首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon isotopes in speleothems can vary in response to a number of complex processes active in cave systems that are both directly and indirectly related to climate. Progressing downward from the soil zone overlying the cave, these processes include soil respiration, fluid-rock interaction in the host limestone, degassing of CO2 and precipitation of calcite upflow from the speleothem drip site, and calcite precipitation at the drip site. Here we develop a new approach to independently constrain the roles of water-rock interaction and soil processes in controlling stalagmite δ13C. This approach uses the dead carbon proportion (dcp) estimated from coupled 14C and 230Th/U measurements, in conjunction with Sr isotope analyses on stalagmite calcite from a central Sierra Nevada foothills cave in California, a region characterized by a highly seasonal Mediterranean-type climate, to determine the roles of water-rock interaction and soil processes in determining stalagmite δ13C. Increases in stalagmite dcp between 16.5 and 8.8 ka are coincident with decreased δ13C, indicating a varying yet substantial contribution from the soil organic matter (SOM) reservoir, likely due to significantly increased average age of SOM in the soil veneer above the cave during wet climatic intervals.We use geochemical and isotope mixing models to estimate the host-carbonate contribution throughout the δ13C time series and determine the degree of degassing and calcite precipitation that occurred prior to precipitation of stalagmite calcite. The degree of degassing and prior calcite precipitation we calculate varies systematically with other climate indicators, with less degassing and prior calcite precipitation occurring during wetter climatic intervals and more during drier intervals. Modeled δ13C values and degassing calculations suggest that some degree of prior calcite precipitation is necessary at all time intervals to explain measured stalagmite δ13C values, even during relatively wet intervals. These results illustrate the importance of constraining degassing and prior calcite precipitation in the interpretation of speleothem δ13C records, particularly those from caves that formed in seasonal semi-arid to arid environments.  相似文献   

2.
Stalagmites are important palaeo-climatic archives since their chemical and isotopic signatures have the potential to record high-resolution changes in temperature and precipitation over thousands of years. We present three U/Th-dated records of stalagmites (MA1–MA3) in the superhumid southern Andes, Chile (53°S). They grew simultaneously during the last five thousand years (ka BP) in a cave that developed in schist and granodiorite. Major and trace elements as well as the C and O isotope compositions of the stalagmites were analysed at high spatial and temporal resolution as proxies for palaeo-temperature and palaeo-precipitation. Calibrations are based on data from five years of monitoring the climate and hydrology inside and outside the cave and on data from 100 years of regional weather station records.Water-insoluble elements such as Y and HREE in the stalagmites indicate the amount of incorporated siliciclastic detritus. Monitoring shows that the quantity of detritus is controlled by the drip water rate once a threshold level has been exceeded. In general, drip rate variations of the stalagmites depend on the amount of rainfall. However, different drip-water pathways above each drip location gave rise to individual drip rate levels. Only one of the three stalagmites (MA1) had sufficiently high drip rates to record detrital proxies over its complete length. Carbonate-compatible element contents (e.g. U, Sr, Mg), which were measured up to sub-annual resolution, document changes in meteoric precipitation and related drip-water dilution. In addition, these soluble elements are controlled by leaching during weathering of the host rock and soils depending on the pH of acidic pore waters in the peaty soils of the cave’s catchment area. In general, higher rainfall resulted in a lower concentration of these elements and vice versa. The Mg/Ca record of stalagmite MA1 was calibrated against meteoric precipitation records for the last 100 years from two regional weather stations. Carbonate-compatible soluble elements show similar patterns in the three stalagmites with generally high values when drip rates and detrital tracers were low and vice versa. δ13C and δ18O values are highly correlated in each stalagmite suggesting a predominantly drip rate dependent kinetic control by evaporation and/or outgassing. Only C and O isotopes from stalagmite MA1 that received the highest drip rates show a good correlation between detrital proxy elements and carbonate-compatible elements. A temperature-related change in rainwater isotope values modified the MA1 record during the Little Ice Age (~0.7–0.1 ka BP) that was ~1.5 °C colder than today. The isotopic composition of the stalagmites MA2 and MA3 that formed at lower drip rates shows a poor correlation with stalagmite MA1 and all other chemical proxies of MA1. ‘Hendy tests’ indicate that the degassing-controlled isotope fractionation of MA2 and MA3 had already started at the cave roof, especially when drip rates were low. Changing pathways and residence times of the seepage water caused a non-climatically controlled isotope fractionation, which may be generally important in ventilated caves during phases of low drip rates. Our proxies indicate that the Neoglacial cold phases from ~3.5 to 2.5 and from ~0.7 to 0.1 ka BP were characterised by 30% lower precipitation compared with the Medieval Warm Period from 1.2 to 0.8 ka BP, which was extremely humid in this region.  相似文献   

