首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Regional seismic reflection profiles tied to lithological and biostratigraphic data from deep exploration wells have been used to determine the structure and evolution of the poorly known basins of northern Somalia. We recognize six major tectonostratigraphic sequences in the seismic profiles: Middle‐Late Jurassic syn‐rift sequences (Adigrat and Bihen Group), ?Cenomanian‐Campanian syn‐rift sequences (Gumburo Group), Campanian‐Maastrichtian syn‐rift sequences (Jesomma Sandstones), Palaeocene post‐rift sequences (Auradu Limestones), Early‐Middle Eocene post‐rift sequences (Taleh Formation) and Oligocene‐Miocene (Daban Group) syn‐rift sequences. Backstripping of well data provides new constraints on the age of rifting, the amount of crustal and mantle extension, and the development of the northern Somalia rifted basins. The tectonic subsidence and uplift history at the wells can be explained by a uniform extension model with three episodes of rifting punctuated by periods of relative tectonic quiescence and thermal subsidence. The first event initiated in the Late Jurassic (~156 Ma) and lasted for ~10 Myr and had a NW‐SE trend. We interpret the rift as a late stage event associated with the break‐up of Gondwana and the separation of Africa and Madagascar. The second event initiated in the Late Cretaceous (~80 Ma) and lasted for ~20–40 Myr. This event probably correlates with a rapid increase in spreading rate on the ridges separating the African and Indian and African and Antarctica plates and a contemporaneous slowing down of Africa's plate motion. The backstripped tectonic subsidence data can be explained by a multi‐rift extensional model with stretching factor, β, of 1.09–1.14 and 1.05–1.28 for the first and second rifting events, respectively. The model, fails, however, to completely explain the slow subsidence and uplift history of the margin during Early Cretaceous to Late Cretaceous. We attribute this slow subsidence to the combined effect of a sea‐level fall and regional uplift, which caused a major unconformity in northern Somalia. The third and most recent event occurred in the Oligocene (~32 Ma) and lasted for ~10 Myr. This rift developed along the Gulf of Aden and reactivated the Guban, Nogal and Daroor basins, and is related to the opening of the Gulf of Aden. As a result of these events the crust and upper mantle were thinned by up to a factor of two in some basins. In addition, several distinct petroleum systems developed. The principal exploration play is for Mesozoic petroleum systems with the syn‐rift Oligocene‐Miocene as a subordinate objective owing to low maturity and seal problems. The main seals for the different plays are various shales, some of which are also source rocks, but the Early Eocene evaporites of the Taleh formations can also perform a sealing role for Palaeogene or older generated hydrocarbons migrating vertically.  相似文献   

2.
Rifted margins are created as a result of stretching and breakup of continental lithosphere that eventually leads to oceanic spreading and formation of a new oceanic basin. A cornerstone for understanding what processes control the final transition to seafloor spreading is the nature of the continent‐ocean transition (COT). We reprocessed multichannel seismic profiles and use available gravity data to study the structure and variability of the COT along the Northwest subbasin (NWSB) of the South China Sea. We have interpreted the seismic images to discern continental from oceanic domains. The continental‐crust domain is characterized by tilted fault blocks generally overlain by thick syn‐rift sedimentary units, and underlain by fairly continuous Moho reflections typically at 8–10 s twtt. The thickness of the continental crust changes greatly across the basin, from ~20 to 25 km under the shelf and uppermost slope, to ~9–6 km under the lower slope. The oceanic‐crust domain is characterized by a highly reflective top of basement, little faulting, no syntectonic strata and fairly constant thickness (over tens to hundreds of km) of typically 6 km, but ranging from 4 to 8 km. The COT is imaged as a ~5–10 km wide zone where oceanic‐type features directly abut or lap on continental‐type structures. The South China margin continental crust is cut by abundant normal faults. Seismic profiles show an along‐strike variation in the tectonic structure of the continental margin. The NE‐most lines display ~20–40 km wide segments of intense faulting under the slope and associated continental‐crust thinning, giving way to a narrow COT and oceanic crust. Towards the SW, faulting and thinning of the continental crust occurs across a ~100–110 km wide segment with a narrow COT and abutting oceanic crust. We interpret this 3D structural variability and the narrow COT as a consequence of the abrupt termination of continental rifting tectonics by the NE to SW propagation of a spreading centre. We suggest that breakup occurred abruptly by spreading centre propagation rather than by thinning during continental rifting. We propose a kinematic evolution for the oceanic domain of the NWSB consisting of a southward spreading centre propagation followed by a first narrow ridge jump to the north, and then a younger larger jump to the SE, to abandon the NWSB and create the East subbasin of the South China Sea.  相似文献   

