首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dynamics of energetic electrons (E e =0.17–8 MeV) and protons (E p =1 MeV) of the outer radiation belt during the magnetic storm of May 15, 2005, at high (GOES-10 and LANL-84 geosynchronous satellites) and low (Meteor-3M polar satellite) altitudes is analyzed. The data have been compared to the density, plasma velocity, solar wind, and magnetic field measurements on the ACE satellite and geomagnetic disturbances. During the magnetic storm main phase, the nighttime boundary of the region of trapped radiation and the center of westward electrojet shifted to L ~ 3. Enhancements of only low-energy electrons were observed on May 15, 2005. The belt of relativistic electrons with a maximum at L ~ 4 was formed during the substorm, the amplitude of which reached its maximum at ~0630 UT on May 16. The results are in good agreement with the regularity relating the position of a maximum of the new relativistic electron belt, boundaries of the trapped radiation region, and extreme low-latitude position of westward electrojet center to the Dst variation amplitude.  相似文献   

2.
In this work, the results of comparative analysis of morphological regularities of right-polarized (R type) and left-polarized (L type) isolated bursts of ipcl pulsations (irregular pulsations continuous long period) with an anomalously large amplitude in the region of the daytime polar cusp, as well as conditions of their excitation, are presented. It has been found that R and L bursts are similar in the maximum amplitude level, wave packet duration, spectral composition, magnitude of ellipticity, diurnal variation shape, and other characteristics. At the same time, bursts of the R and L type are excited at different degrees of plasma turbulence in the generation region, at different IMF orientations in the plane of ecliptic, as well as in the plane perpendicular to it, and at different dynamics of the parameter β (characterizing the ratio of the thermal pressure to the magnetic pressure) and Alfvén Mach number Ma. It is supposed that the generation of isolated bursts of the R and L types can be related to the amplification of the plasma turbulence level due to the development of wind instability at the front boundary of the magnetosphere, and features of their polarization can be interpreted in the scope of the model of nonlinear propagation of Alfvén waves.  相似文献   

3.
Increases in solar protons and variations in the electron and proton fluxes from the outer radiation belt are studied based on the GLONASS satellite measurements (the circular orbit at an altitude of ~20000 km with an inclination of ~65°) performed in December 2006. Indications in the channels, registered protons with energies of Ep = 3–70 MeV and electrons with energies of Ee > 0.04 and >0.8 MeV, are analyzed. The data on electrons with Ee = 0.8–1.2 MeV, measured on the Express-A3 geostationary satellite, are also presented. Before the strong magnetic storm of December 14 (|Dst|max = 146 nT), the maximum of the outer belt electrons with the energy >0.7 MeV was observed at L ~ 4.5. After the storm, the fluxes of these electrons increased by more than an order of magnitude as compared to the prestorm level, and the maximum of a “new” belt shifted to L < 4 (minimal L reached by the GLONASS orbit). Under quiet geomagnetic conditions, solar protons with the energies >3 MeV fill only high-latitude legs of the GLONASS orbit. During the strong magnetic storm of December 15, the boundary of proton penetration into the magnetosphere almost merged with the orbital maximum of the proton radiation belt.  相似文献   

4.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   

5.
利用大约15个月的CRRES卫星MEA能量电子观测数据,分别在地磁活动平静(0≤Kp<3)、中等(3≤Kp≤6)及强烈(6<Kp≤9)的条件下,选取电子能量为148 keV,509 keV,1090 keV,1581 keV的辐射带能量电子通量进行统计分析,得到了不同地磁活动条件下地球辐射带高能电子通量在(L,MLT)...  相似文献   

6.
Based on data of the NOAA POES satellite, the global distribution of the occurrence rate of precipitations of energetic protons (E > 30 keV) equatorward of the boundary of isotropic fluxes has been constructed for the first time. It has been shown that the occurrence rate of proton precipitations inside the zone of anisotropic fluxes is maximum in daytime hours (1100–1600 MLT) at latitudes L = 6–9 and decreases in evening and morning hours. Comparison of the obtained results about proton precipitations with the spatial distribution of the occurrence rate of electromagnetic ion–cyclotron (EMIC) waves in the equatorial magnetosphere according to results of satellite observations demonstrates a close relationship between them. This corroborates that precipitations of energetic protons equatorward of the boundary of isotropic fluxes are a consequence of the development of the ion–cyclotron instability in the equatorial magnetosphere.  相似文献   