3.
We present a new U-series dated speleothem record (PC-1) from the Great Basin that documents deglacial climate variability between ca 20.1 and 15.6 ka. Our data show an abrupt 18.6 ka cold event preceding Heinrich event 1 that is consistent with expansion of the Laurentide Ice sheet during the ‘binge’ phase of ice growth. This event coincided with dessication of pluvial Lake Mojave suggesting cold and dry conditions in the southern Great Basin at this time. PC-1 δ18O values before and during Heinrich event 1 are similar, but an increase in stalagmite growth rates suggests wetter conditions that coincided with deposition of spring deposits in southern Nevada. The time interval of our record is consistent with the timing of pluvial conditions in the Great Basin as evident from a comparison to regional wetness proxies. Our new speleothem record, recovered from the recharge area for Devils Hole, does not show a δ18O increase coincident with the abrupt increase in Devils Hole δ18O at c. 18 ka, challenging the view that the Great Basin experienced an early Termination I. This hypothesis is supported by two other southwest speleothem records that demonstrate deglaciation was synchronous with forcing from the North Atlantic Ocean. We suggest that Devils Hole speleothem δ18O values may partly reflect source water changes in the regional aquifer. Further, Devils Hole δ13C minima coincide with peak global glacial conditions and weak Asian monsoon periods, suggesting that they constrain better the timing of pluvial conditions in the Great Basin.  相似文献   

4.
Textural and stable isotopic records from the absolute-dated stalagmite of the Daeya Cave (DY-1) provide new insights into the climatic evolution of the Korean Peninsula during the Holocene and Eemian climatic optima. The stalagmite yielded ages of 8572 ± 227 to 5907 ± 158 and 1,23,456 ± 535 to 1,19,837 ± 1089 years, which coincide with the Holocene and Eemian climatic optima, respectively. The stalagmite’s δ13C record closely resembles previously reported Chinese speleothem δ18O data. Thus it can be suggested that textural and geochemical results of the DY-1 reflect East Asian monsoon intensity, which is forced by summer insolation patterns in the northern hemisphere. Lighter carbon isotopic compositions, well-developed fibrous calcite crystals, and their relatively faster growth rate in the stalagmite sample are interpreted to reflect the warmest and wettest climate conditions of the Holocene and Eemian interglacials. Both climatic optima took place when insolation was decreasing from its maximum level, temperature in Greenland was highest, and sea level approached its maximum level. These climatic optima also coincide with decreasing Antarctic temperatures. Compared the DY-1 data to other proxies, it is suggested that the Holocene and Eemian climatic optima developed through a balance among boreal insolation, monsoon intensity, and sea level (also continental ice volume), which are the main climatic forcing factors in the northern hemisphere. These trends also follow the bi-polar seesaw mechanism as previously described.  相似文献   

5.
We combine surface and cave climate monitoring with multiple stalagmite parameters to help understand and calibrate the climate records contained within stalagmites from a region with strong rainfall seasonality. Two actively growing stalagmites from Ethiopia were analysed in order to investigate the climate signal contained within δ18O and growth rate parameters. The δ18O and growth rate of the two stalagmites give different responses to surface climate due to variations in the climate signal transfer. Both stalagmites (Merc-1 and Asfa-3) have a climate response that is seasonal; however this signal is subsequently smoothed by the mixing of event and storage water within the aquifer. Merc-1 responds more to high frequency (‘event’) climate, due to a greater ratio of event to storage water in this sample, whereas Asfa-3 responds more to low frequency (‘storage’) climate. In addition, different parameters respond to different seasons. For example, stalagmite Asfa-3, from greater depth from the surface and with a slow drip rate, has a growth rate that responds to the amount of summer rain. In contrast, Merc-1, closer to the surface and with a faster drip rate, exhibits no clear response to surface climate, probably due to a more complex climate signal transfer. δ18O response varies with stalagmite due to the interplay between rainfall forcing factors (amount, seasonality) and disequilibrium kinetics, with opposing correlations between seasonal rainfall and δ18O between the samples. Our results demonstrate that analysis of seasonal climate forcing, and transfer functions reflecting the mixing of event and storage water, may be the most appropriate approach to develop of transfer functions appropriate for high-resolution, stalagmite climate reconstruction.  相似文献   