3.
A well‐constrained plate deformation model may lead to an improved understanding of sedimentary basin formation and the connection between subduction history and over‐riding plate deformation. Building quantitative models of basin kinematics and deformation remains challenging often due to the lack of comprehensive constraints. The Bohai Bay Basin (BBB) is an important manifestation of the destruction of the North China Craton, and records the plate kinematic history of East Asia during the Cenozoic. Although a number of interpretations of the formation of the BBB have been proposed, few quantitative basin reconstruction models have been built to test and refine previous ideas. Here, we developed a quantitative deformation reconstruction of the BBB constrained with balanced cross‐sections and structural, stratigraphic and depositional age data. Our reconstruction suggests that the basin formation process was composed of three main stages: Paleocene‐early Eocene (65–42 Ma) extension initiation, middle Eocene‐early Oligocene (42–32.8 Ma) extension climax and post‐Oligocene (32.8–0 Ma) post‐extensional subsidence. The deformation of the BBB is spatially heterogeneous, and its velocity directions rotated clockwise during the basin formation process. The reconstruction supports the interpretation that the BBB formed via strike‐slip faulting and orthogonal extension and that the basin is classified as a composite extensional‐transtensional basin. We argue that the clockwise rotation of the basin velocity field was driven by the counter‐clockwise rotation in the direction of Pacific Plate subduction. The kinematics of the BBB imply that the Pacific Plate may have been sufficiently coupled to the over‐riding East Asian Plate during the critical period of Pacific Plate reorganization. The new reconstruction provides a quantitative basis for studies of deformation processes not only in the vicinity of the BBB, but also more broadly throughout East Asia.  相似文献   

4.
Four Mesozoic–Cenozoic palaeothermal episodes related to deeper burial and subsequent exhumation and one reflecting climate change during the Eocene have been identified in a study of new apatite fission‐track analysis (AFTA®) and vitrinite reflectance data in eight Danish wells. The study combined thermal‐history reconstruction with exhumation studies based on palaeoburial data (sonic velocities) and stratigraphic and seismic data. Mid‐Jurassic exhumation (ca. 175 Ma) was caused by regional doming of the North Sea area, broadly contemporaneous with deep exhumation in Scandinavia. A palaeogeothermal gradient of 45 °C km?1 at that time may be related to a mantle plume rising before rifting in the North Sea. Mid‐Cretaceous exhumation affecting the Sorgenfrei–Tornquist Zone is probably related to late Albian tectonic movements (ca. 100 Ma). The Sole Pit axis in the southern North Sea experienced similar inversion and this suggests a plate‐scale response along crustal weakness zones across NW Europe. Mid‐Cenozoic exhumation affected the eastern North Sea Basin and the onset of this event correlates with a latest Oligocene unconformity (ca. 24 Ma), which indicates a major Scandinavian uplift phase. The deeper burial that caused the late Oligocene thermal event recognized in the AFTA data reflect progradation of lower Oligocene wedges derived from the uplifting Scandinavian landmass. The onset of Scandinavian uplift is represented by an earliest Oligocene unconformity (ca. 33 Ma). Late Neogene exhumation affected the eastern (and western) North Sea Basin including Scandinavia. The sedimentation pattern in the central North Sea Basin shows that this phase began in the early Pliocene (ca. 4 Ma), in good agreement with the AFTA data. These three phases of Cenozoic uplift of Scandinavia also affected the NE Atlantic margin, whereas an intra‐Miocene unconformity (ca. 15 Ma) on the NE Atlantic margin reflects tectonic movements of only minor amplitude in that area. The study demonstrates that only by considering episodic exhumation as an inherent aspect of the sedimentary record can the tectonic evolution be accurately reconstructed.  相似文献   

