A landslide hazard map should provide information on both the spatial and temporal probabilities of landsliding in a certain area. However, most previous studies have focused on susceptibility mapping, rather than on hazard mapping in a spatiotemporal context. This study aims at developing a predictive model, based on both quasi‐static and dynamic variables, to determine the probability of landsliding in terms of space and time. The study area selected is about 13 km2 in North Lantau, Hong Kong. The source areas of the landslides caused by the rainstorms of 18 July 1992 and 4–5 November 1993 were interpreted from multi‐temporal aerial photographs. Landslide data, lithology, digital elevation model data, land cover, and rainfall data were digitized into a geographic information system database. A logistic regression model was developed using lithology, slope gradient, slope aspect, elevation, slope shape, land cover, and rolling 24 h rainfall as independent variables, since the dependent variable could be expressed in a dichotomous way. This model achieved an overall accuracy of 87·2%, with 89·5% of landslide grid cells correctly classified and found to be performing satisfactorily. The model was then applied to rainfalls of a variety of periods of return, to predict the probability of landsliding on natural slopes in space and time. It is observed that the modelling techniques described here are useful for predicting the spatiotemporal probability of landsliding and can be used by land‐use planners to develop effective management strategies. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
The purpose of this study is to develop landslide susceptibility analysis techniques using an arti?cial neural network and to apply the newly developed techniques to the study area of Yongin in Korea. Landslide locations were identi?ed in the study area from interpretation of aerial photographs, ?eld survey data, and a spatial database of the topography, soil type and timber cover. The landslide‐related factors (slope, curvature, soil texture, soil drainage, soil effective thickness, timber age, and timber diameter) were extracted from the spatial database. Using those factors, landslide susceptibility was analysed by arti?cial neural network methods. The landslide susceptibility index was calculated by the back‐propagation method, which is a type of arti?cial neural network method, and the susceptibility map was made with a geographic information system (GIS) program. The results of the landslide susceptibility analysis were veri?ed using landslide location data. The validation results showed satisfactory agreement between the susceptibility map and the existing data on landslide location. A GIS was used to ef?ciently analyse the vast amount of data, and an arti?cial neural network to be an effective tool to maintain precision and accuracy. The results can be used to reduce hazards associated with landslides and to plan land use and construction. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
Landslides threaten lives and property throughout the United States, causing in excess of $2 billion in damages and 25–50 deaths annually. In regions subjected to urban expansion caused by population growth and/or increased storm intensities caused by changing climate patterns, the economic and society costs of landslides will continue to rise. Using a geographic information system (GIS), this paper develops and implements a multivariate statistical approach for mapping landslide susceptibility. The presented susceptibility maps are intended to help in the design of hazard mitigation and land development policies at regional scales. The paper presents (a) a GIS‐based multivariate statistical approach for mapping landslide susceptibility, (b) several dimensionless landslide susceptibility indexes developed to quantify and weight the influence of individual categories for given potential risk factors on landslides and (c) a case study in southern California, which uses 11 111 seismic landslide scars collected from previous efforts and 5389 landslide scars newly digitized from local geologic maps. In the case study, seven potential risk factors were selected to map landslide susceptibility. Ground slope and event precipitation were the most important factors, followed by land cover, surface curvature, proximity to fault, elevation and proximity to coastline. The developed landslide susceptibility maps show that areas classified as having high or very high susceptibilities contained 71% of the digitized landslide scars and 90% of the seismic landslide scars while only occupying 26% of the total study area. These areas mostly have ground slopes higher than 46% and 2‐year, 6‐hour precipitation greater than 51 mm. Only 12% of digitized landslides and less than 1% of recorded seismic landslides were located in areas classified as low or very low susceptibility, while occupying 42% of the total study region. These areas mostly have slopes less than 27% and 2‐year, 6‐hour precipitation less than 41 mm. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
《国际泥沙研究》2022,37(5):601-618