6.
The oxygen isotope composition of speleothems is an important proxy of continental paleoenvironments, because of its sensitivity to variations in cave temperature and drip water δ18O. Interpreting speleothem δ18O records in terms of absolute paleotemperatures and δ18O values of paleo-precipitation requires quantitative separation of the effects of these two parameters, and correcting for possible kinetic isotope fractionation associated with precipitation of calcite out of thermodynamic equilibrium. Carbonate clumped-isotope thermometry, based on measurements of Δ47 (a geochemical variable reflecting the statistical overabundance of 13C18O bonds in CO2 evolved from phosphoric acid digestion of carbonate minerals), potentially provides a method for absolute speleothem paleotemperature reconstructions independent of drip water composition. Application of this new technique to karst records is currently limited by the scarcity of published clumped-isotope studies of modern speleothems. The only modern stalagmite reported so far in the literature yielded a lower Δ47 value than expected for equilibrium precipitation, possibly due to kinetic isotope fractionation.Here we report Δ47 values measured in natural speleothems from various cave settings, in carbonate produced by cave precipitation experiments, and in synthetic stalagmite analogs precipitated in controlled laboratory conditions designed to mimic natural cave processes. All samples yield lower Δ47 and heavier δ18O values than predicted by experimental calibrations of thermodynamic equilibrium in inorganic calcite. The amplitudes of these isotopic disequilibria vary between samples, but there is clear correlation between the amount of Δ47 disequilibrium and that of δ18O. Even pool carbonates believed to offer excellent conditions for equilibrium precipitation of calcite display out-of-equilibrium δ18O and Δ47 values, probably inherited from prior degassing within the cave system.In addition to these modern observations, clumped-isotope analyses of a flowstone from Villars cave (France) offer evidence that the amount of disequilibrium affecting Δ47 in a single speleothem can experience large variations at time scales of 10 kyr. Application of clumped-isotope thermometry to speleothem records calls for an improved physical understanding of DIC fractionation processes in karst waters, and for the resolution of important issues regarding equilibrium calibration of Δ47 in inorganic carbonates.  相似文献   

7.
The suitability of speleothems for interpreting palaeoclimate is typically determined by using either the Hendy Test, overlapping analysis or long‐term cave environment monitoring. However, in many cases, these methods are not applicable, because a speleothem lacks clearly traceable layers for the Hendy Test, it is difficult to obtain an overlapping speleothem nearby, or long‐term cave monitoring is impractical. The authors propose a multiple cave deposit approach to assess the suitability of speleothems for palaeoclimate study. Speleothems collected from two sites within Raccoon Mountain Cave, Tennessee (USA) exhibit remarkable spatial variation (δ13C: ?10·3‰ to ?2·2‰) over a relatively short distance (ca 260 m). Drip water δ18O values exhibit a seasonal precipitation signal at Site 1 and an annual signal at Site 2. Combining field observations, water isotope analysis and trace‐element data, the authors propose that the speleothem formation at Site 1 and Site 2 tapped distinct sources of CO2: (i) CO2 derived from overlying soils for Site 1; and (ii) limestone dissolved inorganic carbon induced by ground water dissolution for Site 2. Using fresh cave deposits (modern speleothem) δ13C (100% C3 vegetation) as an analogue, a simple model was developed to estimate land surface vegetation for speleothems. The speleothem formation temperature estimated using fresh cave deposit δ18O values generally reflects the mean annual temperature in this region. This study indicates that spatial variations in carbon isotopes could be caused by different carbon sources dominating in different parts of the cave, which should be taken into consideration by researchers when using speleothem δ13C values to reconstruct temporal palaeo‐vegetation changes. This study demonstrates a practical sampling strategy for verifying suitability of speleothems for palaeo‐vegetation and palaeo‐temperature reconstructions by analysing multiple cave deposits, especially for cases in which the Hendy Test, parallel sampling and long‐term monitoring of cave environment are not feasible.  相似文献   