5.
The Lake Izabal Basin in Guatemala is a major pull-apart basin along the sinistral Polochic Fault, which is part of the North American and Caribbean plate boundary. The basin infill contains information about the tectonic and sedimentological processes that have imparted a significant control on its sedimentary section. The inception of the basin has been linked to the relative importance of the Polochic Fault in the tectonic history of the plate boundary; yet, its sedimentological record and its inception age have been poorly documented. This study integrates diverse datasets, including industry reports, well logs and reports, well cuttings, vintage seismic data, outcrop observations and geochronological data to constrain the initial infill and age of inception of the basin. The integrated data show that during the Oligocene–Miocene, a marine carbonate platform was established in the region which was later uplifted and eroded in the early Miocene. The fluvial–lacustrine deposits above this carbonate platform are part of the initial infill of the basin and are constrained with zircon weighted-mean 206Pb/238U ages of 12.060 ± 0.008 from a volcanic tuff ~30 m above the unconformity. Sandstone, mudstone and coal dominate the interval from 12 to 4 Ma, with an increase in conglomerate correlating to the uplift of the Mico Mountains and San Gil Hill at 4 Ma. Fault switch activity between the Polochic and Motagua faults has been hypothesized to explain total offset along the Polochic Fault and the geologic and geodetic slip rates along the two faults. The 12 Ma age determined for the initial infill of the basin confirms this hypothesis. Consequently, our study confirms that at ~12 Ma the Polochic Fault served as the main fault of the plate boundary with inferred slip rates ranging from 13 to 21 mm/yr with a strong possibility that the Polochic Fault was, at some point between 15 Ma and 7 Ma, the only active fault of the plate boundary. The results of this study show that tectonic records preserved in sediments of strike-slip basins improve the understanding of the relative significance of individual faults and the implications with respect to strain partitioning throughout its tectonic history.  相似文献   

6.
The asymmetry (skewness) of marine magnetic anomaly 32 (72.1–73.3  Ma) on the Pacific plate has been analysed in order to estimate a new palaeomagnetic pole. Apparent effective remanent inclinations of the seafloor magnetization were calculated from skewness estimates of 108 crossings of anomaly 32 distributed over the entire Pacific plate and spanning a great-circle distance of ~12  000  km. The data were inverted to obtain a palaeomagnetic pole at 72.1°N, 26.8°E with a 95 per cent confidence ellipse having a 4.0° major semi-axis oriented 98° clockwise of north and a 1.8° minor semi-axis; the anomalous skewness is 14.2° ± 3.7°. The possible dependence of anomalous skewness on spreading rate was investigated with two empirical models and found to have a negligible effect on our palaeopole analysis over the range of relevant spreading half-rates, ~25 to ~90  mm  yr−1 . The new pole is consistent with the northward motion for the Pacific plate indicated by coeval palaeocolatitude and palaeoequatorial data, but differs significantly from, and lies to the northeast of, coeval seamount poles. We attribute the difference to unmodelled errors in the seamount poles, mainly in the declinations. Comparison with the northward motion inferred from dated volcanoes along the Hawaiian–Emperor seamount chain indicates 13° of southward motion of the Hawaiian hotspot since 73  Ma. When the pole is reconstructed with the Pacific plate relative to the Pacific hotspots, it differs by 14°–18° from the position of the pole relative to the Indo–Atlantic hotspots. This has several possible explanations including bias in one or more of the palaeomagnetic poles, motion between the Pacific and Indo–Atlantic hotspots, and errors in plate reconstructions relative to the hotspots.  相似文献   

