首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observations of the variations in the vertical component of the atmospheric electric field (E z ) at Swider midlatitude Poland observatory (geomagnetic latitude 47.8°) under the conditions of fair weather during 14 magnetic storms have been analyzed. The effect of the magnetic storm main phase in the daytime midlatitude variations in E z in the absence of local geomagnetic disturbances has been detected for the first time. Considerable (~100–300 V m?1) decreases in the electric field strength (E z ) at Swider observatory were observed in daytime simultaneously with the substorm onset in the nighttime sector of auroral latitudes (College observatory). The detected effects indicate that an intensification of the interplanetary electric field during the magnetic storm main phase, the development of magnetospheric substorms, and precipitation of energetic electrons into the nighttime auroral ionosphere can result in considerable disturbances in the midlatitude atmospheric electric field.  相似文献   

2.
ELF magnetic field measurements from 10 to 135 Hz at Arrival Heights, Antarctica, are used as a proxy measure of global cloud-to-ground lightning activity. Simultaneous hourly recordings of the atmospheric electric field on the surface of the Earth at South Pole during December 1992 make possible a detailed comparison between global cloud-to-ground lightning activity and the atmospheric electric field. Although the mean diurnal variation of the ELF magnetic field and the atmospheric electric field exhibit a remarkable similarity in shape and phase, the hourly departures from their mean diurnal variations are poorly correlated. We quantify the variability of the atmospheric electric field which can be explained by global cloud-to-ground lightning activity through linear regression analysis. To estimate an accuracy of this method, it is applied to simultaneous measurements of the ELF magnetic field at Søndrestrømfjord, Greenland, for comparison. The resulting hourly contribution of global cloud-to-ground lightning activity to the atmospheric electric field in the Antarctic during December 1992 is ∼40±10%, and the contribution of global cloud-to-ground lightning activity to hourly departures from the mean diurnal variation of the atmospheric electric field is ∼25±10%.  相似文献   

3.
Recently published results of field and laboratory experiments on the seismic/acoustic response to injection of direct current(DC) pulses into the Earth crust or stressed rock samples raised a question on a possibility of electrical earthquake triggering. A physical mechanism of the considered phenomenon is not clear yet in view of the very low current density(10~(-7)–10~(-8) A/m~2) generated by the pulsed power systems at the epicenter depth(5–10 km) of local earthquakes occurred just after the current injection. The paper describes results of laboratory‘‘earthquake' triggering by DC pulses under conditions of a spring-block model simulated the seismogenic fault. It is experimentally shown that the electric triggering of the laboratory ‘‘earthquake'(sharp slip of a movable block of the spring-block system) is possible only within a range of subcritical state of the system, when the shear stress between the movable and fixed blocks obtains 0.98–0.99 of its critical value. The threshold of electric triggering action is about 20 A/m~2 that is 7–8 orders of magnitude higher than estimated electric current density for Bishkek test site(Northern Tien Shan, Kirghizia) where the seismic response to the man-made electric action was observed. In this connection, the electric triggering phenomena may be explained by contraction of electric current in the narrow conductive areas of the faults and the corresponding increase in current density or by involving the secondary triggering mechanisms like electromagnetic stimulation of conductive fluid migration into the fault area resulted in decrease in the fault strength properties.  相似文献   

4.
Summary The possibility of atmospheric electrical effects due to the aurora has been considered by investigators since 1875. An unsatisfactory theoretical basis for an explanation of observed effects and the measurements of only a few of the related parameters for short periods of time has led to uncertainty in the matter. Nevertheless, since the IGY2), new discoveries related to the aurora portray an unusual complexity, and a wide range of energy input. When considered with recent discussions on atmospheric electrification some interesting interpretations of the observed effects are suggested. On the ground, large negative excursions of the atmospheric electric field (E) during fair weather, and above 100 mb3) peculiar increases in negative ion densities and variations in air-earth current density (I) all appear to be related to auroral activity. A difference in (I) measured simultaneously at geomagnetic latitudes 55° and 68°N which is greater than what one would expect from a difference in conductivity due to cosmic rays may also be due to the aurora. Several models of the observed effects will be considered: (1) the high influx of negative space charge, i.e. a precipitation of around 1014 elementary charges m–2 s–1; (2) the auroral bremsstrahlung flux acts as an atmospheric current generator; (3) plasma instability in the auroral electrojet; (4) a combination of (2) and (3). The infrequent observation of the auroral effects on atmospheric electricity is probably due to limitations in detecting an extreme local fluctuation in such a large-scale complex phenomenon.  相似文献   