8.
The Vil-car-1 flowstone core from Villars cave (SW France) provides one of the first European speleothem records extending back to 180 ka, based on U–Th TIMS and MC-ICP-MS measurements. The core offers a continuous record of Termination II and the Last Interglacial. The penultimate deglaciation is characterized by a prominent 5‰ depletion in calcite δ18O. Determining which specific environmental factors controlled such a large oxygen isotopic shift offers the opportunity to assess the impact of various factors influencing δ18O variations in speleothem calcite.Oxygen isotope analyses of fluid inclusions indicate that drip water δ18O remained within a very narrow range of ±1‰ from Late MIS6 to the MIS5 δ18O optimum. The possibility of such a stable behaviour is supported by simple calculations of various effects influencing seepage water δ18O.Although this could suggest that the isotopic shift in calcite is mainly driven by temperature increase, attempts to quantify the temperature shift from Late MIS6 to the MIS5 δ18O optimum by assuming an equilibrium relationship between calcite and fluid inclusion δ18O yield unreasonably high estimates of ~20 °C warming and Late MIS6 cave temperatures below 0 °C; this suggests that the flowstone calcite precipitated out of thermodynamic equilibrium at this site.Using a method proposed by Guo et al. (submitted for publication) combining clumped isotope measurements, fluid inclusion and modern calcite δ18O analyses, it is possible to quantitatively correct for isotopic disequilibrium and estimate absolute paleotemperatures. Although the precision of these absolute temperature reconstructions is limited by analytical uncertainties, the temperature rise between Late MIS6 and the MIS5 optimum can be robustly constrained between 13.2 ± 2.6 and 14.6 ± 2.6 °C (1σ), consistent with existing estimates from Western Europe pollen and sea-surface temperature records.  相似文献   

9.
The coupled δ13C-radiocarbon systematics of three European stalagmites deposited during the Late Glacial and early Holocene were investigated to understand better how the carbon isotope systematics of speleothems respond to climate transitions. The emphasis is on understanding how speleothems may record climate-driven changes in the proportions of biogenic (soil carbon) and limestone bedrock derived carbon. At two of the three sites, the combined δ13C and 14C data argue against greater inputs of limestone carbon as the sole cause of the observed shift to higher δ13C during the cold Younger Dryas. In these stalagmites (GAR-01 from La Garma cave, N. Spain and So-1 from Sofular cave, Turkey), the combined changes in δ13C and initial 14C activities suggest enhanced decomposition of old stored, more recalcitrant, soil carbon at the onset of the warmer early Holocene. Alternative explanations involving gradual temporal changes between open- and closed-system behaviour during the Late Glacial are difficult to reconcile with observed changes in speleothem δ13C and the growth rates. In contrast, a stalagmite from Pindal cave (N. Spain) indicates an abrupt change in carbon inputs linked to local hydrological and disequilibrium isotope fractionation effects, rather than climate change. For the first time, it is shown that while the initial 14C activities of all three stalagmites broadly follow the contemporaneous atmospheric 14C trends (the Younger Dryas atmospheric 14C anomaly can be clearly discerned), subtle changes in speleothem initial 14C activities are linked to climate-driven changes in soil carbon turnover at a climate transition.  相似文献   

10.
Diverse interpretations have been made of carbon isotope time series in speleothems, reflecting multiple potential controls. Here we study the dynamics of 13C and 12C cycling in a particularly well-constrained site to improve our understanding of processes affecting speleothem δ13C values. The small, tubular Grotta di Ernesto cave (NE Italy) hosts annually-laminated speleothem archives of climatic and environmental changes. Temperature, air pressure, pCO2, dissolved inorganic carbon (DIC) and their C isotopic compositions were monitored for up to five years in soil water and gas, cave dripwater and cave air. Mass-balance models were constructed for CO2 concentrations and tested against the carbon isotope data. Air advection forces winter pCO2 to drop in the cave air to ca. 500 ppm from a summer peak of ca. 1500 ppm, with a rate of air exchange between cave and free atmosphere of approximately 0.4 days. The process of cave ventilation forces degassing of CO2 from the dripwater, prior to any calcite precipitation onto the stalagmites. This phase of degassing causes kinetic isotope fractionation, i.e. 13C-enrichment of dripwater whose δ13CDIC values are already higher (by about 1‰) than those of soil water due to dissolution of the carbonate rock. A subsequent systematic shift to even higher δ13C values, from −11.5‰ in the cave drips to about −8‰ calculated for the solution film on top of stalagmites, is related to degassing on the stalagmite top and equilibration with the cave air. Mass-balance modelling of C fluxes reveals that a very small percentage of isotopically depleted cave air CO2 evolves from the first phase of dripwater degassing, and shifts the winter cave air composition toward slightly more depleted values than those calculated for equilibrium. The systematic 13C-enrichment from the soil to the stalagmites at Grotta di Ernesto is independent of drip rate, and forced by the difference in pCO2 between cave water and cave air. This implies that speleothem δ13C values may not be simply interpreted either in terms of hydrology or soil processes.  相似文献   