7.
We present a new palaeogeographic reconstruction of the Helvetic zone based on the palinspastic restoration of 18 recently published and new retrodeformed structural cross‐sections through the Swiss Alps, Haute Savoie (France) and Vorarlberg (Austria). The reconstruction resulted in two palaeogeographic maps, one of the pre‐Mesozoic basement, the other for the sedimentary cover of the Helvetic shelf including the Nummulitic deposits of the Palaeocene–Eocene, which mark the onset of the North Alpine Foreland Basin of the Alps. Based on the palaeogeographic maps and a precise dating of the Nummulitic deposits, we established maps of the facies distribution including the estimated positions of the ancient coastlines and their evolution through time. The North Alpine Foreland Basin started as a narrow flysch basin in Palaeocene–Eocene times. Emplacement of the Penninic nappes led to the formation of a mélange on the active margin of this basin. This early foreland basin and its active margin migrated to the NW in Early Eocene times at a rate of about 10 mm yr?1. The maps also reveal a general progressive north‐ and westward propagation of the Eocene coastline between 50–34 Ma and during the Oligocene until approximately 32 Ma. Coastline propagation reveals strongly varying rates both spatially and temporally, and is ca. 1–2 mm yr?1 between 50 and 37 Ma and approximately 20 mm yr?1 between 37 and 32 Ma. Evolution and orientation of the Tertiary coastlines infers that the early development of the North Alpine Foreland Basin was mainly controlled initially by eustatic sea‐level fluctuations superimposed on flexural subsidence. After 37 Ma, we suggest a tectonically controlled coastline evolution in response to the collision of the European and Adriatic margins.  相似文献   

8.
The Turkana rifted zone in northern Kenya is a long‐lived and polyphased rift system where the lack of well‐marked rift morphology makes it difficult to identify the zone of active deformation. A high‐density river network is exceptionally well developed over the study area and shows evidence of drainage anomalies that suggest recent fault‐induced movements at various scales. Correlation of surface drainage anomalies with Landsat remote sensing and deep seismic reflection data permits to characterize the deep geometry of the inferred fault structures. Seismic stratigraphy further allows distinction between the inherited (Oligocene–Pliocene) and the newly formed (<3.7 Ma) origin of the recent deformation. Evidence for neotectonics are observed (1) along a large‐scale transverse (EW) fault rooted at depth along a steep basement discontinuity (Turkwell), (2) along a rift‐parallel (NS) fault zone probably emplaced during the Pliocene–Pleistocene and currently bounding the Napedet volcanic plateau to the west and (3) over a round‐shaped uplifted zone caused by positive inversion tectonics (Kalabata). The major contribution of this work is the recognition of a broad (80 km wide) zone of recent/active extensional deformation in the Turkana Rift in contrast with the narrow (20 km wide) N10°E‐trending axial trough forming the Suguta valley to the south, and the Chew Bahir faulted basin to the north. These along‐strike variations in structural style are partly controlled by the occurrence of rejuvenated Oligocene–Miocene rift faults and long‐lived transverse discontinuities in the Turkana Rift area. More generally, this study has implications for the use of river drainage network about recent/active extensional domains with subdued topography and slow deformation rate.  相似文献   

9.
《Basin Research》2018,30(3):373-394
Continental breakup between Greenland and North America produced the small oceanic basins of the Labrador Sea and Baffin Bay, which are connected via the Davis Strait, a region mostly comprised of continental crust. This study contributes to the debate regarding the role of pre‐existing structures on rift development in this region using seismic reflection data from the Davis Strait data to produce a series of seismic surfaces, isochrons and a new offshore fault map from which three normal fault sets were identified as (i) NE‐SW, (ii) NNW‐SSE and (iii) NW‐SE. These results were then integrated with plate reconstructions and onshore structural data allowing us to build a two‐stage conceptual model for the offshore fault evolution in which basin formation was primarily controlled by rejuvenation of various types of pre‐existing structures. During the first phase of rifting between at least Chron 27 (ca. 62 Ma; Palaeocene), but potentially earlier, and Chron 24 (ca. 54 Ma; Eocene) faulting was primarily controlled by pre‐existing structures with oblique normal reactivation of both the NE‐SW and NW‐SE structural sets in addition to possible normal reactivation of the NNW‐SSE structural set. In the second rifting stage between Chron 24 (ca. 54 Ma; Eocene) and Chron 13 (ca. 35 Ma; Oligocene), the sinistral Ungava transform fault system developed due to the lateral offset between the Labrador Sea and Baffin Bay. This lateral offset was established in the first rift stage possibly due to the presence of the Nagssugtoqidian and Torngat terranes being less susceptible to rift propagation. Without the influence of pre‐existing structures the manifestation of deformation cannot be easily explained during either of the rifting phases. Although basement control diminished into the post‐rift, the syn‐rift basins from both rift stages continued to influence the location of sedimentation possibly due to differential compaction effects. Variable lithospheric strength through the rifting cycle may provide an explanation for the observed diminishing role of basement structures through time.  相似文献   

