首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Thirteen-year satellite-derived data are used to investigate the temporal variability of net primary production (NPP) in the Oman upwelling zone and its potential forcing mechanisms. The NPP in the Oman upwelling zone is characterized by an abnormal decrease during El Ni o events. Such an NPP decrease may be related to El Ni o-driven anomalous summertime weak wind. During the summer following El Ni o, the anomalous northeasterly wind forced by southwest Indian Ocean warming weakens the southwest monsoon and warms the Arabian Sea. The abnormal wind weakens the coastal Ekman transport, offshore Ekman pumping and horizontal advection, resulting in reduced upward nutrient supply to the euphotic zone. A slightly declining trend in NPP after 2000 associated with a gradual decrease in surface monsoon winds is discussed.  相似文献   

2.
INTRODUCTIONXuetal.(1993)studiedthebasiccharacteristicsofthethermoclineinthecontinentalshelfandinthedeepsearegionoftheSouthChinaSea(SCS)andthedifferencesbetweenthembyanalyzing1907-1990historicaldataontheSCS.Hepointedoutthatthethermoclineinthedeepsearegionexis…  相似文献   

3.
Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline.  相似文献   

4.
Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern-Pacific El Niños (EP-El Niños) and central-Pacific El Niños (CP-El Niños) are investigated by composite analysis with European Centre for Medium-Range Weather Forecast Ocean Analysis/Reanalysis System 3. During EP-El Niño, NEC transport shows significant positive anomalies from the developing to decay phases, with the largest anomalies around the mature phase. During CP-El Niño, however, the NEC transport only shows positive anomalies before the mature phase, with much weaker anomalies than those during EP-El Niño. The NEC transport variations are strongly associated with variations of the tropical gyre and wind forcing in the tropical North Pacific. During EP-El Niño, strong westerly wind anomalies and positive wind stress curl anomalies in the tropical North Pacific induce local upward Ekman pumping and westward-propagating upwelling Rossby waves in the ocean, lowering the sea surface height and generating a cyclonic gyre anomaly in the western tropical Pacific. During CP-El Niño, however, strength of the wind and associated Ekman pumping velocity are very weak. Negative sea surface height and cyclonic flow anomalies are slightly north of those during EP El Niño.  相似文献   

5.
The effects of different wind input and wave dissipation formulations on the steady Ekman current solution are described. Two formulations are considered: one from the wave modeling (WAM) program proposed by Hasselmann and Komen and the other provided by Tsagareli and Babanin. The solution adopted for our study was presented by Song for the wave-modified Ekman current model that included the Stokes drift, wind input, and wave dissipation with eddy viscosity increasing linearly with depth. Using the Combi spectrum with tail effects, the solutions are calculated using two formulations for wind input and wave dissipation, and compared. Differences in the results are not negligible. Furthermore, the solution presented by Song and Xu for the eddy viscosity formulated using the K-Profile Parameterization scheme under wind input and wave dissipation given by Tsagareli and Babanin is compared with that obtained for a depth-dependent eddy viscosity. The solutions are further compared with the available well-known observational data. The result indicates that the Tsagareli and Babanin scheme is more suitable for use in the model when capillary waves are included, and the solution calculated using the K-Profile Parameterization scheme agrees best with observations.  相似文献   

6.
CTD data on standard levels coolected during July and December in 1998 and the cubic spline interpolating method were used to study the characteristics of the transition layer temperature and salinity.The thermocline undergoes remarkable seasonal variation in the South China Sea (SCS),and especially in the region of the north shelf where the thermocline disappears in december.The thermocline is stronger and thicker in July than in December,There is no obvious seasonal variation in the halocline.Due to the upper Ekman transport caused by monsoon over the SCS,the thermocline slopes upward in July and downward in december from east to west in the northern SCS.The characteristics of the thermocline and halocline are influenced by local eddies in the SCS.The Zhujiang diluted flow influences significantly the SCS shelf‘s halocline.  相似文献   