11.
Few terrestrial Holocene climate records exist from south‐eastern Europe despite its important geographical position as a transitional climatic zone between the Mediterranean and mainland continental Europe. Here we present new petrographic and stable isotope data for two Holocene speleothems from Modri? Cave, Croatia (44°15′N, 15°32′E), a coastal Adriatic site (120 m inland). Modern meteorological and cave conditions have been monitored for 2 years to understand the links between climate variability and stable isotope time‐series records in speleothems. Typical of a Mediterranean‐type climate, a negative water balance exists between April and September, so that recharge of the aquifer is restricted to the winter months. The weighted mean δ18O of the rainfall is ?5.96‰ (2σ = 2.83), and the weighted mean D/H rainfall value is ?36.83‰ (2σ = 19.95), slightly above the Global Meteoric Water Line, but well below the Mediterranean Meteoric Water Line. Modern calcite from the tops of each stalagmite exhibits δ18O values that are close to isotopic equilibrium with their respective drip water values. Unfortunately, the relatively young ages and low uranium contents (ca. 50 p.p.b.) of both stalagmites hamper the use of U‐series dating. Radiocarbon dates have been used instead to constrain their chronology using a dead carbon correction. Apart from some Isotope Stage 3 material (ca. 55 ka), both stalagmites were deposited during the late Holocene. Climatic conditions during the late Holocene are inferred to have been sufficiently wet to maintain stalagmite growth and any hiatuses appear to be relatively short lived. Inferred changes in the stalagmite diameters during deposition are linked to δ13C and δ18O variations, indicating alternating periods of drier and wetter conditions. Drier conditions are inferred for the late Roman Ages warm period and the mid‐Medieval Warm Period. Wetter conditions are associated with the Little Ice Age. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Understanding the relationship between stable isotope signals recorded in speleothems (δ13C and δ18O) and the isotopic composition of the carbonate species in the soil water is of great importance for their interpretation in terms of past climate variability. Here the evolution of the carbon isotope composition of soil water on its way down to the cave during dissolution of limestone is studied for both closed and open-closed conditions with respect to CO2.The water entering the cave flows as a thin film towards the drip site. CO2 degasses from this film within approx. 10 s by molecular diffusion. Subsequently, chemical and isotopic equilibrium is established on a time scale of several 10-100 s. The δ13C value of the drip water is mainly determined by the isotopic composition of soil CO2. The evolution of the δ18O value of the carbonate species is determined by the long exchange time Tex, between oxygen in carbonate and water of several 10,000 s. Even if the oxygen of the CO2 in soil water is in isotopic equilibrium with that of the water, dissolution of limestone delivers oxygen with a different isotopic composition changing the δ18O value of the carbonate species. Consequently, the δ18O value of the rainwater will only be reflected in the drip water if it has stayed in the rock for a sufficiently long time.After the water has entered the cave, the carbon and oxygen isotope composition of the drip water may be altered by CO2-exchange with the cave air. Exchange times, , of about 3000 s are derived. Thus, only drip water, which drips in less than 3000 s onto the stalagmite surface, is suitable to imprint climatic signals into speleothem calcite deposited from it.Precipitation of calcite proceeds with time constants, τp, of several 100 s. Different rate constants and equilibrium concentrations for the heavy and light isotopes, respectively, result in isotope fractionation during calcite precipitation. Since Tex ? τp, exchange with the oxygen in the water can be neglected, and the isotopic evolution of carbon and oxygen proceed analogously. For drip intervals Td < 0.1τp the isotopic compositions of both carbon and oxygen in the solution evolve linearly in time. The calcite precipitated at the apex of the stalagmite reflects the isotopic signal of the drip water.For long drip intervals, when calcite is deposited from a stagnant water film, long drip intervals may have a significant effect on the isotopic composition of the DIC. In this case, the isotopic composition of the calcite deposited at the apex must be determined by averaging over the drip interval. Such processes must be considered when speleothems are used as proxies of past climate variability.  相似文献   