10.
《Basin Research》2018,30(Z1):289-310
The Chilean Frontal Cordillera, near 28°45′S, provides a remarkable example to explore the evolution of the Central Andes; this area provides conspicuous pediment surfaces and continental deposits, which allowed us to analyse the timing and propagation of deformation which controlled the Andes building during the Cenozoic using structural, geomorphological, sedimentological, stratigraphic and geochronological data. The study area is characterized by outcrops of the Cerro del Burro Gravels, a continental deposit which is surrounded by four morphostructural mountain systems. Based on a 46 Ma tuff affected by a syncline, which is sealed by a 44 Ma tuff, we recognized an Eocene fault activity that contributed to the uplift of the western and northern systems, which have remained inactive during the last 44 Ma. The deformed lithologies during the last pulse of activity of the western fault and the youngest lithology carved by pediment processes (21 Ma) indicate a pediment surface developed during the Late Eocene and Oligocene. This pediment extended below the Cerro del Burro Gravels associated to a base level which drained to the east. We also recognized Miocene fault activity that played a main role in the uplift of the eastern and southern systems. Geochronological, stratigraphic and geomorphological data suggest a first pulse of fault activity between 19 and 13 Ma, which interrupted the pedimentation processes, developed an intramontane depocenter, and forced the accumulation of the Laguna Grande Succession in an alluvial‐braided fluvial environment. After 13 Ma, an erosive event evidenced by the incision of valleys, resulted after the change in the extension and configuration of the hydric network.  相似文献   

11.
《Basin Research》2018,30(Z1):269-288
A number of major controversies exist in the South China Sea, including the timing and pattern of seafloor spreading, the anomalous alternating strike‐slip movement on the Red River Fault, the existence of anomalous post‐rift subsidence and how major submarine canyons have developed. The Qiongdongnan Basin is located in the intersection of the northern South China Sea margin and the strike‐slip Red River fault zone. Analysing the subsidence of the Qiongdongnan Basin is critical in understanding these controversies. The basin‐wide unloaded tectonic subsidence is computed through 1D backstripping constrained by the reconstruction of palaeo‐water depths and the interpretation of dense seismic profiles and wells. Results show that discrete subsidence sags began to form in the central depression during the middle and late Eocene (45–31.5 Ma). Subsequently in the Oligocene (31.5–23 Ma), more faults with intense activity formed, leading to rapid extension with high subsidence (40–90 m Myr−1). This extension is also inferred to be affected by the sinistral movement of the offshore Red River Fault as new subsidence sags progressively formed adjacent to this structure. Evidence from faults, subsidence, magmatic intrusions and strata erosion suggests that the breakup unconformity formed at ca. 23 Ma, coeval with the initial seafloor spreading in the southwestern subbasin of the South China Sea, demonstrating that the breakup unconformity in the Qiongdongnan Basin is younger than that observed in the Pearl River Mouth Basin (ca. 32–28 Ma) and Taiwan region (ca. 39–33 Ma), which implies that the seafloor spreading in the South China Sea began diachronously from east to west. The post‐rift subsidence was extremely slow during the early and middle Miocene (16 m Myr−1, 23–11.6 Ma), probably caused by the transient dynamic support induced by mantle convection during seafloor spreading. Subsequently, rapid post‐rift subsidence occurred during the late Miocene (144 m Myr−1, 11.6–5.5 Ma) possibly as the dynamic support disappeared. The post‐rift subsidence slowed again from the Pliocene to the Quaternary (24 m Myr−1, 5.5–0 Ma), but a subsidence centre formed in the west with the maximum subsidence of ca. 450 m, which coincided with a basin with the sediment thickness exceeding 5500 m and is inferred to be caused by sediment‐induced ductile crust flow. Anomalous post‐rift subsidence in the Qiongdongnan Basin increased from ca. 300 m in the northwest to ca. 1200 m in the southeast, and the post‐rift vertical movement of the basement was probably the most important factor to facilitate the development of the central submarine canyon.  相似文献   