7.
Typhoon is one of the frequent natural disasters in coastal regions of China.As shown in many studies,the impact of typhoons on the South China Sea(SCS) should not be overlooked.Super typhoon Rammasun(2014) was studied that formed in the northwestern Pacific,passed through the SCS,then landed in the Leizhou Peninsula.Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies,upwelling,sea surface temperature,mixed layer depth,rainfall,sea surface salinity,suspended sediment concentration,and surface-level anomaly.Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan(north of the Zhongsha Islands) and the southeast of Vietnam in July.In addition,we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS.The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon.The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon,with some contribution for the southeast of Vietnam's cold eddy and upwelling.  相似文献   

8.
Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .  相似文献   

9.
Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009,we studied the circulation structure in the Luzon Strait area,examined the routes of water exchange between the South China Sea(SCS) and the Philippine Sea,and estimated the volume transport through Luzon Strait.We found that the Kuroshio axis follows a e-shaped path slightly east of 121uE in the upper layer.With an increase in depth,the Kuroshio axis became gradually farther from the island of Luzon.To study the water exchange between the Philippine Sea and the SCS,identification of inflows and outflows is necessary.We first identified which flows contributed to the water exchange through Luzon Strait,which differs from the approach taken in previous studies.We determined that the obvious water exchange is in the section of 121°E.The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume,and mainly in the 100±500 m layer at 19.5°±20°N(accounting for 4.40 Sv),while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°±20°N and upper 400 m at 21°±21.5°N,and below 240 m at 19°±19.5°N,accounting for 1.07,3.02 and 3.43 Sv in volume transport,respectively.  相似文献   

10.
Various data are used to investigate the characteristics of the surface wind field and rainfall on the East China Sea Kuroshio (ESK) in March and April, 2011. In March, the wind speed maximum shows over the ESK front (ESKF) in the 10 meter wind field, which agrees with the thermal wind effect. A wind curl center is generated on the warm flank of the ESKF. The winds are much weaker in April, so is the wind curl. A rainband exists over the ESKF in both the months. The Weather Research and Forecasting (WRF) model is used for further researches. The winds on the top of the marine atmosphere boundary layer (MABL) indicate that in March, a positive wind curl is generated in the whole MABL over the warm flank of the ESKF. The thermal wind effect forced by the strong SST gradient overlying the background wind leads to strong surface northeasterly winds on the ESKF, and a positive shearing vorticity is created over the warm flank of the ESKF to generate wind curl. In the smoothed sea surface temperature experiment, the presence of the ESKF is responsible for the strong northeast winds in the ESKF, and essential for the distribution of the rainfall centers in March, which confirms the mechanism above. The same simulation is made for April, 2011, and the responses from the MABL become weak. The low background wind speed weakens the effect of the thermal wind, thus no strong Ekman pumping is helpful for precipitation. There is no big difference in rainfall between the control run and the smooth SST run. Decomposition of the wind vector shows that local wind acceleration induced by the thermal wind effect along with the variations in wind direction is responsible for the pronounced wind curl/divergence over the ESKF.  相似文献   

11.
Wave simulation was conducted for the period 1976 to 2005 in the South China Sea (SCS) using the wave model, WAVEWATCH-III. Wave characteristics and engineering environment were studied in the region. The wind input data are from the objective reanalysis wind datasets, which assimilate meteorological data from several sources. Comparisons of significant wave heights between simulation and TOPEX/Poseidon altimeter and buoy data show a good agreement in general. By statistical analysis, the wave characteristics, such as significant wave heights, dominant wave directions, and their seasonal variations, were discussed. The largest significant wave heights are found in winter and the smallest in spring. The annual mean dominant wave direction is northeast (NE) along the southwest (SW)-NE axis, east northeast in the northwest (NW) part of SCS, and north northeast in the southeast (SE) part of SCS. The joint distributions of wave heights and wave periods (directions) were studied. The results show a single peak pattern for joint significant wave heights and periods, and a double peak pattern for joint significant wave heights and mean directions. Furthermore, the main wave extreme parameters and directional extreme values, particularly for the 100-year return period, were also investigated. The main extreme values of significant wave heights are larger in the northern part of SCS than in the southern part, with the maximum value occurring to the southeast of Hainan Island. The direction of large directional extreme H s values is focus in E in the northern and middle sea areas of SCS, while the direction of those is focus in N in the southeast sea areas of SCS.  相似文献   