7.
Fine structured multiple-harmonic electromagnetic emissions at frequencies around the equatorial oxygen cyclotron harmonics are observed by Van Allen Probe A outside the core plasmasphere(L~5) off the magnetic equator(MLAT~.7.5°)during a geomagnetic storm. We find that the multiple-harmonic emissions have power spectrum density(PSD) peaks during 2–8equatorial oxygen gyroharmonics( f ~ n fO+, n=2–8), while the fundamental mode(n=1) is absent, implying that the harmonic waves are generated near the equator and propagate into the observation region. Additionally, these electromagnetic emissions are linearly polarized. Different from the equatorial noise emission that propagates considerably obliquely, these emissions have moderate wave normal angles(approximately 40°–60°), which predominately increase as the harmonic number increases.Considering their frequency and wave normal angle characteristics, it is suggested that these multiple-harmonic emissions play an important role in the dynamic variation of radiation belt electrons.  相似文献   

8.
The comparison of selected cases of polarization jet observation at ground stations and measurements of energetic ions at the AMPTE/CCE satellite shows that these phenomena occur simultaneously and on the same L shells. Polarization jet observations at DMSP satellites make it possible to statistically determine the dependence of its equatorial boundary position on the AE-index value. It is also shown that, in the case of isolated magnetic disturbances, the position of the inner boundary of injection of energetic ions measured at the AMPTE/CCE satellite depends on the AE index. It was found that the dependences of both boundaries on the AE index match over a wide range of AE variations. This is evidence that the equatorial boundary polarization jet band and the inner boundary of the injection of energetic ions are physically interconnected and are formed on the same L shells during substorms.  相似文献   

9.
Geomagnetism and Aeronomy - The spatial distribution and dynamics of subrelativistic electron fluxes (from tens to hundreds of keV) were studied in a space experiment onboard the Vernov satellite....  相似文献   

10.
The features of daytime high-latitude geomagnetic variations and geomagnetic pulsations in the Рс5 range during the recent, large, two-stage magnetic storm of September 7–8, 2017 are studied. The discussed disturbances were observed at the recovery phase of the first stage of the storm after the interplanetary magnetic field (IMF) turned northward. It is shown that the large sign-alternating variations in Ву and Bz components of the IMF caused intense geomagnetic disturbances up to 300–400 nT with a quasi-period of ~20 min in the daytime sector of polar latitudes, probably in the region of the daytime polar cusp. These disturbances may have reflected quasi-period motions of the daytime magnetopause and may have resulted from nonlinear transformation of the variations in the interplanaterary magnetic field in the magnetosheath or in the magnetospheric entry layers. The appearance of high-latitude long-period variations was accompanied by the excitation of bursts (wave packets) of geomagnetic Pc5 pulsations. The onset of Pc5 pulsation bursts often coincided with a sudden northward turn of the IMF. It was discovered for the first time that the development of a “daytime polar substorm,” i.e., a negative magnetic bay in the daytime sector of polar latitudes, led to a sudden termination of the generation of geomagnetic Pc5 pulsations over the entire latitude range in which these oscillations were recorded before the appearance of the daytime bay.  相似文献   

11.
An abrupt change in the latitudinal profile of energetic electrons in the Earth’s outer radiation belt during magnetic storms is explained in many publications by a loss of electrons at L = 4–7 resulting from their departure to the atmosphere or to the magnetopause. In the present work, the loss of electrons is explained primarily by adiabatic transformation of the magnetic drift trajectories. For this purpose, the effect of dawnto- dusk asymmetry measured by low-orbit SERVIS-1 and KORONAS-F satellites is involved.  相似文献   

