首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
根据长三角地区7个探空站基于积分法计算的2016年大气水汽转换系数(K值),利用多元线性拟合分别构建不顾及高程的Emardson-I精化模型和顾及高程的Emardson-H精化模型,并用2017年的K值验证两种模型的精度。实验结果表明,Emardson-H预报模型的MAE和RMS分别为0.001 297和0.001 616,略优于Emardson-I预报模型的0.001 303和0.001 620;基于两种新模型的GNSS-PWV反演精度相当,其MAE和RMS均优于0.6 mm。因此,Emardson-I模型以其无需实测气象参数和无需顾及高程在长三角地区的地基GNSS气象学实时应用中具有更好的效率优势。  相似文献   

2.
利用湖南地区长沙、怀化、郴州3个探空站连续3 a(2012~2014年)的观测数据,以数值积分法计算的大气加权平均温度(Tm)作为参考值,分析Tm与地面气温Ts、水汽压es及大气压Ps之间的相关性,并基于最小二乘原理建立湖南地区多因子Tm模型。研究结果表明,Tm与地面温度Ts和水汽压es呈正相关性,与大气压Ps呈负相关;Bevis模型的Tm偏差主要分布在0~4 K之间,存在一定的系统偏差,而基于Ts单因子的Tm模型偏差主要分布在-2~3 K之间;双因子与三因子精度相当,但均优于单因子模型。总体而言,基于地面气温Ts和水汽压es的双因子Tm模型的精度优于基于Ts的单因子模型,更优于Bevis模型,适用于湖南地区的GPS气象研究及业务应用。  相似文献   

3.
基于陕西地区3个GNSS观测站2018年1~6月数据,利用北斗卫星导航系统进行水汽反演。首先利用不同星历产品计算水汽结果,分别与利用IGF解算的水汽结果、探空数据探测结果进行比较;再将不同星历得到的水汽结果进行相互对比。结果表明,利用3种星历都能获得精度和可靠性较高的水汽结果,其中精密星历和快速星历反演水汽的精度相当,各测站偏差均优于1 mm,标准差和均方根误差均优于3.5 mm;利用超快速星历(预报部分)反演水汽在各测站的偏差约为1 mm,标准差和均方根误差均优于5 mm。综合3种产品反演水汽的对应精度可知,利用3种星历产品均可反演大气可降水量,且超快速星历(预报部分)计算的水汽值可为气象预报提供参考依据。  相似文献   

4.
利用积分法计算新疆地区9个无线电探空站2009~2013年的大气水汽转换系数K,将其作为真值,通过选取相同纬度、不同高程的探空站,分析Emardson模型对高程和时间的适用性;并均匀地选取5个探空站,逐年增加样本数据,解算不同样本的模型参数,建立对应的Emardson模型,预测其余4个探空站2014年的K值,验证Emardson模型在时间上的适用性。研究表明:1)在新疆地区,Emardson模型对高程和时间有较好的适用性;2)在时间分布上,增加样本数能在一定程度上提高Emardson模型的精度。  相似文献   

5.
利用ERA5大气再分析资料研究ZTD高程尺度因子的精细时间变化特征,构建顾及高程尺度因子精细时间变化的云贵川地区ZTD垂直剖面格网模型(YZTD-H模型)。以云贵川地区探空站分层ZTD数据作为参考值,检验YZTD-H模型的精度,并将其与GPT2w模型和GPT3模型进行比较。结果表明,顾及精细时间变化和垂直剖面变化的YZTD-H模型在时间维度和垂直剖面维度上均表现出较好的稳定性。  相似文献   

6.
针对中国西部地区地形起伏较大等情况,分析大气加权平均温度(Tm)与测站高程、地面温度的关系,利用2014~2016年探空数据,在Bevis模型基础上建立一种与地面温度、高程和季节变化有关的新Tm模型。以2017年探空数据为参考值,对新模型进行精度分析,并与广泛使用的Bevis模型和GPT2w模型进行精度比较。结果表明,以探空数据为参考值,新模型的年均偏差和均方根误差(RMS)分别为-0.08 K和3.89 K,相比Bevis模型、GPT2w-5模型和GPT2w-1模型,其精度(RMS值)分别提高14.3%、20.6%和9.3%。此外,将新Tm模型用于GNSS水汽计算,其水汽计算理论RMS误差和相对误差分别为0.22 mm和1.43%,新模型在中国西部地区的GNSS水汽探测中具有重要的应用价值。  相似文献   

