首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The removal of hexavalent chromium from wastewater streams has received an considerable attention in recent years, since it can cause harmful effects on the environment. Several approaches, including adsorption, are recognized to tackle this problem, but unfortunately most of these processes are impressed with practical conditions of the experiments. The main objective of this study was to recognize applicable conditions for Cr(VI) removal from an industrial drainage using nature-derived adsorbents (brown coal and modified zeolite) and to make the process more adaptive by using adsorbents conjointly. Batch experiments were carried out by agitating Cr(VI) stock solution with adsorbents at room temperature. The influence of main operating parameters was explored, and the best proportion of the adsorbents was determined. Maximum sorption of Cr(VI) onto brown coal was observed at pH = 4 by adding 60 g L?1 adsorbent to contaminated solution. In case of using zeolite, the modification process was required, and the pH indicated a weak influence in a wide range (2–8). Optimum dosage of modified zeolite for Cr(VI) removal was 10 g L?1. The hybrid application of adsorbents with the mass ratio of brown coal/modified zeolite at (3:1) was capable of removing more than 99% of Cr(VI) from contaminated wastewater in the natural pH range of the wastewater. The adsorption of Cr(VI) by brown coal and modified zeolite followed Langmuir and Freundlich isotherm models, respectively. Sorption of Cr(VI) onto both brown coal and modified zeolite fitted well to pseudo-second-order rate reaction.  相似文献   

2.
To assess the competitive sorption and desorption of cadmium (Cd) and lead (Pb), batch equilibrium experiments were performed using single- and binary-metal solutions in surface samples of three paddy soils from eastern China. Sorption isotherms were well fitted with one-metal and competitive Langmuir equation for single- and binary-metal system, respectively. The distribution coefficient (K d) values were K d single (Pb) > K d binary (Pb) > K d single (Cd) > K d binary (Cd), indicating that Pb was stronger sorbed by these soils than Cd in binary metal system. Soils with high pH and clay content had the greatest sorption capacity as estimated by the maximum sorption parameter (Q). The co-existence of both metals reduces their tendency of sorption, whereas Cd sorption was affected to a greater extent than that of Pb. The Langmuir binding strength parameter (b) in binary sorption system was greater than that in single sorption system for all soils (b < b 1), indicating that competition for sorption sites promote the retention of both metals into more specific sorption sites. Sorption of Cd and Pb decreased soil pH by 1.61 U for YRS, 1.39 U for PCS, and 0.91 U for SLS. The decreases of pH in binary metal system were greater than in single-metal system for three soils. Cadmium and Pb desorption increased with increasing Cd and Pb sorption saturation for all soils; however, Cd desorption ratio in binary metal system (d Cd*) was much greater than Pb (d Pb*), indicating that under the competitive sorption conditions, the sorbed Cd was more readily desorbed from the soils than the sorbed Pb.  相似文献   

3.
Aluminium smelters are major sources of F emission to the environment. We studied, in laboratory experiments, the sorption and desorption of fluoride on organic and mineral horizons of soils located within 2 km from one of these factories, situated in the northern coast of Galicia (NW Spain). The soils, developed from granite, are acid (pH H2O 3.9–5.5), rich in organic matter (4–16 % C in the A horizon) and most A horizons have high Al saturation in the exchange complex. All samples showed a notable F sorption, between 1,066 and 1,589 mg kg?1, after adding 200 mg F L?1, which accounts for 53–80 % of F added. The sorption was slightly higher in the A horizons than in the respective organic horizons (differences of up to 194 mg kg?1). The fluoride sorption upon addition of 200 mg F L?1 correlated significantly (p < 0.05) with soil pH in water (r = ?0.77), iron extracted by acid ammonium oxalate (r = 0.68), aluminium plus iron extracted by acid ammonium oxalate (r = 0.63), exchange aluminium (r = 0.52) and clay percentage in soil (r = 0.76). The F sorption fitted to both Langmuir and Freundlich models. Desorbed F accounted for only 12–22 % of sorbed fluoride and correlated (p < 0.05) negatively with non-crystalline (extracted by acid ammonium oxalate) Fe (r = ?0.51) and clay content (r = ?0.74) and positively with organic matter (r = 0.69) and with the effective cation exchange capacity of the soil (r = 0.50).  相似文献   