Landslides are considered as one among many phenomena jeopardizing human beings as well as their constructions. To prevent this disastrous problem, researchers have used several approaches for landslide susceptibility modeling, for the purpose of preparing accurate maps marking landslide prone areas. Among the most frequently used approaches for landslide susceptibility mapping is the Artificial Neural Network (ANN) method. However, the effectiveness of ANN methods could be enhanced by using hybrid metaheuristic algorithms, which are scarcely applied in landslide mapping. In the current study, nine hybrid metaheuristic algorithms, genetic algorithm (GA)-ANN, evolutionary strategy (ES)-ANN, ant colony optimization (ACO)-ANN, particle swarm optimization (PSO)-ANN, biogeography based optimization (BBO)-ANN, gravitational search algorithm (GHA)-ANN, particle swarm optimization and gravitational search algorithm (PSOGSA)-ANN, grey wolves optimization (GWO)-ANN, and probability based incremental learning (PBIL)-ANN have been used to spatially predict landslide susceptibility in Algiers’ Sahel, Algeria. The modeling phase was done using a database of 78 landslides collected utilizing Google Earth images, field surveys, and six conditioning factors (lithology, elevation, slope, land cover, distance to stream, and distance to road). Initially, a gamma test was used to decrease the input variable numbers. Furthermore, the optimal inputs have been modeled by the mean of hybrid metaheuristic ANN techniques and their performance was assessed through seven statistical indicators. The comparative study proves the effectiveness of the co-evolutionary PSOGSA-ANN model, which yielded higher performance in predicting landslide susceptibility compared to the other models. Sensitivity analysis using the step-by-step technique was done afterward, which revealed that the distance to the stream is the most influential factor on landslide susceptibility, followed by the slope factor which ranked second. Lithology and the distance to road have demonstrated a moderate effect on landslide susceptibility. Based on these findings, an accurate map has been designed to help land-use managers and decision-makers to mitigate landslide hazards.  相似文献   

5.
Landslides are one of the most serious geological disasters in the world and happen quite frequently in the Three Gorges. Landslide prediction is a very important measure of landslide prevention and cure in the Three Gorges. Traditional methods lack in sufficiently mining the various complex information from a landslide system. They often need much manual intervention and possess poor intelligence and accuracy. An intelligent method proposed in this paper for landslide prediction based on an object-oriented method and knowledge driving is hopeful to solve the above problem. The method adopted Landsat ETM+ images, 1:50,000 geological map and 1:10,000 relief map in the Three Gorges as the data origins. It firstly produced the key factors influencing landslide development and used multi-resolution segmentation algorithm to segment the image objects based on the key landslide factors of engineering rock group, reservoir water fluctuation, slope structure and slope level. Secondly, the method chose some sample objects and adopted the decision tree algorithm C5.0 to mine the landslide forecast criteria according to the factor values of each sample object. Finally, under knowledge driving the method classified the image objects and realized landslide susceptibility analysis and intelligent prediction in the Three Gorges. The method proposed in this paper is object-oriented. Results of a real-world example show that: (1) the object-oriented method possesses much more compact knowledge representation, higher efficiency, more continuous classifying result and higher prediction accuracy compared with the pixel-oriented method; (2) it possesses the overall accuracy of 87.64% and kappa coefficient of 0.8305 and is more accurate than the other seven methods (such as the pixel-oriented methods of Parallelpiped, Minimum Distance, Maximum Likelihood, Mahalanobis Distance, K-means and Isodata and the object-oriented method of Nearest Neighbor); (3) about 46.97% landslides lie in the high susceptibility region, 24.24% landslides lie in the moderate susceptibility region, 27.27% landslides lie in the low susceptibility region and 1.52% landslides lie in the very low susceptibility region. Therefore the method can effectively realize landslide susceptibility analysis and provides a new idea for landslide intelligent and accurate prediction.  相似文献   

6.
Landslide susceptibility estimates are essential for reducing the risk posed by landslides to social and economic well-being. However, estimates of landslide susceptibility depend on reliable landslide inventories whose production requires extensive field or remote sensing efforts. Further, most inventories are not updated through time and thus may not capture the influence of changes in climate and/or land use. Inventories based on citizen reports of landslide occurrence, have the potential to overcome these limitations. Such an inventory can be produced from citizen reports to a 311-phone and online system, a nationwide database that updates real-time and records reported landslides location and timing. Whereas this landslide inventory is promising, it has not used for landslide susceptibility analyses and may be associated with spatial uncertainties and reporting biases. In this study we explore the use of 311-based landslide inventory for landslide susceptibility estimates in Pittsburgh, PA, USA, where landslide risk is among the highest in the nation. We compare the 311-based inventory to field-validated inventories through a multi-pronged approach that combines field validation of 311-reported landslides, probabilistic analysis of the association between landslides and the underlying topographic and geologic factors, and spatial filtering. Our results show that: (a) approximately 70% of the 311-reported landslides are associated with an identifiable landslide in the field; (b) the spatial uncertainty of the 311-reported landslides is 104 ± 25 m; (c) 311-reported landslides differ from other inventories in that they are primarily associated with proximity to roads, however, field-correction of 311-reported landslide locations rectifies this anomaly; (d) a simple spatial filter, scaled by the uncertainty in location as determined from a subset of the 311-data, can increase the consistency between the 311-reported inventory and field-validated inventories. These results suggest that 311-based landslide inventories can improve susceptibility estimates at a relatively low cost and high temporal resolution.  相似文献   

7.