5.
The natural spectrum of electromagnetic variations surrounding Earth extends across an enormous frequency range and is controlled by diverse physical processes. Electromagnetic (EM) induction studies make use of external field variations with frequencies ranging from the solar cycle which has been used for geomagnetic depth sounding through the 10\(^{-4}\)–10\(^4\) Hz frequency band widely used for magnetotelluric and audio-magnetotelluric studies. Above 10\(^4\) Hz, the EM spectrum is dominated by man-made signals. This review emphasizes electromagnetic sources at \(\sim\)1 Hz and higher, describing major differences in physical origin and structure of short- and long-period signals. The essential role of Earth’s internal magnetic field in defining the magnetosphere through its interactions with the solar wind and interplanetary magnetic field is briefly outlined. At its lower boundary, the magnetosphere is engaged in two-way interactions with the underlying ionosphere and neutral atmosphere. Extremely low-frequency (3 Hz–3 kHz) electromagnetic signals are generated in the form of sferics, lightning, and whistlers which can extend to frequencies as high as the VLF range (3–30 kHz).The roughly spherical dielectric cavity bounded by the ground and the ionosphere produces the Schumann resonance at around 8 Hz and its harmonics. A transverse resonance also occurs at 1.7–2.0 kHz arising from reflection off the variable height lower boundary of the ionosphere and exhibiting line splitting due to three-dimensional structure. Ground and satellite observations are discussed in the light of their contributions to understanding the global electric circuit and for EM induction studies.  相似文献   

6.
Data from the VLF Doppler experiment at Faraday, Antarctica (65○ S, 64○ W) are used to study the penetration of the high-latitude convection electric field to lower latitudes during severely disturbed conditions. Alterations of the electric field at L-values within the range 2.0 - 2.7 are studied for two cases at equinox (10 - 12 September 1986 and 1 - 3 May 1986). The recovery of the electric field is found to be approximately an exponential function of time. Values for the equatorial meridional E×B drift velocity, inferred from the data, are used as inputs to a model of the plasmasphere and ionosphere. The model and experimental results are used to investigate the post-storm alteration of ionospheric coupling processes. The magnitude of the effect of ionosphere-plasmasphere coupling fluxes on NmF2 values and the O+-H+ transition height is dependent on the local time of storm commencement, and on the orientation of the electric field. The coupling fluxes appear to have a maximum influence on ionospheric content during the main phase of geomagnetic activity that produces outward motion of plasmaspheric whistler ducts.  相似文献   

7.
A possible mechanism of earthquake triggering by ionizing radiation of solar flares is considered. A theoretical model and results of numerical calculations of disturbance of electric field, electric current, and heat release in lithosphere associated with variation of ionosphere conductivity caused by absorption of ionizing radiation of solar flares are presented. A generation of geomagnetic field disturbances in a range of seconds/tens of seconds is possible as a result of large-scale perturbation of a conductivity of the bottom part of ionosphere in horizontal direction in the presence of external electric field. Amplitude-time characteristics of the geomagnetic disturbance depend upon a perturbation of integral conductivity of ionosphere. Depending on relation between integral Hall and Pedersen conductivities of disturbed ionosphere the oscillating and aperiodic modes of magnetic disturbances may be observed. For strong perturbations of the ionosphere conductivities amplitude of pulsations may obtain ~102 nT. In this case the amplitude of horizontal component of electric field on the Earth surface obtains 0.01 mV/m, electric current density in lithosphere –10–6 A/m2, and the power density of heat release produced by the generated current is 10–7 W/m3. It is shown that the absorption of ionizing radiation of solar flares can result in variations of a density of telluric currents in seismogenic faults comparable with a current density generated in the Earth crust by artificial pulsed power systems (geophysical MHD generator " Pamir-2” and electric pulsed facility " ERGU-600”), which provide regional earthquake triggering and spatiotemporal variation of seismic activity. Therefore, triggering of seismic events is possible not only by man-made pulsed power sources but also by the solar flares. The obtained results may be a physical basis for a novel approach to solve the problem of short-term earthquake prediction based on electromagnetic triggering phenomena.  相似文献   