12.
With the medians of the E-layer critical frequency foE measured at Resolute Bay and Casey ionospheric stations located in the polar caps of the Northern and Southern Hemispheres, it is found that these medians are higher at the nighttime hours (2100–0300 LT) in the local winter than in local summer. For Resolute Bay station, which is located above the Arctic Circle, the latter means that the foE median is higher at polar night than at polar day. Thus, the effect of a winter anomaly in the foE median in the nighttime polar cap is detected. The amplitude of that anomaly (the ratio of the local winter foE values to local summer values) could reach 15–20% and 10–15% for Resolute Bay and Casey stations, respectively. It is assumed that the winter anomaly in the foE median in the nighttime polar cap is caused by the winter–summer asymmetry in the accelerated electron energy fluxes precipitating into this region.  相似文献   

13.
The results of studying the intensity of fluxes of 30–80 keV ions from the data of measurements of the NOAA (POES) sun-synchronous satellites during geomagnetic storms of different intensity are presented. For 15 geomagnetic storms with |Dst|max from ~37 to ~422 nT, the storm-time maximum ion fluxes in the near-equatorial region (trapped particles) and at high latitudes (precipitating particles) have been considered. It is shown that the maximum fluxes of trapped particles, which are considered a ring-current proxy, increase with the storm power. In this case, if a smooth growth of fluxes is recorded for storms with |Dst|max < 250 nT in the near-equatorial region, a significantly steeper growth of fluxes of trapped particles is observed when storm power increases during storms with |Dst|max > 250 nT. This may be evidence of both an increasing of the contribution of the ring current relative to magnetotail currents to the development of high-intensity storms and to a nonlinear link between the ring current and ion fluxes at low altitudes in the near-equatorial region. Despite large variations in fluxes of precipitating particles in the polar region above the boundary of isotropization, a decreasing tendency, as a whole, in fluxes of these particles is observed with increasing the storm intensity. This is the evidence of the effect of saturation of magnetotail currents and of an increase in the relative role of the ring current during strong magnetic storms.  相似文献   

14.
The characteristics and interplanetary excitation conditions of isolated bursts of Pi2 geomagnetic pulsations observed during the development of magnetospheric substorms (substorm Pi2) and in its absence (nonsubstorm Pi2) on the night side of the Earth are comparatively analyzed. It is shown that, regardless of the local time and season, the amplitude of isolated Pi2 substorm bursts is always higher than that of the nonsubstorm ones, and the periods and duration of the wave packets of substorm Pi2 bursts are less than those of nonsubstorms. Diurnal and seasonal variations in the characteristics of the two groups of Pi2 bursts differ in the form and position of maxima and minima. It is found that the start of excitation of isolated Pi2 bursts, during substorms and in its absence, is controlled by the preferred direction of the interplanetary magnetic field (IMF) vector perpendicular to the Sun–Earth line (angle θxB = arccos(Bx/B) → 90°). It is assumed that isolated Pi2 bursts of both groups are triggered by reorientation of the IMF vector in the ecliptic plane and the plane perpendicular to it ~15 min before their onset. The most likely source of midlatitude isolated Pi2 bursts during substorm development and in its absence are bursty bulk flows (BBFs) in the plasma sheet of the magnetospheric tail, the regularities of which coincide in many respects with the observed features of Pi2 bursts.  相似文献   

15.
Radio sounding of midlatitude ionosphere shows that natural small-scale electron density irregularities in the F region are cross-field anisotropic. The orientation of the cross-field anisotropy is different under different geophysical conditions. The cross-field anisotropy orientation is matched with the horizontal wind direction calculated within the HWM07 model for each event. It is ascertained that natural irregularities in a plane perpendicular to the magnetic field are stretched along the horizontal wind direction under different geophysical conditions.  相似文献   

16.
The dynamics (from rotation to rotation) of the absolute values of the large-scale open solar magnetic field fluxes in the four-sector field structure has been considered for the first time, using CRs 2032–2035 in July–October 2005 as examples. An important role of the ratio of the fluxes at the eastern and western sector boundaries (Φ E W ) is confirmed. As in the cases of the two-sector structure, Φ E W > 1 is typical of active rigidly corotating boundaries with intense sunspot formation, flares, and interplanetary and geomagnetic disturbances. A remarkable property of the considered structure was the presence of a rapidly increasing flux in an initially narrow sector and the flux interaction with a stable rigidly corotating sector in the zone of the main active longitudes, which caused an unexpectedly strong geoeffective long-range action of flares near the corresponding active boundary.  相似文献   

