首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The challenges of ‘standard’ model of solar flares motivated by new observations with the spacecrafts and ground-based telescopes are presented. The most important problems are in situ heating of photospheric and chromospheric loop footpoints up to the coronal temperatures without precipitating particle beams accelerated in the corona, and the sunquakes which are unlikely to be explained by the impact of highenergy particles producing hard X-ray emission. There is also the long-standing ‘number problem’ in the physics of solar flares. It is shown that modern observations favored an important role of the electric currents in the energy release processes in the low solar atmosphere. Particle acceleration mechanism in the electric fields driven by the magnetic Rayleigh-Taylor instability in the chromosphere is proposed. The electric current value I ≥ 1010 A, needed for the excitation of super-Dreicer electric fields in the chromosphere is determined. It is shown that both Joule dissipation of the electric currents and the particles accelerated in the chromosphere can be responsible for in situ heating of the low solar atmosphere. Alternative model of the solar flare based on the analogy between the flaring loop and an equivalent electric circuit which is good tool for the electric current diagnostics is presented. Interaction of a current-carrying loop with the partially-ionized plasma of prominence in the context of particle acceleration is considered. The role of plasma radiation mechanism in the sub-THz emission from the chromosphere is discussed.  相似文献   

2.

A new exact analytical solution of the magnetohydrostatic problem describes the equilibrium of a solitary, dense-cool solar filament maintained against the gravity by magnetic force in hot solar corona at heights up to 20–40 Mm. The filament is assumed to be uniform along the axis (the translation symmetry). The magnetic field of the filament has the helical structure (magnetic flux rope) with a typical strength of a few Gauss in the region of minimal temperature (about 4000 K). The model can be applied to the quiescent prominence of both normal and inverse magnetic polarity.

  相似文献   

3.
With one example of a coronal mass ejection observed with SOHO/EIT and LASCO we demonstrate the main characteristic of this kind of event: its flux rope nature. These events are commonly responsible for magnetic clouds approaching the Earth. Near the solar surface, the different structures expected during the ejection of a flux rope are observed: post flare loops located under the flux rope, a prominence lying at its lower part, a coronal void located at its upper part. Two additional structures are observed in coronal emission: a bright loop possibly located at the leading edge of the flux rope and a bright front located near the equator and moving along the solar limb. These structures may correspond to the compression of material while the flux rope expands. Finally, the deviation of these structures toward the equator is observed, providing the possible explanation of the discrepancy of the location of the activity in the low corona and in the high corona during the minimum of solar cycle activity.  相似文献   

4.
The electrodynamic flare model is based on numerical 3D simulations with the real magnetic field of an active region. An energy of ∼1032 erg necessary for a solar flare is shown to accumulate in the magnetic field of a coronal current sheet. The thermal X-ray source in the corona results from plasma heating in the current sheet upon reconnection. The hard X-ray sources are located on the solar surface at the loop foot-points. They are produced by the precipitation of electron beams accelerated in field-aligned currents. Solar cosmic rays appear upon acceleration in the electric field along a singular magnetic X-type line. The generation mechanism of the delayed cosmic-ray component is also discussed.  相似文献   

5.
The magnetic field intensity in the limb solar flare of July 19, 2012, was measured by the Zeeman bisector splitting in the H α line. An average magnetic field is established to attain 200 G at a measurement error of ±100 G in the top of a radiant flare loop at a height of about 40 Mm. The confinement of a strong magnetic field in the high coronal arcade at a relatively weak external field of the corona (about 1–2 G) is considered using a model of a force-free magnetic flux rope with a fine magnetic structure at a scale of about 300 km.  相似文献   

6.
丁健  李毅  王水 《地球物理学报》2006,49(4):936-942
观测表明耀斑中电子加速发生在软X射线耀斑环上方的磁重联区域.在重联电流片中被super Dreicer电场直接加速似乎是产生能量在10keV~10MeV之间高能电子的最直接的方式.本文的结果证明纵向电磁场可以有效地将电子“锁”在重联电流片上,使得横向电场得以直接加速电子.对于解释产生相对论性粒子的脉冲式耀斑,这可能是一个有效的机制.  相似文献   

7.
本文基于二维三分量可压缩磁流体动力学模拟,数值研究由于磁力线足点在光球层的剪切运动引起日冕电流片中的磁场重联过程。结果表明,磁力线足点的剪切运动作为引起强迫磁场重联的一种触发机制,将加速磁场重联的发展和磁岛的合并过程。结合不稳定性导致等离子体急剧加速,在β=0.1的情况下其加速度达到0.34νA∞/τA,等离子体的最大下落速度可达1.90νA∞,大于纯电阻撕裂模情况。还讨论了β值对这种磁场重联过程的影响。β值越小,磁场重联和磁岛合并过程发展得越快。  相似文献   

8.
Abstract

This paper explores magnetic equilibria which could result from the kink instability in a cylindrical magnetic flux tube. We examine a variety of cylindrical magnetic equilibria which are susceptible to the kink, and simulate its evolution in a frictional fluid. We assume that the evolution takes place under conditions of helical symmetry, so the problem becomes effectively two-dimensional. The initial cylindrical equilibrium field is specified in terms of its twist function k(r) = B θ/(rBz ) and for a variety of k(r) functions we calculate linear growth rates for the kink instability, assuming that it develops under helical symmetry with pitch τ. We find that the growth rate is sensitive to the value of τ.