12.
The tendency of South China Sea throughflow (SCSTF) variation associated with the local monsoon system, and its impact on upper-layer thermal structure, are studied using the Simple Ocean Data Assimilation (SODA) dataset, combined with Ishii reanalysis data. Luzon Strait Transport (LST) is measured and used as an index for studying the SCSTF variation. Results show that LST had an increasing tendency over the last 50 years, mainly in summer and fall. The increasing tendency was 0.017 1 Sv/a in summer and 0.027 4 Sv/a in fall, as estimated by SODA, and 0.018 0Sv/a in summer and 0.018 9 Sv/a in fall, as estimated by "Island Rule" theory. LST increased by 0.53Sv in JJA (June-July-August) and 0.98Sv in SON (September-October-November) after climate shift, as inferred by SODA data. The average LST anomaly in JJA and SON is strongly related to the local monsoon system, especially to variability of the meridional wind stress anomaly after application of a 3-year running mean, with correlation coefficients 0.57 and 0.51, respectively. In addition to the basin-scale wind forcing, the local northeasterly wind stress anomaly in the SCS can push Pacific water entering the SCS more readily in JJA and SON after climate shift, and an SCSTF-associated cooling effect may favor subsurface cooling more frequently after climate shift.  相似文献   

13.
OCCAM global ocean model results were applied to calculate the monthly water transport through 7 straits around the East China Sea(ECS)and the South china Sea(SCS).Analysis of the features of velocity profiles and their variations in the Togara Strait,Luzon Strait and Eastern Taiwan Strait showed that;1)the velocity profiles had striped pattern in the Eastern Taiwan Strait,where monthly flux varied from 22.4 to 28.1 Sv and annual mean was about 25.8 Sv;2)the profiles of velocity in the Togara Strait were characterized by core structure,and monthly flux varied from 23.3 to 31.4 Sv,with annual mean of about 27.9 Sv;3)water flowed from the SCS to the ECS in the Taiwan Strait,with maximum flux of 3.1 Sv in July and minimum of 0.9 Sv in November;4)the flux in the Tsushima Strait varied by only about 0.4 Sv by season and its annual mean was about 2.3 Sv;5)Kuroshio water flowed into the SCS in the Luzon Strait throughout the year and the velocity profiles were characterized by multi-core structure.The flux in the Luzon Strait was minimun in June(about 2.4 Sv)and maximum in February(about 9.0 Sv),and its annual mean was 4.8 Sv;6)the monthly flux in the Mindoro Strait was maximum in December(3.0 Sv)and minimum in June(Only 0.1 Sv),and its annual mean was 1.3 Sv;7)Karimata Strait water flowed into the SCS from May to August,with maximum in-flow flux of about 0.75 Sv in June and flowed out from September to April at maximum outflow flux of 3.9 Sv in January.The annual mean flux was about 1.35 Sv.  相似文献   

14.
The spatial structure and variation of the upwelling in the waters east and northeast of Hainan Island, China during 2000-2007 were investigated using a nested high-resolution Princeton Ocean Model (POM) forced by QuikSCAT winds. The model produced good simulations of the summer upwelling and the seasonal and annual variability. Strong upwelling occurs from mid-July to mid-August with a peak east of Hainan Island associated with the southwesterly monsoon in the South China Sea. Sensitivity experiments indicated that when the local wind stress controls the variability of the upwelling, the large-scale circulation significantly enhances the upwelling northeast of Hainan Island by inducing a local upwelling and transporting cold water northeast-ward along the island’s east coast. The joint effects of the local wind stress and large-scale circulation result in stronger upwelling northeast of Hainan Island. This implies that the annual variation of the upwelling northeast of Hainan Island is controlled not only by the local alongshore wind stress but also by the large-scale circulation. This result will help us investigate the decadal variation of the upwelling in this region in the future.  相似文献   

15.
Variation in intermediate water salinity in the South China Sea (SCS) between the 1960s and 1980s was studied using historical hydrographic data. The results demonstrate that the water was significantly fresher in the 1980s than in the 1960s, indicating that vertical mixing at intermediate water depth was reduced in the 1980s. This was partially because of the change of the SCS meridional overturning circulation (MOC) connecting local intermediate water with deep water. Data assimilation showed a 0.5Sv (1 Sv=10 6m 3/s) reduction in the strength of the MOC, which is about one third of the mean SCS MOC. Because the SCS MOC is linked to the Pacific Ocean, such an interdecadal variation in the intermediate water SCS may reflect anthropogenic climate change in the world ocean.  相似文献   