13.
Cai, B., Zhu, J., Ban, F. & Tan, M. 2011: Intra‐annual variation of the calcite deposition rate of drip water in Shihua Cave, Beijing, China and its implications for palaeoclimatic reconstructions. Boreas, Vol. 40, pp. 525–535. 10.1111/j.1502‐3885.2010.00201.x. ISSN 0300‐9483. Monthly in situ monitoring of the calcite deposition rate, drip‐water chemistry and surrounding cave environment was carried out at Shihua Cave, Beijing, China, through two hydrological years (from January 2006 to February 2008) to determine the seasonal variability and mechanisms of stalagmite growth in Shihua Cave. Calcite deposition rates exhibit significant intra‐annual variation, with the lowest values during the summer monsoonal rainy season (July–August) and peak values from autumn to spring. The temporal change in the calcite deposition rate is negatively correlated with the drip rate, cave‐air PCO2 (CO2 partial pressure) and Ca concentration, and positively correlated with the pH of the feeding drip water. The seasonal recharge regime of drip water is likely to be the primary control on the drip‐water quality and quantity, which, in turn, control the calcite deposition rate in Shihua Cave. During the summer rainy season, periodic and intense rainstorms increase the drip rate and cave‐air PCO2, leading to drip water with a lower pH and saturation index of calcite, thereby reducing the calcite precipitation. It seems that the high cave‐air PCO2 is the dominant control on the calcite deposition rate during the rainy season. Our previous study on the dissolved organic carbon of drip water concluded that the thin luminescent bands in stalagmite laminae from Shihua Cave form during the rainy season. The lower calcite deposition rate during the rainy season further supports this suggestion. The significant intra‐seasonal variability of the calcite deposition rate implies that the seasonal bias of δ18O of stalagmites should be considered when stalagmite δ18O is used as a high‐resolution palaeoclimatic archive.  相似文献   

14.
The scarcity of numerical dates of the arid areas in southern Africa is a challenge for reconstructing paleoclimate. This paper presents a chronological reconstruction in the central part of the Namib Desert, Namibia, for the last 420,000 yr. It is based on 230Th/U dates (TIMS) from a large stalagmite and a thick flowstone layer in a small cave located in the hyper-arid central Namib Desert. The results provide for the first time evidence of three or possibly four succeeding wet periods of decreasing intensity since 420 ka through which speleothem deposited at approximately 420–385 ka, 230–207 ka and 120–117 ka following the 100-ka Milankovitch cycle. Speleothem growth was not recorded for the Holocene. These wet periods interrupted the predominantly dry climate of the Namib Desert and coincided with wet phases in deserts of the northern hemisphere in the Murzuq Basin, Sahara, the Negev, Israel, the Nafud Desert, Saudi Arabia, and the arid northern Oman, Arabian Peninsula.  相似文献   

15.
The interpretation of climatic information from stalagmites has traditionally been a complex research problem, with oxygen isotopes playing a particularly important role in global climate change studies. This study investigates the relationship between oxygen isotope composition of the atmospheric in precipitation and cave drip water at Panlong cave in southwest China on seasonal timescales of variability. Time series seasonal variability was derived from Panlong cave in Guilin by collecting daily precipitation samples for stable isotope analysis during 2012. Results indicate that δ18O of precipitation contains a clear seasonal variation whereby higher values are mainly distributed during winter and lower values during summer. Seasonal variations in water sources affect the precipitation δ18O values. Drip water δ18O also displayed a seasonal cycle which is attenuated relative to δ18O of precipitation. Drip water time series display seasonal cycle ranges from 1.5 to 3.5 ‰ relative to Vienna Standard Mean Ocean Water, which mainly follow the precipitation δ18O seasonal cycle. Seasonal variation in drip water δ18O supports interpretations of the stalagmite δ18O record as a paleoclimate proxy sensitive to the local environment. This monitoring experiment revealed that drip water must be transported through the epikarst in approximately 1.5 months during cold periods, and <0.5 months during warm periods. Different residence time percolation is mainly affected by the atmospheric precipitation amount, depending on whether soil moisture reaches saturation.  相似文献   