12.
Recently reported detrital zircon (DZ) data help to associate the Paleogene strata of the Gulf of Mexico region to various provenance areas. By far, recent work has emphasised upper Paleocene‐lower Eocene and upper Oligocene strata that were deposited during the two episodes of the highest sediment supply in the Paleogene. The data reveal a dynamic drainage history, including (1) initial routing of western Cordilleran drainages towards the Gulf of Mexico in the Paleocene, (2) an eastward shift of the western continental divide, from the Jura‐Cretaceous cordilleran arc to the eastern edge of the Laramide province after the Paleocene and (3) a southward shift, along the eastern Laramide province, of the headwaters of river systems draining to the Mississippi and Houston embayments at some time between the early Eocene and Oligocene. However, DZ characterisation of most (~20 Myr) of the middle Eocene‐lower Oligocene section remains limited. We present 60 DZ age spectra, most of which are from the middle or upper Eocene outcrop belts, with 50–200‐km spacing. We define six to eight distinct groups of DZ age spectra for middle and upper Eocene strata. Data from this and other studies resolve at least six substantial temporal changes in age spectra at various positions along the continental margin. The evolving age spectra constrain the middle and upper Eocene drainage patterns of large parts of interior North America. The most well‐resolved aspects of these drainage patterns include (1) persistent rivers that flowed from erosional landscapes across the Paleozoic Appalachian orogen either into the low‐lying Mississippi embayment or directly into the eastern Gulf; (2) at least during marine regressions, a trunk channel that likely flowed southward along the axial part of Mississippi Embayment and integrated tributaries from the east and west; and (3) rivers that flowed to the Houston embayment in the middle Eocene that likely originated in the Laramide province in central Colorado and southern Wyoming, as Precambrian basement highs in those source areas were being unroofed.  相似文献   

13.
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation.  相似文献   

14.
The late‐stage evolution of the southern central Pyrenees has been well documented but controversies remain concerning potential Neogene acceleration of exhumation rates and the influence of tectonic and/or climatic processes. A popular model suggests that the Pyrenees and their southern foreland were buried below a thick succession of conglomerates during the Oligocene, when the basin was endorheic. However, both the amount of post‐orogenic fill and the timing of re‐excavation remain controversial. We address this question by revisiting extensive thermochronological datasets of the Axial Zone. We use an inverse approach that couples the thermo‐kinematic model Pecube and the Neighbourhood inversion algorithm to constrain the history of exhumation and topographic changes since 40 Ma. By comparison with independent geological data, we identified a most probable scenario involving rapid exhumation (>2.5 km Myr?1) between 37 and 30 Ma followed by a strong decrease to very slow rates (0.02 km Myr?1) that remain constant until the present. Therefore, the inversion does not require a previously inferred Pliocene acceleration in regional exhumation rates. A clear topographic signal emerges, however: the topography has to be infilled by conglomerates to an elevation of 2.6 km between 40 and 29 Ma and then to remain stable until ca. 9 Ma. We interpret the last stage of the topographic history as recording major incision of the southern Pyrenean wedge, due to the Ebro basin connection to the Mediterranean, well before previously suggested Messinian ages. These results thus demonstrate temporally varying controls of different processes on exhumation: rapid rock uplift in an active orogen during late Eocene, whereas base‐level changes in the foreland basin control the post‐orogenic evolution of topography and exhumation in the central Pyrenees. In contrast, climate changes appear to play a lesser role in the post‐orogenic topographic and erosional evolution of this mountain belt.  相似文献   

15.
The Northland Allochthon, an assemblage of Cretaceous–Oligocene sedimentary rocks, was emplaced during the Late Oligocene–earliest Miocene, onto the in situ Mesozoic and early Cenozoic rocks (predominantly Late Eocene–earliest Miocene) in northwestern New Zealand. Using low‐temperature thermochronology, we investigate the sedimentary provenance, burial and erosion histories of the rocks from both the hanging and footwalls of the allochthon. In central Northland (Parua Bay), both the overlying allochthon and underlying Early Miocene autochthon yield detrital zircon and partially reset apatite fission‐track ages that were sourced from the local Jurassic terrane and perhaps Late Cretaceous volcanics; the autochthon contains, additionally, material sourced from Oligocene volcanics. Thermal history modelling indicates that the lower part of the allochthon together with the autochthon was heated to ca. 55–100°C during the Late Oligocene and Early Miocene, most likely due to the burial beneath the overlying nappe sequences. From the Mesozoic basement exposed in eastern Northland, we obtained zircon fission‐track ages tightly bracketed between 153 and 149 Ma; the apatite fission‐track ages on the other hand, generally young towards the northwest, from 129 to 20.9 Ma. Basement thermochronological ages are inverted to simulate the emplacement and later erosion of the Northland Allochthon, using a thermo‐kinematic model coupled with an inversion algorithm. The results suggest that during the Late Oligocene, the nappes in eastern Northland ranged from ca. 4–6‐km thick in the north to zero in the Auckland region (over a distance >200 km). Following the allochthon emplacement, eastern Northland was uplifted and unroofed during the Early Miocene for a period of ca. 1–6 Myr at the rate of 0.1–0.8 km/Myr, leading to rapid erosion of the nappes. Since Middle Miocene, the basement uplift ceased and the erosion of the nappes and the region as a whole slowed down (ca. 0–0.2 km/Myr), implying a decay in the tectonic activity in this region.  相似文献   