8.
9.
The inductive response of a conducting horizontal cylinder embedded in a uniform earth is studied using numerical results obtained for an analytical solution for the problem of a conducting cylinder buried in a homogeneous earth for the case of a uniform inducing field. A check of the validity of the numerical results is made by a comparison with analogue model measurements for a number of cases. Numerical results for a range of cylinder radii (a = 1–10 km), depths of burial (d= 0–4 km), conductivity contrasts (σ2= 10?2-10 Sm?1), and source frequencies (f= 10?1-10?4 Hz) of interest in the interpretation of magnetotelluric field measurements are presented. The results indicate that for a uniform inducing field the conductivity and depth of burial of a horizontal cylindrical inhomogeneity are best determined through a measurement of the amplitudes Hy, Hz and Ex and the phases φy and Ψx.  相似文献   

10.
A 54.95-MHz coherent backscatter radar, an ionosonde and the magnetometer located at Trivandrum in India (8.5○N, 77○E, 0.5○N dip angle) recorded large-amplitude ionospheric fluctuations and magnetic field fluctuations associated with a Pc5 micropulsation event, which occurred during an intense magnetic storm on 24 March 1991 (Ap=161). Simultaneous 100-nT-level fluctuations are also observed in the H-component at Brorfelde, Denmark (55.6○N gm) and at Narsarsuaq, Greenland (70.6○N gm). Our study of the above observations shows that the E-W electric field fluctuations in the E- and F-regions and the magnetic field fluctuations at Thumba are dominated by a near-sinusoidal oscillation of 10 min during 1730–1900 IST (1200-1330 UT), the amplitude of the electric field oscillation in the equatorial electrojet (EEJ) is 0.1-0.25 mV m−1 and it increases with height, while it is about 1.0 mV m−1 in the F-region, the ground-level H-component oscillation can be accounted for by the ionospheric current oscillation generated by the observed electric field oscillation in the EEJ and the H-component oscillations at Trivandrum and Brorfelde are in phase with each other. The observations are interpreted in terms of a compressional cavity mode resonance in the inner magnetosphere and the associated ionospheric electric field penetrating from high latitudes to the magnetic equator.  相似文献   

11.
— Atmospheric particulate concentration for total suspended particles (TSP) and for PM10 (particulate matter under 10 micron) was measured in Jalan Braga and ITB campus, Bandung. Six samples were collected over one- or two-day time periods using High Volume Sampler (HVS) for TSP and Low Volume Sampler (LVS) or Anderson Cascade Impactor for PM10. Samples were further analyzed to determine concentrations of metals, sulfate and nitrate. Concentration of NOx (NO and NO2) was also measured hourly and simultaneously during the sampling period. The results from this study show that the atmospheric particulate concentration in Jalan Braga for TSP ranged from 304.04 to 363.17, and for PM10 concentration ranged from 277.02 to 336.44 μg/m3. The lead concentrations were 1.42–2.37 μg/m3 in the TSP and 0.81–1.57 μg/m3 in the PM10. The nitrate concentrations were 5.89–6.51 μg/m3 and 2.27–3.45 μg/m3 for the TSP and PM10, respectively. The hourly NOx concentration varied between 0.14–0.35 ppm. The total elements (metals, sulfate and nitrate) found in the samples contribute from 20 to 25% of the total particulate concentration.  相似文献   

12.
During the past 3 years, major advances in the magnetotelluric technique have improved the quality of magnetotelluric data to the point where random errors in the impedance tensor and tipper are generally smaller than the uncertainty in their interpretation. The major factor in this improvement has been the introduction of the remote-reference technique, although the use of ultrasensitive magnetometers and minicomputers for in-field data processing has also been important. After a review of the remote-reference technique, this paper describes the equipment and procedures used for remote-reference magnetotellurics by the authors. Magnetometers using d.c. Superconducting Quantum Interference Devices typically have a sensitivity of 10?14 T Hz?1/2, a dynamic range of 107 in a 1 Hz bandwidth, and a slewing rate of 3 × 10?5.T s?1 at 10 kHz. The electric field measurements use conventional Cu-CuSO4 electrodes. The remote magnetic reference signals are transmitted to the base station using FM analog telemetry. The data are collected and processed by a minicomputer based on an LSI-11 microprocessor; the essential results—for example, the apparent resistivities and the tipper components, with their probable errors—are available in the field. Practical details are given of the handling of superconducting devices, low temperature cryostats and liquid helium in the field. Various spurious noise sources are mentioned, and techniques for minimizing their effects are described.  相似文献   