16.
High resolution δ13C and δ18O profiles recorded in precisely dated speleothems are widely used proxies for the climate of the past. Both δ13C and δ18O depend on several climate related effects including meteorological processes, processes occurring in the soil zone above the cave and isotope fractionation processes occurring in the solution layer on the stalagmite surface. Here we model the latter using a stalagmite isotope and growth model and determine the relationship between the stable isotope values in speleothem calcite and cave parameters, such as temperature, drip interval, water pCO2 and a mixing coefficient describing mixing processes between the solution layer and the impinging drop.The evolution of δ13C values is modelled as a Rayleigh distillation process and shows a pronounced dependence on the residence time of the solution on the stalagmite surface and the drip interval, respectively. The evolution of δ18O values, in contrast, is also influenced by buffering reactions between the bicarbonate in the solution and the drip water driving the δ18O value of the bicarbonate towards the value expected for equilibrium isotope fractionation between drip water and calcite. This attenuates the dependence of the δ18O values on drip interval. The temperature dependence of δ18O, however, is more pronounced than for δ13C and in a similar range as expected for fractionation under equilibrium conditions.We also investigate the isotopic enrichment of the δ13C and δ18O values along individual growth layers and, thus, the slopes expected for Hendy tests. The results show that a positive Hendy test is only possible if isotope fractionation occurred under disequilibrium conditions. However, a negative Hendy test does not exclude that isotope fractionation occurred under disequilibrium conditions. A more reliable indicator for disequilibrium fractionation is the enrichment of the δ13C values along an individual growth layer.  相似文献   

17.
Understanding the relationships between speleothem stable isotopes (δ13C δ18O) and in situ cave forcing mechanisms is important to interpreting ancient stalagmite paleoclimate records. Cave studies have demonstrated that the δ18O of inorganically precipitated (low temperature) speleothem calcite is systematically heavier than the δ18O of laboratory-grown calcite for a given temperature. To understand this apparent offset, rainwater, cave drip water, groundwater, and modern naturally precipitated calcite (farmed in situ) were grown at multiple locations inside Hollow Ridge Cave in Marianna, Florida. High resolution micrometeorological, air chemistry time series and ventilation regimes were also monitored continuously at two locations inside the cave, supplemented with periodic bi-monthly air gas grab sample transects throughout the cave.Cave air chemistry and isotope monitoring reveal density-driven airflow pathways through Hollow Ridge Cave at velocities of up to 1.2 m s−1 in winter and 0.4 m s−1 in summer. Hollow Ridge Cave displays a strong ventilation gradient in the front of the cave near the entrances, resulting in cave air that is a mixture of soil gas and atmospheric CO2. A clear relationship is found between calcite δ13C and cave air ventilation rates estimated by proxies pCO2 and 222Rn. Calcite δ13C decreased linearly with distance from the front entrance to the interior of the cave during all seasons, with a maximum entrance-to-interior gradient of Δδ13CCaCO3 = −7‰. A whole-cave “Hendy test” at multiple contemporaneous farming sites reveals that ventilation induces a +1.9 ± 0.96‰ δ13C offset between calcite precipitated in a ventilation flow path and calcite precipitated on the edge or out of flow paths. This interpretation of the “Hendy test” has implications for interpreting δ13C records in ancient speleothems. Calcite δ13CCaCO3 may be a proxy not only for atmospheric CO2 or overlying vegetation shifts but also for changes in cave ventilation due to dissolution fissures and ceiling collapse creating and plugging ventilation windows.Farmed calcite δ18O was found to exhibit a +0.82 ± 0.24‰ offset from values predicted by both theoretical calculations and laboratory-grown inorganic calcite. Unlike δ13CCaCO3, oxygen isotopes showed no ventilation effects, i.e. Δδ18OCaCO3 appears to be a function of growth temperature only although we cannot rule out a small effect of (unmeasured) gradients in relative humidity (evaporation) accompanying ventilation. Our results support the findings of other cave investigators that water-calcite fractionation factors observed in speleothem calcite are higher that those measured in laboratory experiments. Cave and laboratory calcite precipitates may differ mainly in the complex effects of kinetic isotope fractionation. Combining our data with other recent speleothem studies, we find a new empirical relationship for cave-specific water-calcite oxygen isotope fractionation across a range of temperatures and cave environments:
1000lnα=16.1(103T-1)-24.6  相似文献   