16.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

17.
The style of extension and strain distribution during the early stages of intra-continental rifting is important for understanding rift-margin development and can provide constraints for lithospheric deformation mechanisms. The Corinth rift in central Greece is one of the few rifts to have experienced a short extensional history without subsequent overprinting. We synthesise existing seismic reflection data throughout the active offshore Gulf of Corinth Basin to investigate fault activity history and the spatio-temporal evolution of the basin, producing for the first time basement depth and syn-rift sediment isopachs throughout the offshore rift. A major basin-wide unconformity surface with an age estimated from sea-level cycles at ca . 0.4 Ma separates distinct seismic stratigraphic units. Assuming that sedimentation rates are on average consistent, the present rift formed at 1–2 Ma, with no clear evidence for along-strike propagation of the rift axis. The rift has undergone major changes in relative fault activity and basin geometry during its short history. The basement depth is greatest in the central rift (maximum ∼3 km) and decreases to the east and west. In detail however, two separated depocentres 20–50 km long were created controlled by N- and S-dipping faults before 0.4 Ma, while since ca . 0.4 Ma a single depocentre (80 km long) has been controlled by several connected N-dipping faults, with maximum subsidence focused between the two older depocentres. Thus isolated but nearby faults can persist for timescales ca . 1 Ma and form major basins before becoming linked. There is a general evolution towards a dominance of N-dipping faults; however, in the western Gulf strain is distributed across several active N- and S-dipping faults throughout rift history, producing a more complex basin geometry.  相似文献   

18.
Magnetic field fluctuations have been recorded by an array of portable three-component magnetometers at 60 sites across the Eyre Peninsula in South Australia between December 1993 and March 1995. An additional 54 magnetometer data records, collected prior to 1989 and described by Milligan (1989) and Milligan, White & Chamalaun (1989), were included in the analysis. A major conductive feature in the crust, first noted by White & Milligan (1984) as the Eyre Peninsula Anomaly (EPA), is re-examined to assess its continuity to the north of the original arrays and to investigate its relationship with major tectonic features.
Magnetic-field time-series were converted to induction arrows in the frequency domain. These induction arrows were initially inverted using the minimum-structure 2-D Occam approach to estimate the electrical conductance of the crust. Following this, thin-sheet forward modelling was used to examine the relationship between the conductance and the dominant tectonic features. The principal results of the modelling are that a narrow conductive feature extends inland from the coast about 160 km before terminating, and the conductance is in the range 3000 to 10 000 S, which decreases inland.
A strong correlation exists between the electrical conductance of the Eyre Peninsula and Bouguer gravity anomalies, and in particular the EPA is coincident with a significant Bouguer gravity gradient. There is also good agreement between the locations of the foci of earthquakes of magnitude greater than 4.0 and the EPA. We believe that the anomaly is associated with a geological fracture in the Precambrian upper crust as a result of crustal extension prior to the rifting of Australia from Antarctica in the Jurassic (160 Ma).  相似文献   