7.
针对GPT3模型各气象参数存在明显周期性误差的问题,以2015~2019年长三角地区7个探空站资料作为参考,分析GPT3模型残差的季节性周期变化,并利用Emardson-H模型构建一种新的GPT3改进模型。实验结果表明:1)与探空资料相比,GPT3模型气压、温度、水汽压和加权平均温度(T_(m))的均方根(RMS)均值分别为5.09 hPa、3.90 K、4.01 hPa和4.54 K;2)基于Emardson-H的GPT3改进模型气压、温度、水汽压和T_(m)的RMS均值分别为4.64 hPa、3.53 K、3.73 hPa和3.27 K,比GPT3模型分别提升0.45 hPa、0.37 K、0.28 hPa和1.27 K。综上分析,基于Emardson-H的GPT3改进模型精度相比GPT3模型有所改进。  相似文献   

8.
以中国西南地区2015~2017年探空数据为实验数据,使用多层感知器(MLP)神经网络回归方法建立西南地区的加权平均温度(Tm)模型。将气象参数(地表温度、水汽压)和非气象参数(高程、纬度和年积日)作为模型输入因子,由数值积分法计算得到的Tm作为学习目标,通过神经网络模型进行迭代训练从而得到中国西南地区的Tm。以2018年探空站Tm数据为参考值,对MLP模型精度进行验证,并与Bevis模型和GPT3模型进行对比分析。结果表明,MLP模型的年均RMSE和年均bias分别为1.99 K和0.15 K,比Bevis模型、GPT3模型年均RMSE分别降低1.36 K(40.6%)和1.51 K(43.1%),年均bias分别下降0.70 K(82.4%)和1.04 K(87.4%),且该模型在中国西南区域不同高程、纬度和季节的精度与稳定性优于Bevis模型和GPT3模型。  相似文献   

9.
基于安徽省23个CORS站数据解算天顶对流层延迟(ZTD),评估GPT3+Hopfield和GPT3+Saastamoinen两种对流层组合模型的适用性,并利用探空数据分析GPT3模型估计大气加权平均温度(Tm)和反演大气可降水量(PWV)的精度。结果表明:1)GPT3+Saastamoinen组合模型的ZTD精度优于GPT3+Hopfield组合模型,GPT3模型的ZTD精度具有显著的时空分布特征,皖南精度低于皖北,且春、冬季精度优于夏、秋季;2)在安徽地区,GPT3模型2种格网分辨率的Tm精度基本相当,平均偏差在-2.0 K左右,RMS值在4.5 K左右;3)在安徽地区,基于GPT3模型气象参数反演的PWV(GPT3-PWV)与探空站的PWV有较高的一致性,且同样具有时空变化特征,由皖南向皖北逐渐降低,夏季最大、冬季最小。  相似文献   

10.
采用中国区域2017~2018年与GNSS站并址的49个探空站资料对GPT3模型估算的气象参数的精度进行评估,再利用49个GNSS站结合GPT3模型估算的气象参数反演日均大气可降水量PWV,并采用与GNSS站并址的探空站数据对其精度进行评定。实验得出:1)在中国地区,1°分辨率的GPT3模型的精度和稳定性优于5°分辨率,其气压、气温和大气加权平均温度Tm的偏差均值分别为0.73 hPa、1.34 K和-1.67 K,均方根误差均值分别为4.21 hPa、3.75 K和4.15 K;2)利用GPT3模型提供的气温结合Bevis经验公式反演的PWV与GPT3模型提供的Tm反演的PWV精度相当,且2种方法反演的PWV和探空资料实测地表温度反演的PWV呈现很好的一致性,在我国青藏高原和西北地区反演PWV的精度优于我国南方和北方地区。  相似文献   