为了充分识别和有效减轻滑坡灾害风险,对滇西南南涧(约470 km2)和凤庆—昌宁(约2300 km2)两个研究区开展了基于GIS和专家知识的滑坡敏感性模糊逻辑评价研究。通过检查模型计算得到的历史滑坡点敏感性值与整个研究区域的滑坡敏感性平均值是否不同来评价本方法的性能,用Z值检查来测试差异的统计显著性。计算结果显示,南涧地区的Z值为4.1,相应的P值小于0.001,表明通过模型计算得到的滑坡敏感性值是该区域滑坡事件发生的良好指标;凤庆—昌宁地区的Z值为8.93,相应的P值小于0.001。在此基础上,采用自然断点法对滑坡敏感性值进行分类,根据分类结果将滑坡敏感性水平划分成5个等级:极低(0.0~0.001)、较低(0.001~0.051)、中等(0.051~0.394)、较高(0.394~0.557)和极高(0.557~1.0)。敏感性极低和较低的地区没有发现历史滑坡记录;敏感性极高地区的历史滑坡密度约是敏感性较高地区的4倍,约为敏感性中等地区的10倍。凤庆—昌宁地区的研究结果表明,从区域专家群中提取的滑坡敏感性与环境因子关系的知识可以外延到滇西南其它地区。  相似文献   

8.
针对基于机器学习的滑坡易发性评价中非滑坡样本选取不规范导致的分类精度较低问题,本文提出联合基于密度的噪声应用空间聚类(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)采样策略和支持向量机(Support Vector Machine,...  相似文献   

9.
Landslide erosion is a dominant hillslope process and the main source of stream sediment in tropical, tectonically active mountain belts. In this study, we quantified landslide erosion triggered by 24 rainfall events from 2001 to 2009 in three mountainous watersheds in Taiwan and investigated relationships between landslide erosion and rainfall variables. The results show positive power‐law relations between landslide erosion and rainfall intensity and cumulative rainfall, with scaling exponents ranging from 2·94 to 5·03. Additionally, landslide erosion caused by Typhoon Morakot is of comparable magnitude to landslide erosion caused by the Chi‐Chi Earthquake (MW = 7·6) or 22–24 years of basin‐averaged erosion. Comparison of the three watersheds indicates that deeper landslides that mobilize soil and bedrock are triggered by long‐duration rainfall, whereas shallow landslides are triggered by short‐duration rainfall. These results suggest that rainfall intensity and watershed characteristics are important controls on rainfall‐triggered landslide erosion and that severe typhoons, like high‐magnitude earthquakes, can generate high rates of landslide erosion in Taiwan. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Remote sensing is an important source of snow‐cover extent for input into the Snowmelt Runoff Model (SRM) and other snowmelt models. Since February 2000, daily global snow‐cover maps have been produced from data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS). The usefulness of this snow‐cover product for streamflow prediction is assessed by comparing SRM simulated streamflow using the MODIS snow‐cover product with streamflow simulated using snow maps from the National Operational Hydrologic Remote Sensing Center (NOHRSC). Simulations were conducted for two tributary watersheds of the Upper Rio Grande basin during the 2001 snowmelt season using representative SRM parameter values. Snow depletion curves developed from MODIS and NOHRSC snow maps were generally comparable in both watersheds: satisfactory streamflow simulations were obtained using both snow‐cover products in larger watershed (volume difference: MODIS, 2·6%; NOHRSC, 14·0%) and less satisfactory streamflow simulations in smaller watershed (volume difference: MODIS, −33·1%; NOHRSC, −18·6%). The snow water equivalent (SWE) on 1 April in the third zone of each basin was computed using the modified depletion curve produced by the SRM and was compared with in situ SWE measured at Snowpack Telemetry sites located in the third zone of each basin. The SRM‐calculated SWEs using both snow products agree with the measured SWEs in both watersheds. Based on these results, the MODIS snow‐cover product appears to be of sufficient quality for streamflow prediction using the SRM in the snowmelt‐dominated basins. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Empirical prediction of coseismic landslide dam formation   总被引:1,自引:0,他引:1       下载免费PDF全文
In this study we develop an empirical method to estimate the volume threshold for predicting coseismic landslide dam formation using landscape parameters obtained from digital elevation models (DEMs). We hypothesize that the potential runout and volume of landslides, together with river features, determine the likelihood of the formation of a landslide dam. To develop this method, a database was created by randomly selecting 140 damming and 200 non‐damming landslides from 501 landslide dams and > 60 000 landslides induced by the Mw 7.9 2008 Wenchuan earthquake in China. We used this database to parameterize empirical runout models by stepwise multivariate regression. We find that factors controlling landslide runout are landslide initiation volume, landslide type, internal relief (H) and the H/L ratio (between H and landslide horizontal distance to river, L). In order to obtain a first volume threshold for a landslide to reach a river, the runout regression equations were converted into inverse volume equations by taking the runout to be the distance