16.
With parameterized wave mixing, the circulation and the tidal current in the Bering Sea were simulated simultaneously using the three-dimensional Princeton Ocean Model. The simulated circulation pattern in the deep basin is relatively stable, cyclonic, and has little seasonal change. The Bering Slope Current between 200-1000 m isobaths was estimated to be 5 Sv in volume transport. The Kamchatka Current was estimated to be 20 Sv off the Kamchatka Peninsula. The Bering shelf circulations vary with season, driven mainly by wind. These features are consistent with historical esti- mates. A counter current was captured flowing southeastward approximately along the 200 m isobath of the Bering Slope, opposite to the northwestward Bering Slope Current, which needs to be validated by observations. An upwelling current is located in the shelf break ( 120-1000 m) area, which may imply the vertical advection of nutrients for supporting the Bering Sea Green Belt seasonal plankton blooms in the breakslope area. The Bering Slope Current is located in a downwelling area.  相似文献   

17.
This study examines the seasonal variations of tropical cyclogenesis over the South China Sea (SCS) using a genesis potential (GP) index developed by Emanuel and Nolan. How different environmental factors (including low-level vorticity, mid-level relative humidity, vertical wind shear, and potential intensity) contribute to these variations is investigated. Composite anomalies of the GP index are produced for the summer and winter monsoons separately. These composites replicate the observed seasonal variations of the observed frequency and location of tropical cyclogenesis over the SCS. The degree of contribution by each factor in different regions is determined quantitatively by producing composites of modified indices in which only one of the contributing factors varies, with the others set to climatology. Over the northern SCS, potential intensity makes the largest contributions to the seasonal variations in tropical cyclogenesis. Over the southern SCS, the low-level relative vorticity plays the primary role in the seasonal modulation of tropical cyclone (TC) genesis frequency, and the vertical wind shear plays the secondary role. Thermodynamic factors play more important roles for the seasonal variations in tropical cyclogenesis over the northern SCS, while dynamic factors are more important in the seasonal modulation of TC genesis frequency over the southern SCS.  相似文献   

18.
Characteristics of water exchange in the Luzon Strait during September 2006   总被引:7,自引:1,他引:6  
The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of t...  相似文献   

19.
Effect of meridional wind on gap-leaping western boundary current   总被引:1,自引:0,他引:1  
Using a 1.5-layer reduced-gravity nonlinear shallow-water equation model, we studied the effect of the meridional wind on the western boundary currents (WBC) at critical states with hysteresis courses. The results of the simulation indicate that the WBC is prone to penetrating into the gap under northerly winds, and its path is more difficult to alter due to the larger interval between the two critical transition curves (C 1 P and C 1 L). For southerly winds, the WBC is prone to leaping across the gap, and its path is easier to alter due to the smaller interval between the two critical transition curves. The simulation results also indicate that the meridional winds over the southern region of the gap are the dominant factor determining the formation of the WBC. The dynamic mechanism influencing the transport of WBC near the gap is both Ekman transport and the blocking of Ekman transport. Ekman transport induced by northerly winds may reduce the transport of the WBC, causing the β-effect to dominate the meridional advection (promoting the penetration). Southerly winds, however, may enhance the transport of the WBC, causing the meridional advection to dominate the β-effect (promoting the leaping state). These results explain some structural features of the Kuroshio at the Luzon Strait.  相似文献   

20.
The analysis of the protein and carbohydrate in P-POM (Plankton and Particulate Organic Matter) samples collected from the fishing ground in Minnan-Taiwan Bank in five voyages (April, June, July, August and November, 1988) shows that the protein and carbohydrate contents and amounts in samples from four stations (501, 401, 301, 201) along the coast and another four stations (404, 304, 403, 204) south and southeast of the shoal were higher than those in April and November, indicating that this phenomenon is related to the upwelling in the two regions in summer .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号