4.
The adsorption of cadmium from simulated mining wastewater by coal waste (CW) and calcination-modified coal waste (MCW) was investigated. Effects of pH, initial concentration, particle size of adsorbent, adsorbent dosage and temperature were studied in batch experiments. The adsorption efficiency for cadmium increased with increasing pH, and the optimum pH for cadmium adsorption onto MCW and CW was 6.0 and 6.5, respectively. Kinetic experiments showed that the adsorption equilibrium was reached within 120 min and followed pseudo-second-order model well. The adsorption isotherm data fit Langmuir and Freundlich models, and the adsorption capacity of cadmium on the two adsorbents increased with increasing temperature from 298 to 318 K. MCW had a higher adsorption capacity of cadmium than CW, because calcination treatment can make CW to have more loose structure and higher specific surface area. Thermodynamic parameters, the Gibbs free energy change (?G0), enthalpy change (?H0) and entropy change (?S0), were calculated and the results showed that the adsorption of cadmium on CW and MCW was spontaneous and endothermic. Fourier transform infrared studies indicated silanol and aluminol groups were responsible for cadmium binding. The desorption results indicated that the two adsorbents could be used repeatedly at least three times without significant decrease in the adsorption capacity for cadmium. The results suggested that modified CW could have high potential as low-cost adsorbent for cadmium removal.  相似文献   

5.
Elevated polycyclic aromatic hydrocarbon (PAH) concentrations were determined in different Chinese coals, with the highest concentrations in bituminous coals. Phenanthrene (Phen) was chosen as the probe compound for PAHs to study the sorption behavior of coal. No native Phen was detected in desorption experiments indicating irreversible sorption–desorption behavior of PAHs in raw coal samples. Sorption mechanism was further studied under varying conditions of pH value and ionic strength. Different ranks of coal showed different sorption behavior under acidic, neutral, and alkaline conditions. Batch experiments were further processed for the selected coals at pH values from 3 to 11 at a constant aqueous concentration. Sorption capacities of all coals decreased with increased pH except for YJ coal. Furthermore, although DOC-associated Phen mass contributed little to the total Phen mass under different pH values, the significant negative correlations between M DOC and log K OC values were observed for all coal samples, indicating a significant role played by DOC in the coal sorption. In addition, sorption experiments under varying ionic strength showed that the ionic strength influence was more obvious in sorption isotherms for higher rank coals with increasing ionic strength, and this effect was most significant when ionic strength increased from 0 to 0.15 M, especially at relatively low aqueous concentrations.  相似文献   

6.
The objective of the present study is to evaluate the absorption efficacy of H. fusiformis biochar (HFB) for the removal of phenol and heavy metals from single and mixed solute systems of these species under different experimental conditions. The effects of contact time, pH change, initial phenol concentration, and heavy metal concentration on the adsorption capacity of HFB were investigated. The kinetics and equilibrium models of sorption of the components of the single and mixed solute systems on HFB were also studied. The experimental data were fitted to kinetic and equilibrium models. The batch experiments revealed that 360 min of contact time was sufficient to achieve equilibrium for the adsorption of both phenol and heavy metals. The adsorption of phenol and nickel by HFB followed the pseudo-second-order kinetic model, which was quite adequate for describing the adsorption mechanism. The equilibrium data for the adsorption of phenol and heavy metals fit well to the Langmuir model with regression coefficients of R 2 > 0.819. The maximum Langmuir adsorption capacities were 10.39, 12.13, 22.25, 2.24, 2.89, and 22.03 mg/g for phenol, Ni2+, Zn2+, Cu2+, Pb2+, and Cd2+, respectively. Moreover, HFB exhibited optimal sorption under slightly acidic conditions at pH 6. The HFB used in the present study exhibited higher adsorption capacity for the removal of phenol and heavy metals from aqueous solutions compared to documented sorbents. These results demonstrate that HFB is potentially useful for alleviating the harmful effects of phenol and heavy metal in wastewater treatment systems.  相似文献   