to river. A second volume threshold above which a landslide is predicted to block a river was determined by the correlation between river width and landslide volume of the known damming landslides. The larger of these two thresholds was taken as the final damming threshold. This method was applied to several landslide types over a fine geographic grid of assumed initiation points in a selected catchment. The overall prediction accuracy was 97.4% and 86.0% for non‐damming and damming landslides, respectively. The model was further tested by predicting the damming landslides over the whole region, with promising results. We conclude that our method is robust and reliable for the Wenchuan event. In combination with pre‐event landslide susceptibility and frequency–size assessments, it can be used to predict likely damming locations of future coseismic landslides, thereby helping to plan emergency response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Reliable hydrological forecasts of snowmelt runoff are of major importance for many areas. Ground‐penetrating radar (GPR) measurements are used to assess snowpack water equivalent for planning of hydropower production in northern Sweden. The travel time of the radar pulse through the snow cover is recorded and converted to snow water equivalent (SWE) using a constant snowpack mean density from the drainage basin studied. In this paper we improve the method to estimate SWE by introducing a depth‐dependent snowpack density. We used 6 years measurements of peak snow depth and snowpack mean density at 11 locations in the Swedish mountains. The original method systematically overestimates the SWE at shallow depths (+25% for 0·5 m) and underestimates the SWE at large depths (?35% for 2·0 m). A large improvement was obtained by introducing a depth–density relation based on average conditions for several years, whereas refining this by using separate relations for individual years yielded a smaller improvement. The SWE estimates were substantially improved for thick snow covers, reducing the average error from 162 ± 23 mm to 53 ± 10 mm for depth range 1·2–2·0 m. Consequently, the introduction of a depth‐dependent snow density yields substantial improvements of the accuracy in SWE values calculated from GPR data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Long‐term effects of different forest management practices on landslide initiation and volume were analysed using a physically based slope stability model. The watershed‐based model calculates the effects of multiple harvesting entries on slope stability by accounting for the cumulative impacts of a prior vegetation removal on a more recent removal related to vegetation root strength and tree surcharge. Four sequential clearcuts and partial cuts with variable rotation lengths were simulated with or without leave areas and with or without understorey vegetation in a subwatershed of Carnation Creek, Vancouver Island, British Columbia. The combined in?nite slope and distributed hydrologic models used to calculate safety factor revealed that most of the simulated landslides were clustered within a 5 to 17 year period after initial harvesting in cases where suf?cient time (c. 50 years) lapsed prior to the next harvesting cycle. Partial cutting produced fewer landslides and reduced landslide volume by 1·4‐ to 1·6‐fold compared to clearcutting. Approximately the same total landslide volume was produced when 100 per cent of the site was initially clearcut compared to harvesting 20 per cent of the area in successive 10 year intervals; a similar ?nding was obtained for partial cutting. Vegetation leave areas were effective in reducing landsliding by 2‐ to 3‐fold. Retaining vigorous understorey vegetation also reduced landslide volume by 3·8‐ to 4·8‐fold. The combined management strategies of partial cutting, increasing rotation length, provision of leave areas, and retention of viable understorey vegetation offer the best alternative for minimizing landslide occurrence in managed forests. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The MS7.0 Jiuzhaigou earthquake in Sichuan Province of 8 August 2017 triggered a large number of landslides. A comprehensive and objective panorama of these landslides is of great significance for understanding the mechanism, intensity, spatial pattern and law of these coseismic landslides, recovery and reconstruction of earthquake affected area, as well as prevention and mitigation of landslide hazard. The main aim of this paper is to present the use of remote sensing images, GIS technology and Logistic Regression(LR)model for earthquake triggered landslide hazard mapping related to the 2017 Jiuzhaigou earthquake. On the basis of a scene post-earthquake Geoeye-1 satellite image(0.5m resolution), we delineated 4834 co-seismic landslides with an area of 9.63km2. The ten factors were selected as the influencing factors for earthquake triggered landslide hazard mapping of Jiuzhaigou earthquake, including elevation, slope angle, aspect, horizontal distance to fault, vertical distance to fault, distance to epicenter, distance to roads, distance to rivers, TPI index, and lithology. Both landsliding and non-landsliding samples were needed for LR model. Centroids of the 4834 initial landslide polygons were extracted for landslide samples and the 4832 non-landslide points were randomly selected from the landslide-free area. All samples(4834 landslide sites and 4832 non-landslide sites)were randomly divided into the training set(6767 samples)and validation set(2899 samples). The logistic regression model was used to carry out the landslide hazard assessment of the Jiuzhaigou earthquake and the results show that the landslide hazard assessment map based on LR model is very consistent with the actual landslide distribution. The areas of Wuhuahai-Xiamo, Huohuahai and Inter Continental Hotel of Jiuzhai-Ruyiba are high hazard areas. In order to quantitatively evaluate the prediction results, the trained model calculated with the training set was evaluated by training set and validation set as the input of the model to get the output results of the two sets. The ROC curve was used to evaluate the accuracy of the model. The ROC curve for LR model was drawn and the AUC values were calculated. The evaluation result shows good prediction accuracy. The AUC values for the training and validation data set are 0.91 and 0.89, respectively. On the whole, more than 78.5% of the landslides in the study area are concentrated in the high and extremely high hazard zones. Landslide point density and landslide area density increase very rapidly as the level of hazard increases. This paper provides a scientific reference for earthquake landslides, disaster prevention and mitigation in the earthquake area.  相似文献   

15.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Landslides are one of the most dangerous types of natural disasters, and damage due to landslides has been increasing in certain regions of the world because of increased precipitation. Policy decision makers require reliable information that can be used to establish spatial adaptation plans to protect people from landslide hazards. Researchers presently identify areas susceptible to landslides using various spatial distribution models. However, such data are associated with a high amount of uncertainty. This study focuses on quantifying the uncertainty of several spatial distribution models and identifying the effectiveness of various ensemble methods that can be used to provide reliable information to support policy decisions. The area of study was Inje-gun, Republic of Korea. Ten models were selected to assess landslide susceptibility. Moreover, five ensemble methods were selected for the aggregated results of the 10 models. The uncertainty was quantified using the coefficient of variation and the uncertainty map we developed revealed areas with strongly differing values among single models. A matrix map was created using an ensemble map and a coefficient of variation map. Using matrix analysis, we identified the areas that are most susceptible to landslides according to the ensemble model with a low uncertainty. Thus, the ensemble model can be a useful tool for supporting decision makers. The framework of this study can also be employed to support the establishment of landslide adaptation plans in other areas of the Republic of Korea and in other countries.  相似文献   

17.
The 8.0 Mw Wenchuan earthquake triggered widespread and large scale landslides in mountainous regions.An approach was used to map and assess landslide susceptibility in a given area. A numerical rating system was applied to five factors that contribute to slope instability. Factors such as lithology, topography, streams and faults have an important influence as event-controlling factors for landslide susceptibility assessment. A final map is provided to show areas of low,medium, and high landslide susceptibility. Areas identified as having high landslide susceptibility were located in the central,northeastern, and far south regions of the study area. The assessment results will help decision makers to select safe sites for emergency placement of refuges and plan for future reconstruction. The maps may also be used as a basis for landslide risk management in the study area.  相似文献   

18.