11.
采用线性回归和最小二乘法拟合建立无线电探空可降水量(RS-PWV)与GPS对流层延迟(GPS-ZTD)、地面温度及大气压之间的直接转换模型,并将直接转换模型得到的PWV分别与RS-PWV及GPS反演得到的可降水量(GPS-PWV)进行比较。结果表明,RS-PWV与GPS-ZTD之间存在良好的线性关系,相关系数达0.927 6;RS-PWV与4阶拟合温度和大气压呈现较好的相关性,相关系数分别为0.640 1和-0.626 3;基于ZTD的单阶单因子模型PWV与GPS-PWV的相关系数达到0.969 9;基于ZTD、温度及大气压的单阶多因子模型PWV比基于ZTD的单阶单因子模型PWV精度明显提高,RMS从4.3 mm提高到3.3 mm。  相似文献   

12.
利用ERA-Interim再分析资料对地基GNSS水汽层析中几个关键技术进行优化。首先利用ERA-Interim提供的大气产品建立同时顾及时间及地表温度参数的区域性大气加权平均温度模型;然后根据ERA-Interim提供的高垂直分辨率的水汽产品,分析“水汽层层顶”随时间变化的规律;最后提出一种新的划分垂直方向层析网格的方法。选取我国香港地区的12个CORS站2014-06的观测数据进行试算,结果表明,与探空资料相比,6 km高度以下优化后的层析结果相比传统层析结果精度提高了12%,在6 km高度以上提高了17%。  相似文献   

13.
利用GPS水汽反演技术和GPS-IR技术进行降水分析及降水判定研究。首先,考虑到降水发生前后大气水汽含量、地面反射特性、GPS对流层延迟、信噪比(signal-to-noise ratio, SNR)振幅(A)会发生变化,分析GPS-PWV和SNR-A与降水的相关性,并联合两者进行降水判定。结果表明,降水量与GPS-PWV正相关,与SNR-A负相关;加入SNR-A数据可提高降水判定的预报率和正确率。基于SNR-A序列的波谷和GPS-PWV序列的波峰进行降水判定,判定降水的预报率约为70%~82%,正确率约为50%~60%。  相似文献   

14.
使用亚洲区域18个IGS测站和中国区域内16个探空站2016~2018年的数据,研究GPT3模型反演天顶对流层延迟(ZTD)和大气可降水量(PWV)的精度,并与其他GPT系列模型进行对比。结果表明,GPT3-1模型估计的ZTD的bias均值和最大值均最小,分别为1.34 mm和14.06 mm;GPT3模型整体精度略优于GPT2w模型,优于GPT2模型。探空站处GPT3模型反演的PWV的bias和RMSE均表现出较强的季节性特征;由GPT3模型反演的PWV的月均值可知,GPT3-1模型比GPT3-5模型具有更高的精度和稳定性。  相似文献   

15.
提出一种顾及水汽衰减因子的PWV估算模型,通过输入地面大气水汽压和水汽衰减因子获得PWV,并选取2018年中国地区85个探空测站和7个IGS测站1 a的观测数据用于验证新模型的精度。结果表明,在已知当日水汽衰减因子的情况下,模型估算的PWV精度约为2 mm;也可通过GPT2w格网内插得到任意位置的水汽衰减因子,其结果精度与传统的一次多项式模型相当,但新模型的作用范围更广、适用性更强。  相似文献   

16.
利用无线电探空和地基水汽辐射计的观测数据,对中国沿海GPS观测网9个观测站反演的1 h间隔可降水量进行对比分析。与无线电探空结果相比,地基GPS反演可降水量的年相关系数在0.95以上,平均偏差自北向南呈逐渐增大的趋势。除西沙站外,其他站的年平均偏差在2 mm之内,均方差在3 mm之内,且平均偏差和均方差存在季节性变化。与地基水汽辐射计结果相比,地基GPS反演可降水量同样具有很好的正相关,同步观测期间两者相关系数为0.989,两者的平均偏差为1.84 mm,偏差的均方差为2.06 mm,且7~9月的月均方差较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号