7.
A simple one-step synthetic approach using rice husk has been developed to prepare magnetic Fe3O4-loaded porous carbons composite (MRH) for removal of arsenate (As(V)). The characteristics of adsorbent were evaluated by transmission electron microscope, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Brunauer–Emmett–Teller analysis, and thermogravimetric analysis. On account of the combined advantages of rice husk carbons and Fe3O4 nanoparticles, the synthesized MRH composites showed excellent adsorption efficiency for aqueous As(V). The removal of As(V) by the MRH was studied as a function of contact time, initial concentration of As(V), and media pH. The adsorption kinetics of As(V) exhibited a rapid sorption dynamics by a pseudo-second-order kinetic model, implying the mechanism of chemisorption. The adsorption data of As(V) were fitted well to the Langmuir isotherm model, and the maximum uptake amount (q m ) was calculated as 4.33 mg g?1. The successive regeneration and reuse studies showed that the MRH kept the sorption efficiencies over five cycles. The obtained results demonstrate that the MRH can be utilized as an efficient and low-cost adsorbent for removal of As(V) from aqueous solutions.  相似文献   

8.
通过对晋东南和豫中地区几个煤矿矸石堆及其周围的土壤和水体、井下矸石取样分析,发现这些矿的煤矸石中全氮的背景值为0.4%~0.8%。在中高煤变质程度地区,含铵伊利石夹矸中全氮高达1.0%~1.6%,铵伊利石的存在对于矸石堆中全氮含量的提高具有贡献。在矸石山周围积水中,具有较高的氮含量,说明雨水比较容易从矸石堆中将氮淋滤出来。煤矸石堆周围土壤中的氮含量并不高,说明煤矸石淋滤物并没有发生明显的横向迁移,可能主要表现为垂向渗透,有可能对地下水造成潜在的氮污染。   相似文献   

9.
Application of Bacillus subtilis for reducing ash and sulfur in coal   总被引:2,自引:0,他引:2  
The replacement of coal with other energy sources is due to the presence of harmful impurities such as sulfur that can lead to emission of harmful and corrosive gases such as H2S and SO2. These gases can affect the human health due to its toxicity. Also, the mineral matter (ash) can cause several types of respiratory system diseases due to the presence of heavy metals and formation of hazardous compounds while burning of coal. In order to avoid the production of such emissions, the researchers all over the world were looking for a methodology that can eliminate or reduce these impurities from coal. Therefore, the current study aims at decreasing the sulfur and ash content in Egyptian coal (Maghara coal), using bioflotation technique. The effect of Bacillus subtilis (B. subtilis) on the removal/reduction of sulfur and ash was investigated. The affinity of B. subtilis to coal surface was characterized using zeta-potential, adsorption tests and Fourier transform infrared. The bioflotation results showed that, at optimum conditions, a clean coal contains 0.92 % total sulfur and 1.95 % ash and yield exceeding 72 % was obtained from the starting coal containing 3.3 % sulfur and 6.65 % ash.  相似文献   

10.
A comparison of phenol (Phen) and p-nitrophenol (p-NPhen) sorption between sodium (ZCh-Na) and surfactant-modified (ZCh-HDTMA) clinoptilolite-rich tuffs is presented using kinetic and the isotherm parameters to describe the selectivity of the sorption processes. The clinoptilolite-rich tuff (ZCh) used in this work was obtained from a new deposit located in the state of Chihuahua (México). The effective and external cation exchange capacities (EfCEC and ECEC) of the ZCh were evaluated previous surface modification with HDTMA. The clinoptilolite-rich tuff was characterized by X-ray diffraction and electron microscopy. A batch system was used to evaluate the kinetics and the isotherms of Phen and p-NPhen sorption. The results show that EfCEC and ECEC were 112 and 17 meq/100 g, respectively. The clinoptilolite is the major mineral phase although mordenite and quartz are minor components. The pseudo-second order kinetic model better fitted the adsorption data and Langmuir model best describes the isotherms for both Phen and p-NPhen using ZCh-HDTMA. p-NPhen is adsorbed by both ZCh-HDTMA and ZCh-Na; however, ZCh-HDTMA exhibits superior performance which reflex a major selectivity. Therefore, the surfactant-modified clinoptilolite-rich tuff could be used for p-NPhen wastewater treatment.  相似文献   