13.
Announcements     
Abstract

This paper investigates for a 25-year period the sediment distribution in a semi-arid Brazilian basin (2 × 104 km2) with a network containing more than 4000 surface reservoirs. The methodology is based on rating curves and fitted parameters derived from field data. The results showed that suspended load corresponded to 70% of the total sediment yield (148 t km-2 year-1). The relatively low contribution of the suspended load (compared with other semi-arid regions) was attributed to the impact of the numerous upstream reservoirs, which retained 235 t km-2 year-1. The micro (<1 hm3), small (1–10 hm3), medium-sized (10–50 hm3), and large or strategic (>50 hm3) reservoirs responded to, respectively, 5, 17, 30 and 48% of the total sediment retention by the reservoir network. This indicates that retention in the non-strategic reservoirs has a positive impact on water availability, since siltation of the strategic reservoirs would be expected to more than double if only such reservoirs existed.

Citation Lima Neto, I. E., Wiegand, M. C. &; de Araújo, J. C. (2011) Sediment redistribution due to a dense reservoir network in a large semi-arid Brazilian basin. Hydrol. Sci. J. 56(2), 319–333.  相似文献   

14.
Regular measurements of the atmospheric electric field made at Vostok Station (φ=78.45°S; λ=106.87°E, elevation 3500 m) in Antarctica demonstrate that extremely intense electric fields (1000–5000 V/m) can be observed during snow storms. Usually the measured value of the atmospheric electric field at Vostok is about 100–250 V/m during periods with “fair weather” conditions. Actual relation between near-surface electric fields and ionospheric electric fields remain to be a controversial problem. Some people claimed that these intense electric fields produced by snowstorms or appearing before strong earthquakes can re-distribute electric potential in the ionosphere at the heights up to 300 km. We investigated interrelation between the atmospheric and ionospheric electric fields by both experimental and theoretical methods. Our conclusion is that increased near-surface atmospheric electric fields do not contribute notably to distribution of ionospheric electric potential.  相似文献   

15.
The long-time practice of observational research on earthquake prediction has shown that the information on short-term and imminent earthquake precursors can hardly be detected, but it is very important for practical and effective earthquake prediction. The result of analysis and study in this paper has shown that the anomaly of quasi-static atmospheric electric field may be a kind of reliable information on short-term and imminent earthquake precursors. On such a basis, the 20 years’ continuous and reliable data of atmospheric electric field observed at the Baijiatuan seismic station are used to study the correlation between the anomalies in seismic activity and relative quiet periods bear on the occurrence of near earthquakes within 200 km range around Beijing after the Tangshan earthquake. The observational results recently reported before hand in written form and earthquakes that actually occurred in near field in corresponding time periods are compared and analyzed. The efficacy of these written prediction opinions about near earthquakes in the recent 10 years is tested. From the test results, the brilliant prospect that the anomaly of quasi-static atmospheric electric field may really become a reliable mark for making short-term and imminent earthquake predictions is discussed. Besides, as a preliminary step, some judgment indexes for predicting earthquakes by use of the observational data of atmospheric electric field before earthquakes are put forward. In the last part, it is pointed out that it would be possible to obtain more believable judgment indexes for determining the three elements of near earthquakes before greater earthquakes (M S≥5) only if a relatively reasonable station network (2–4 stations every 10 000 km2) is deployed and further investigation is made. Contribution No. 97A0040, Institute of Geophysics, State Seismological Bureau, China. This subject is sponsored by Program No. 95-04-05-01-04, State Seismological Bureau, China.  相似文献   

16.
Variations in the global atmospheric electric circuit are investigated using a wide range of globally spaced instruments observing VLF (∼10 kHz) waves, ELF (∼300 Hz) waves, Schumann resonances (4–60 Hz), and the atmospheric fair weather electric field. For the ELF/VLF observations, propagation effects are accounted for in a novel approach using established monthly averages of lightning location provided by the Lightning Image Sensor (LIS) and applying known frequency specific attenuation parameters for daytime/nighttime ELF/VLF propagation. Schumann resonances are analyzed using decomposition into propagating and standing waves in the Earth-ionosphere waveguide. Derived lightning activity is compared to existing global lightning detection networks and fair weather field observations. The results suggest that characteristics of lightning discharges vary by region and may have diverse effects upon the ionospheric potential.  相似文献   