Soil erosion on steepland hillslopes in Taranaki, New Zealand, where landsliding is the dominant erosion form, was investigated by comparing mean regolith depths between first-order basins that have had their forest cover removed for different periods of time. Regolith depth and slope angle data were collected along 19 profile lines and 30 profile lines from steepland basins that had been deforested for 10 and 85 years, respectively. These profile lines were subdivided into a total of 236 profile segments of relatively linear slope angle and uniform regolith depth, that averaged 17·5 m in length. The depth of pre-existing regolith on post-deforestation landslide sites is estimated from a regression of regolith depth on slope angle for undisturbed (non-landslide) profile segments. Regolith depletion on landslide sites is in turn estimated by subtracting the depth of regolith on landslide sites from the estimate of pre-existing regolith depth. Regolith depletion by post-deforestation landslides, averaged over the entire length of profile lines, gives an estimate of average surface lowering. For the area deforested for 85 years, average surface lowering by post-deforestation landslides is 0·15 ± 0·04 m, and is the same as the difference in mean depth of 0·15 ± 0·11 m between this area and the area deforested for 10 years. Erosion of regolith from hillslopes by processes other than landsliding appears to be minimal. The 0·15 m average surface lowering represents a regolith depletion rate of 1·8 ± 0±5 mm yr?1. For hillslopes steeper than 28°, where all post-deforestation landslides occur, average surface lowering is 0·20 ± 0·05 m, and the regolith depletion rate is 2±4 · 0±6 mm yr?1. Average surface lowering is greatest at 0·23 ± 0·07 m on hillslopes steeper than 32° where most post-deforestation landslides occur. Here, the regolith depletion rate is 2·7 ± 0·8 mm yr?1. A large-magnitude, low-frequency storm in March 1990, produced an average surface lowering of 0·041 m. There were proportionately more landslides in the area deforested for 10 years, illustrating the importance of previous erosion history of hillslopes on the spatial distribution of landslides. There were also comparatively few landslides on steeper hillslopes because previous lower magnitude storms had already removed much of the deeper regolith.  相似文献   

19.
Snow cover depletion curves are required for several water management applications of snow hydrology and are often difficult to obtain automatically using optical remote sensing data owing to both frequent cloud cover and temporary snow cover. This study develops a methodology to produce accurate snow cover depletion curves automatically using high temporal resolution optical remote sensing data (e.g. Terra Moderate Resolution Imaging Spectroradiometer (MODIS), Aqua MODIS or National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR)) by snow cover change trajectory analysis. The method consists of four major steps. The first is to reclassify both cloud‐obscured land and snow into more distinct subclasses and to determine their snow cover status (seasonal snow cover or not) based on the snow cover change trajectories over the whole snowmelt season. The second step is to derive rules based on the analysis of snow cover change trajectories. These rules are subsequently used to determine for a given date, the snow cover status of a pixel based on snow cover maps from the beginning of the snowmelt season to that given date. The third step is to apply a decision‐tree‐like processing flow based on these rules to determine the snow cover status of a pixel for a given date and to create daily seasonal snow cover maps. The final step is to produce snow cover depletion curves using these maps. A case study using this method based on Terra MODIS snow cover map products (MOD10A1) was conducted in the lower and middle reaches of the Kaidu River Watershed (19 000 km2) in the Chinese Tien Shan, Xinjiang Uygur Autonomous Region, China. High resolution remote sensing data (charge coupled device (CCD) camera data with 19·5 m resolution of the China and Brazil Environmental and Resources Satellite (CBERS) data (19·5 m resolution), and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with 15 m resolution of the Terra) were used to validate the results. The study shows that the seasonal snow cover classification was consistent with that determined using a high spatial resolution dataset, with an accuracy of 87–91%. The snow cover depletion curves clearly reflected the impact of the variation of temperature and the appearance of temporary snow cover on seasonal snow cover. The findings from this case study suggest that the approach is successful in generating accurate snow cover depletion curves automatically under conditions of frequent cloud cover and temporary snow cover using high temporal resolution optical remote sensing data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
黄土地震滑坡危险性分析对黄土地区城镇化、工程建设的规划和地震灾害预防具有重要意义。以甘肃省定西市岷县—漳县交界处为研究区域,通过统计分析该区历史地震滑坡灾害数据,归纳并建立包含地震、坡度、坡高、坡向、地层岩性、年平均降雨量、河流流域和地貌类型等8个影响因子的评价指标体系,采用信息量模型、逻辑回归模型和信息量-逻辑回归耦合模型分别分析该区域黄土地震滑坡危险性。结果表明:(1)地震、河流和降雨是诱发黄土滑坡灾害发生的主要因素,其中地震因子贡献率最大;(2)研究区可划分为高、较高、中、低和极低危险区五个等级,其中高危险区主要集中于岷县、漳县与陇西县等地;(3)根据受试者工作特性(ROC)曲线精度检验结果,三种模型的AUC值分别为0.889、0.617和0.898,信息量-逻辑回归耦合模型结果的精确性相比其他两个模型更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号