11.
Understanding the effects of organic acids (OA) on the transformation of Fe and Mn to surface water from the weathering coal gangue is of great benefit to risk assessment and remediation strategies for contaminated water and soil. Based on the investigation on surface water in the central coal districts of the Guizhou Province, 18 water samples were collected for heavy metal analysis. The results indicated that the pH value of surface water is low (3.11–4.92), and Fe concentration (1.31–5.55 mg L?1) and Mn concentration (1.90–5.71 mg L?1) were, on average, 10.86 and 34.33 times the limit of Surface Water Quality Standards, respectively. In order to evaluate the effects of the OA on the dissolution of Fe and Mn from the weathering coal gangue, column elution and batch leaching experiments were conducted. The results show that the low molecular weight of organic acids (LMWOAs, i.e., oxalic, tartaric, malic and citric acids) and fulvic acids significantly accelerated the dissolution of Fe and Mn; in addition, when the concentration of OA reached 25 mmol L?1, the concentrations of Fe, and Mn were 1.14–67.08 and 1.11–2.32 times as high as those in 0.5 mmol L?1 OA, respectively. Furthermore, the migration of Fe and Mn was significantly influenced by the pH and Eh, especially for Fe; the ion Mn was dissolved from the gangue more easily than the ion Fe in the column leaching, which was contrary to the results of batch leaching.  相似文献   

12.
Batch sorption system using co-immobilized (activated carbon and Bacillus subtilis) beads as adsorbent was investigated to remove Cr(VI) from aqueous solution. Fourier transform infrared spectroscopy analysis showed the functional groups of both bacteria and activated carbon in co-immobilized beads. Experiments were carried out as a function of contact time (5–300 min), initial metal concentration (50–200 mg L?1), pH (2–8), and adsorbent dose (0.2–1 g L?1). The maximum percentage of removal was found to be 99 %. Langmuir model showed satisfactory fit to the equilibrium adsorption data of co-immobilized beads. The kinetics of the adsorption followed pseudo-second-order rate expression, which demonstrates that chemisorption plays a significant role in the adsorption mechanism. The significant shift in the Fourier transform infrared spectroscopy peaks and a Cr peak in the scanning electron microscope–energy dispersive spectroscopy spectra further confirmed the adsorption. The results indicate that co-immobilized beads can be used as an effective adsorbent for the removal of Cr(VI) from the aqueous solution.  相似文献   

13.
The biosorption of ammoniacal nitrogen (N-NH4 +) from aqueous solutions by dead biomass of brown seaweed Cystoseira indica and Jatropha oil cake (JOC), which is generated in the process of biodiesel recovery from its seeds, was studied under diverse experimental conditions. The N-NH4 + biosorption was strictly pH dependent, and maximum uptake capacity of C. indica (15.21 mg/g) and JOC (13.59 mg/g) was observed at initial pH 7 and 3, respectively. For each biosorbent–N-NH4 + system, kinetic models were applied to the experimental data to examine the mechanisms of sorption and potential rate-controlling steps. The generalized rate model and pseudo-second-order kinetic models described the biosorption kinetics accurately, and the sorption process was found to be controlled by pore and surface diffusion for these biosorbents. Results of four-stage batch biosorber design analysis revealed that the required time for the 99 % efficiency removal of 40 mg/L N-NH4 + from 500 L of aqueous solution were 76 and 96 min for C. indica and JOC, respectively. The Fourier transform infrared spectroscopy analysis before and after biosorption of ammonium onto C. indica and JOC revealed involvement of carboxylic and hydroxyl functional groups.  相似文献   