19.
Janecke  McIntosh  & Good 《Basin Research》1999,11(2):143-165
We examine the basin geometry and sedimentary patterns in the Muddy Creek half graben of south-west Montana by integrating geological mapping, structural and basin analysis, 40Ar/39Ar geochronology, biostratigraphy and reflection seismic data. The half graben formed in late Middle Eocene to early Oligocene (?) time at the breakaway of a regional, WSW-dipping detachment system. Although the structure of the half graben is that of a supradetachment basin, facies patterns and basin architecture do not conform to a recent model for extensional basins above detachment faults. The border fault, the Muddy Creek fault system, consists of three en echelon, left-stepping normal faults separated by two relay ramps. The fault steepens southward toward each en echelon step, ranges in dip from 8 to 60° near the surface, but flattens at depths between 0 and 3 km. A broad ENE-plunging displacement-gradient syncline defines the central part of the half graben and is flanked by narrow SE-and NE-plunging anticlines to the north and south. Fine-grained deposits of the syntectonic basin-fill are thickest in the central syncline and interfinger with footwall-derived conglomerate near the adjacent anticlines. These facies patterns suggest that folding was coeval with extension and sedimentation in the half graben. Pre-extensional volcanic rocks and interbedded conglomerate filled a major ESE-trending palaeovalley along the future axis of the Muddy Creek half graben. Synextensional sedimentary deposits include lacustrine and paludal shale, mudstone and sandstone ponded in the centre of the half graben, and a narrow (typically <1.5 km wide) fringe of coarse alluvial-fan and fan-delta conglomerate and sandstone derived from the footwall. Angular unconformities and rock-slide deposits occur only locally within the syntectonic sequence. These facies patterns agree well with the half-graben depositional model of Leeder & Gawthorpe but not with a more recent supradetachment basin model of Friedmann & Burbank despite the demonstrably low dip-angle of the basin-bounding normal fault. These data show that it may not be possible to differentiate between supradetachment basins and half graben with steeper border faults using the architecture of the associated basin-fill deposits.  相似文献   

20.
Seismic reflection profiles and well data are used to determine the Cenozoic stratigraphic and tectonic development of the northern margin of the South China Sea. In the Taiwan region, this margin evolved from a Palaeogene rift to a latest Miocene–Recent foreland basin. This evolution is related to the opening of the South China Sea and its subsequent partial closure by the Taiwan orogeny. Seismic data, together with the subsidence analysis of deep wells, show that during rifting (~58–37 Ma), lithospheric extension occurred simultaneously in discrete rift belts. These belts form a >200 km wide rift zone and are associated with a stretching factor, β, in the range ~1.4–1.6. By ~37 Ma, the focus of rifting shifted to the present‐day continent–ocean boundary off southern Taiwan, which led to continental rupture and initial seafloor spreading of the South China Sea at ~30 Ma. Intense rifting during the rift–drift transition (~37–30 Ma) may have induced a transient, small‐scale mantle convection beneath the rift. The coeval crustal uplift (Oligocene uplift) of the previously rifted margin, which led to erosion and development of the breakup unconformity, was most likely caused by the induced convection. Oligocene uplift was followed by rapid, early post‐breakup subsidence (~30–18 Ma) possibly as the inferred induced convection abated following initial seafloor spreading. Rapid subsidence of the inner margin is interpreted as thermally controlled subsidence, whereas rapid subsidence in the outer shelf of the outer margin was accompanied by fault activity during the interval ~30–21 Ma. This extension in the outer margin (β~1.5) is manifested in the Tainan Basin, which formed on top of the deeply eroded Mesozoic basement. During the interval ~21–12.5 Ma, the entire margin experienced broad thermal subsidence. It was not until ~12.5 Ma that rifting resumed, being especially active in the Tainan Basin (β~1.1). Rifting ceased at ~6.5 Ma due to the orogeny caused by the overthrusting of the Luzon volcanic arc. The Taiwan orogeny created a foreland basin by loading and flexing the underlying rifted margin. The foreland flexure inherited the mechanical and thermal properties of the underlying rifted margin, thereby dividing the basin into north and south segments. The north segment developed on a lithosphere where the major rift/thermal event occurred ~58–30 Ma, and this segment shows minor normal faulting related to lithospheric flexure. In contrast, the south segment developed on a lithosphere, which experienced two more recent rift/thermal events during ~30–21 and ~12.5–6.5 Ma. The basal foreland surface of the south segment is highly faulted, especially along the previous northern rifted flank, thereby creating a deeper foreland flexure that trends obliquely to the strike of the orogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号