17.
The radiation belt dynamics during the extreme solar events in November 2004 and January 2005 is studied based on the measurements of relativistic electrons (with energies of 0.8–8 MeV) on the Express-A2 geostationary satellite and Meteor-3M polar satellite. New radiation belts of relativistic electrons in the space (L ~ 3) between the stationary outer and inner belts were formed as a result of either superstorm (|Dst|max = 373 and 289 nT). The position of the maximums of these belts (L max = 2.9 and 3.1) coincides with the known dependence of L max on the magnetic storm Dst variation amplitude: |Dst|max = 2.75 × 104/L max 4 . In November–December the new belt very slowly (ΔL ~ 0.1 per month) shifted toward the Earth. During the series of moderate (~100 nT) magnetic storms that developed as a result of the extreme solar events in January 2005, the belt in the space shifted toward deeper L shells (L ~ 2.5). The moderate January storms produced new belts with L max ≥ 4.  相似文献   

18.
Variations of electron fluxes with energies 300–600 keV in the region of quasitrapping are analyzed using data of the low orbiting Coronas-F satellite. Enhancements in the electron fluxes with energies above 300 keV are observed at the polar boundary of the outer radiation belt. Meteor-3M satellite data, OVATION and AP models of the position of the auroral oval are used to determine the position of analyzed increases in the energetic electrons with respect to the position of the auroral oval. There is a significant number of events when these increases were observed at a few consequent orbits crossing the outer radiation belt boundary. Studied increases in relativistic electron fluxes are localized at the latitudes of the auroral oval. Different mechanisms of formation of observed enhancements are discussed. The possibility of the appearance of increases due to formation of local particle traps is analyzed using Tsyganenko geomagnetic field models. The role of the formation of local particle traps at the boundary of the outer radiation belt and its possible influence to the formation of the outer radiation belt is discussed.  相似文献   

19.
The observations of the state of the midlatitude ionospheric D region during the March 29, 2006, solar eclipse, based on the measurements of the characteristics of partially reflected HF signals and radio noise at a frequency of f = 2.31 MHz, are considered. It has been established that the characteristic processes continued for 2–4 h and were caused mainly by atmospheric gas cooling, decrease in the ionization rate, and the following decrease in the electron density. An increase in the electron density on average by 200–250% approximately 70–80 min after the eclipse beginning at altitudes of 90–93 km and approximately 240 min after the end of the solar eclipse at altitudes of 81–84 km, which lasted about 3–4 h, has been detected experimentally. This behavior of N is apparently caused by electron precipitation from the magnetosphere into the atmosphere during and after the solar eclipse. Based on this hypothesis, the fluxes of precipitating electrons (about 107–108 m?2s?1) have been estimated using the experimental data.  相似文献   

20.
Comprehensive records are available in ENA data of ring current activity recorded by the NUADU instrument aboard TC-2 on 15 May, 2005 during a major magnetic storm(which incorporated a series of substorms). Ion fluxes at 4-min temporal resolution derived from ENA data in the energy ranges 50–81 and 81–158 ke V are compared with in situ particle fluxes measured by the LANL-SOPA instruments aboard LANL-01, LANL-02, LANL-97, and LANL-84(a series of geostationary satellites that encircle the equatorial plane at ~6.6 R_E). Also, magnetic fields measured simultaneously by the magetometers aboard GOES-10 and GOES-12(which are also geostationary satellites) are compared with the particle data. It is demonstrated that ion fluxes in the ring current were enhanced during geomagnetic field tailward stretching in the growth phases of substorms rather than after Earthward directed dipolarization events. This observation, which challenges the existing concept that ring current particles are injected Earthward from the magnetotail following dipolarization events, requires further investigation using a large number of magnetic storm events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号