14.
In this work, the effectiveness of native and chemically modified rice bran to remove heavy metal Pb(II) ions from aqueous solution was examined. Chemical modifications with some simple and low-cost chemicals resulted in enhancement of the adsorption capacities and had faster kinetics than native rice bran. Experiments were conducted in shake flasks to monitor the upshot of parameters over a range of pH, initial Pb(II) concentrations and contact times using a batch model study. The sorption capacities q (mg g?1) increased in the following order: NaOH (147.78), Ca(OH)2 (139.08), Al(OH)3 (127.24), esterification (124.28), NaHCO3 (118.08), methylation (118.88), Na2CO3 (117.12) and native (80.24). The utmost uptake capacity q (mg g?1) was shown by NaOH-pretreated rice bran. The results showed that, using NaOH-modified rice bran, the chief removal of Pb(II) was 74.54 % at pH 5, primary Pb(II) concentration 100 mg L?1 and contact time 240 min. Equilibrium isotherms for the Pb(II) adsorption were analyzed by Langmuir and Freundlich isotherm models. The Langmuir isotherm model, showing Pb(II) sorption as accessible through the high value of the correlation coefficient (R 2 = 0.993), showed a q max value of 416.61 mg g?1. The kinetic model illustrated adsorption rates well, depicted by a second order, which gives an indication concerning the rate-limiting step. Thermodynamic evaluation of the metal ion ?G o was carried out and led to the observation that the adsorption reaction is spontaneous and endothermic in nature. NaOH chemically modified rice bran was a superb biosorbent for exclusion of Pb(II) and proved to be excellent for industrial applications.  相似文献   

15.
Numerical modelling of the processes of CO2 storage in coal and enhanced coalbed methane (ECBM) production requires information on the kinetics of adsorption and desorption processes. In order to address this issue, the sorption kinetics of CO2 and CH4 were studied on a high volatile bituminous Pennsylvanian (Upper Carboniferous) coal (VRr=0.68%) from the Upper Silesian Basin of Poland in the dry and moisture-equilibrated states. The experiments were conducted on six different grain size fractions, ranging from <0.063 to 3 mm at temperatures of 45 and 32 °C, using a volumetric experimental setup. CO2 sorption was consistently faster than CH4 sorption under all experimental conditions. For moist coals, sorption rates of both gases were reduced by a factor of more than 2 with respect to dry coals and the sorption rate was found to be positively correlated with temperature. Generally, adsorption rates decreased with increasing grain size for all experimental conditions.Based on the experimental results, simple bidisperse modelling approaches are proposed for the sorption kinetics of CO2 and CH4 that may be readily implemented into reservoir simulators. These approaches consider the combination of two first-order reactions and provide, in contrast to the unipore model, a perfect fit of the experimental pressure decay curves. The results of this modeling approach show that the experimental data can be interpreted in terms of a fast and a slow sorption process. Half-life sorption times as well as the percentage of sorption capacity attributed to each of the two individual steps have been calculated.Further, it was shown that an upscaling of the experimental and modelling results for CO2 and CH4 can be achieved by performing experiments on different grain size fractions under the same experimental conditions.In addition to the sorption kinetics, sorption isotherms of the samples with different grain size fractions have been related to the variations in ash and maceral composition of the different grain size fractions.  相似文献   

16.
Biosorption is a promising technology for the removal of heavy metals from industrial wastes and effluents. In the present study, biosorption of Pb2+, Cu2+, Fe2+ and Zn2+ onto the dried biomass of Eucheuma denticulatum (Rhodophyte) was investigated as a function of solution pH, contact time, temperature and initial metal ion concentration. The experimental data were evaluated by Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models. The sorption isotherm data followed Langmuir and Freundlich models, and the maximum Langmuir monolayer biosorption capacity was found as 81.97, 66.23, 51.02 and 43.48 mg g?1 for Pb2+, Cu2+, Fe2+ and Zn2+, respectively. The sorption kinetic data followed pseudo-second-order and intraparticle diffusion models. Thermodynamic study revealed feasible, spontaneous and endothermic nature of the sorption process. Fourier transform infrared analysis showed the presence of amine, aliphatic, carboxylate, carboxyl, sulfonate and ether groups in the cell wall matrix involved in metal biosorption process. A total of nine error functions were applied in order to evaluate the best-fitting models. We strongly suggest the analysis of error functions for evaluating the fitness of the isotherm and kinetic models. The present work shows that E. denticulatum can be a promising low-cost biosorbent for removal of the experimental heavy metals from aqueous solutions. Further study is warranted to evaluate its potential for the removal of heavy metals from the real environment.  相似文献   