18.
Monitoring and sampling of main plants,soil CO2,soil water,bedrock,spring water,drip water and its corresponding speleothem were performed at four cave systems of Guizhou,Southwest China,from April 2003 to May 2004,in order to understand stable carbon isotope ratios variations of dissolved inorganic Carbon(DIC) in cave percolation waters(δ13CDIC) and their implications for paleoclimate.Stable carbon isotopic compositions and ions(Ca,Mg,Sr,SO4,Cl etc.) were measured for all samples.The results indicate that there are significant differences among the δ13CDIC values from inter-cave,even inter-drip of intra-cave in the four caves.The δ13CDIC values from the Liangfeng Cave(LFC) is lightest among the four caves,where vegetation type overlying the cave is primary forest dominated by tall trees with lighter average δ13C value(–29.9‰).And there are remarkable differences in δ13CDIC values of different drip waters in the Qixing Cave(QXC) and Jiangjun Cave(JJC),up to 6.9‰ and 7.8‰,respectively.Further analyses show that the δ13CDIC values in cave drip waters are not only controlled by vegetation biomass overlying the cave,but also hydro-geochemical processes.Therefore,accurate interpreting of δ13C recorded in speleothems cannot be guaranteed if these effects of the above mentioned factors are not taken into consideration.  相似文献   

19.
Variations in speleothem oxygen-isotope values (δ18O) result from a complicated interplay of environmental controls and processes in the ocean, atmosphere, soil zone, epikarst, and cave system. As such, the controls on speleothem δ18O values are extremely complex. An understanding of the processes that control equilibrium and kinetic fractionation of oxygen isotopes in water and carbonate species is essential for the proper interpretation of speleothem δ18O as paleoclimate and paleoenvironmental proxies, and is best complemented by study of site-specific cave processes such as infiltration, flow routing, drip seasonality and saturation state, and cave microclimate, among others. This review is a process-based summary of the multiple controls on δ18O in the atmosphere, soil, epikarst, and speleothem calcite, illustrated with case studies. Primary controls of δ18O in the atmosphere include temperature and relative humidity through their role in the multiple isotope “effects”. Variability and modifications of water δ18O values in the soil and epikarst zones are dominated by evaporation, mixing, and infiltration of source waters. The isotopically effective recharge into a cave system consists of those waters that participate in precipitation of CaCO3, resulting in calcite deposition rates which may be biased to time periods with optimal dripwater saturation state. Recent modeling, experimental, and observational data yield insight into the significance of kinetic fractionation between dissolved carbonate phases and solid CaCO3, and have implications for the ‘Hendy’ test. To assist interpretation of speleothem δ18O time series, quantitative and semi-quantitative δ18O-climate calibrations are discussed with an emphasis on some of the difficulties inherent in using modern spatial and temporal isotope gradients to interpret speleothems as paleoclimate proxy records. Finally, several case studies of globally significant speleothem paleoclimate records are discussed that show the utility of δ18O to reconstruct past climate changes in regions that have been typically poorly represented in paleoclimate records, such as tropical and subtropical terrestrial locations. The new approach to speleothem paleoclimatology emphasizes climate teleconnections between regions and attribution of forcing mechanisms. Such investigations allow paleoclimatologists to infer regional to global-scale climate dynamics.  相似文献   

20.
Trace element ratios in the Bt2 stalagmite from Botuverá cave, Southern Brazil, are explored as a proxy for changes in the local rainfall recharge during the last 116 ky. BP Mg/Ca and Sr/Ca ratios, measured with an electron microprobe, are significantly positively correlated with one another throughout the entire record, and vary in a way that is very consistent with variations of δ18O in the same speleothem during the last glacial period. We suggest that prior calcite precipitation in the vadose zone of the cave system is the main factor affecting the incorporation of Mg and Sr into calcite of the stalagmite. This interpretation is supported by trace element correlation patterns and by results from a hydrochemistry study performed in a cave located in the same region and in a similar environmental setting. Therefore, we conclude that higher (lower) Mg/Ca and Sr/Ca values are associated with lower (higher) levels of recharge into the karstic aquifer, as such conditions lead to an increase (decrease) in the volume of calcite precipitated in the unsaturated zone above the cave during dry (wet) climate periods.Trace element variations point to generally dryer (wetter) conditions during lower (high) phases of summer insolation in the southern hemisphere. These periods coincide with decreased (increased) activity of the South American summer monsoon, as revealed by δ18O stalagmite records. In addition trace element variations show that rather wet conditions persisted throughout most of the last glacial period from approximately 70 to 17 ky BP. We suggest that during this period the glacial boundary conditions, especially ice volume buildup in the northern hemisphere, played an important role for monsoon rainfall intensification in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号