17.
We perform spectral analysis of records of meteorological (temperature, humidity, pressure of the atmosphere) and electrical (strength of quasi-static electric field and electric conductivity of air) parameters observed simultaneously at the Paratunka observatory during the solar events of October 21–31, 2003. Also, we use simultaneous records of X-ray fluxes of solar radiation, galactic cosmic rays, and the horizontal component of the geomagnetic field. We show that the power spectra of the meteorological parameters under fine weather conditions involve oscillations with a period of thermal tidal waves (T ~ 12 and 24 h) caused by the influx of thermal radiation of the Sun. During strong solar flares and geomagnetic storm of October 29–31 with a prevailing component of T ~ 24 h, their spectra involve an additional component of T ~ 48 h (the period of planetary-scale waves). With the development of solar and geomagnetic activities, the power spectra of atmospheric electric conductivity and electric field stress involve components of both thermal tidal and planetary-scale waves, which vary highly by intensity. In the power spectra of galactic cosmic rays accompanying the strong solar flares, components with T ~ 48 h were dominant with the appearance of additional (weaker by intensity) components with T ~ 24 h. The simultaneous amplification of components with T ~ 48 h in the power spectra of electric conductivity and electric field strength provides evidence of the fact that the lower troposphere is mainly ionized by galactic cosmic rays during strong solar flares and geomagnetic storms. The specified oscillation period with T ~ 48 h in their spectra, as well as in the spectra of X-ray radiation of the sun, is apparently caused by the dynamics of solar and geomagnetic activities with this time scale.  相似文献   

18.
A very broad band (10?3 to 104 Hz) magnetotelluric investigation of the axial zone of the Ghoubbet-Asal rift (Djibouti) has revealed a shallow (2–4 km) magma chamber which can be mapped in some detail. The suggested roof of the chamber is shallowest very close to the Ardoukoba volcano which was built during the November 1978 rifting episode.  相似文献   

19.
The portable highly sensitive measuring station KVVN-7 has been designed. It enables us to perform frequency sounding with controllable sources and audio-magnetotelluric sounding in the field of natural variations in an electromagnetic field within one session. Signal recording is made by seven channels (three magnetic and four electric ones) in a broad frequency spectrum (0.1–2000 Hz) with elimination of frequencies on the edges of the set frequency range and in the odd harmonics of industrial frequency (up to the ninth harmonic). The station incorporates the system of band-stop filters and anti-alias filters at resistors having a low temperature coefficient of resistance (TCR is lower than 25 × 10−6 °C−1) and capacitors having a low temperature coefficient of capacity (TCC is lower than ±30 × 10−6 °C−1). Application of the KVVN-7 station allows the electric conductivity and fluid regime of the upper crust to be studied for both implementation of geological tasks and tasks related to electromagnetic monitoring of seismoactive zones in combination with seismic methods. The example of practical application of the KVVN-7 station in the Lovozero-Pulozero profile (Kola Peninsula) has been presented. A high effectiveness of a station has been demonstrated when study of a fluid-saturated layer with conductivity of a dilatancy-diffuse origin (“DD layer”) in the upper crust. The further perfection of the KVVN-7 measuring station is aimed at the design of a completely automated recording system through data recording to a built-in data medium (flash memory). Additionally, it is suggested to use a built-in analog-to-digital converter of high resolution (24 bit) for every channel in order to broaden the dynamical range of the station.  相似文献   

20.
The power spectra of time variations in the electric field strength in the near-Earth’s atmosphere and in the geomagnetic field horizontal component, which were simultaneously observed at the Paratunka observatory (φ = 52°58.3′ N; λ = 158°14.9′ E) in September 1999, have been studied. The periods of the day (including sunrise, sunset, and night) have been considered. It has been indicated that oscillations with periods T ~ 2.0–2.5 h are present in the power spectra of these parameters during the day. The intensity of these oscillations increases noticeably and the oscillations in the band of periods T < 1 h increase simultaneously in the field strength power spectra at sunrise. The variations in the argument of the cross-spectrum of these parameters indicated that oscillations in the 2.0–2.5 h period band are caused by sources that are located above the ionospheric dynamo region; at the same time, oscillations in the 0.5–1 h period band are caused by sources in the lower atmosphere. A possible mechanism by which these oscillations are generated, related to the vortex motion of convective cells that originate at sunrise in the boundary atmospheric layer, is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号