17.
The bentonite deposit of Lahij Province, Yemen, has very promising commercial applications due to its mineralogy and physical and chemical properties. It was examined to determine its mineralogical composition, chemical and physical properties of the bentonite deposit, purity and sodium-exchanged bentonite. Modified bentonite was synthesized by exchanging cetyltrimethylammonium cations for inorganic ions on the bentonite and its adsorption properties for ammonium were characterized in batch experiments. Analytical methods were carried out to study the bentonite comprising X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy, chemical analysis and kinetic and isotherm models were also tested. The results have shown that the purification of bentonite resulted in a bentonite fractions of the total sample composed of montmorillonite and <5 % quartz. The XRD data showed that the interlayer spacing (d 001) of bentonite decreased from 15.3 to 12.5 Å and then increased to 19.7 Å. Moreover, high cation exchange capacity, good water absorption and high swelling capacity were also obtained. The results have shown that the modified bentonite was more effective than the natural bentonite for ammonium removal. In addition to that, pseudo-second-order kinetic model, Freundlich and the Langmuir models described the adsorption kinetics and isotherm well. It was concluded that Yemen (Alaslef) bentonite can be potential adsorbents for ammonium removal.  相似文献   

18.
This paper presents the removal of hazardous hexavalent chromium from liquid waste streams using divinylbenzene copolymer resin Amberlite IRA 96. Important sorption parameters such as contact time, pH, resin dosage and initial metal concentration were studied at 30?°C. The kinetic study was conducted using pseudo-first and pseudo-second-order kinetics at 30?°C. The sorption process was found to be pH dependent. Maximum removal was obtained at pH 2 under optimized conditions. The sorption process was rapid and 99?% of the removal was achieved in first 30?min. The equilibrium data were fitted to both Langmuir and Freundlich models. The better regression coefficient (R 2) in Freundlich model suggests the multilayer sorption process. The value of Gibbs free energy for sorption process was found to be ?12.394?kJmol?1. The negative value indicated the spontaneity of the sorption process. Scanning electron microscope and energy dispersive X-ray spectroscopy studies were conducted to find the role of surface morphology during sorption process. The Fourier transform infrared study was conducted to identify the functional groups responsible for interaction between the resin and chromium. Desorption and regeneration studies were also carried out.  相似文献   

19.
The batch removal of copper(II) ions from aqueous solution under different experimental conditions using alkali-leached silica and activated charcoal was investigated in this study. The copper(II) uptake was dependent on varying time, pH, copper concentration and temperature. Copper sorption was found fast reaching equilibrium within 1 h with better performance for alkali-leached silica than charcoal. Copper sorption was low at low pH values and increased with rise in initial pH-value until 6.7. Sorption fits well the Langmuir and Freundlich equations with higher uptake by increasing temperature. According to Langmuir equation, the maximum uptake of Cu(II) ions by alkali-leached SiO2 and charcoal was found to be 242.5 and 94.4 mmol/g at temperature 60 °C and pH 6. Thermodynamic studies confirm that the process was spontaneous and endothermic nature. Kinetic data for Cu(II) sorption was found to follow pseudo-second-order model.  相似文献   

20.
为高效快速去除水中全氟辛酸,选择工业废物煤化工渣对全氟辛酸进行吸附去除探究。采用不同的处理方法制备了4种煤化工渣(粒径从大到小为CGA1、CGA2、CGA3和CGA4),研究其在水溶液中的全氟辛酸吸附性能。利用扫描电子显微镜(SEM)、拉曼光谱、傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对4种煤化工渣的结构特征进行表征分析,并考察了全氟辛酸初始质量浓度和初始pH对吸附进程的影响。实验结果表明:煤化工渣对全氟辛酸有高效的吸附能力,伪二级动力学模型和Langmuir等温模型可以较好地描述4种煤化工渣对全氟辛酸的吸附行为及过程,其中CGA4去除全氟辛酸的最大吸附量为25.51 mg/g;随着全氟辛酸溶液初始质量浓度升高,煤化工渣对全氟辛酸的吸附容量逐渐增加;初始pH对CGA3和CGA4的影响微弱,CGA1和CGA2在酸性条件下显示出更优越的吸附性能。由此得出,4种煤化工材料中粒径最小的CGA4具有最优的全氟辛酸去除能力且基本不受pH限制。FTIR分析表明,吸附过程中氢键的形成占主导地位,XPS和Zeta电位检测结果表明,物理吸附和静电吸附在去除过程中也发挥了重要作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号