We simulate nonlinear evolution of the kink using a Lagrangian frictional code which constrains the field to have helical symmetry of a given pitch τ. Ideal MHD is assumed and the plasma pressure is taken to be small in order to mimic conditions in the solar corona. In some cases the flux tube evolves to a new smooth helically symmetric equilibrium which involves a relatively small change in the maximum electric current. In other cases there is evidence of current-sheet formation.  相似文献   

9.
Abstract

This paper treats the dynamical conditions that obtain when long straight parallel twisted flux tubes in a highly conducting fluid are packed together in a broad array. It is shown that there is generally no hydrostatic equilibrium. In place of equilibrium there is a dynamical nonequilibrium, leading to neutral point reconnection and progressive coalescence of neighboring tubes (with the same sense of twisting), forming tubes of larger diameter and reduced twist. The magnetic energy in the twisting of each tube declines toward zero, dissipated into small-scale motions of the fluid and thence into heat.

The physical implications are numerous. For instance, it has been suggested that the subsurface magnetic field of the sun is composed of close-packed twisted flux tubes. Any such structures are short lived, at best.

The footpoints of the filamentary magnetic fields above bipolar magnetic regions on the sun are continually shuffled and rotated by the convection, so that the fields are composed of twisted rubes. The twisting and mutual wrapping is converted directly into fluid motion and heat by the dynamical nonequilibrium, so that the work done by the convection of the footpoints goes directly into heating the corona above. This theoretical result is the final step, then, in understanding the assertion by Rosner, Tucker, and Valana, and others, that the observed structure of the visible corona implies that it is heated principally by direct dissipation of the supporting magnetic field. It is the dynamical nonequilibrium that causes the dissipation, in spite of the high electrical conductivity. It would appear that any bipolar magnetic field extending upward from a dense convective layer into a tenuous atmosphere automatically produces heating, and a corona of some sort, in the sun or any other convective star.  相似文献   

10.
与亚暴活动密切相关的磁尾等离子体团可以具有不同的拓扑位形,多数磁尾等离子体团具有 强核心场,是一种通量绳型磁结构. MHD模拟表明:地球磁尾不同拓扑位形磁结构的形成, 与越尾分量By的分布形态有关. 但是模拟研究所展示的通量绳结构,核心场强度远低 于尾瓣区磁场强度. 本文考虑磁尾通量绳结构中,螺旋形磁力线向侧翼伸展产生的压强损失 ,在MHD方程中引入修正项ρt|loss,Tt|loss 及Byt|inc. 对于 初始By分量为均匀分布,受晨昏电场产生的边界入流作用,磁尾通量绳结构重复形成 与逐一排放的两个算例,计入修正项后,多重磁结构峰值压强的平均值降低,核心场的平均 值明显增大. 两个算例中,背景By值较低的算例1(By0=1nT)中,核心 场的相对增幅较大.  相似文献   

11.

The thermal balance and hard X-ray emission of coronal loops for two solar events have been considered in the scope of a “standard” flare model. An important role of the thermal energy release is justified by the event of August 23, 2005, as an example. For the flare of November 9, 2013, it has been established that electrons accelerated at a flare loop top cannot maintain the observed hard X-ray fluxes from the flare footpoints, which indicates that charged particles are additionally accelerated in the chromosphere.

  相似文献   

12.
Based on single-particle approximation, the peculiarities of electron acceleration by the sub-Dreicer electric field in solar atmosphere have been considered. The elastic and inelastic collisions of fast electrons with hydrogen atoms have been taken into account within the Born approximation. The rate of energy gain by accelerated electrons is inversely proportional to the mean free path of the thermal particles. Electron acceleration can be more effective in the transition region and chromosphere than in the corona. Chromospheric electrons can achieve several hundred keV energy at distances of a few tens of kilometers.  相似文献   

13.
In the solar system, our Sun is Nature’s most efficient particle accelerator. In large solar flares and fast coronal mass ejections (CMEs), protons and heavy ions can be accelerated to over ~GeV/nucleon. Large flares and fast CMEs often occur together. However there are clues that different acceleration mechanisms exist in these two processes. In solar flares, particles are accelerated at magnetic reconnection sites and stochastic acceleration likely dominates. In comparison, at CME-driven shocks, diffusive shock acceleration dominates. Besides solar flares and CMEs, which are transient events, acceleration of particles has also been observed in other places in the solar system, including the solar wind termination shock, planetary bow shocks, and shocks bounding the Corotation Interaction Regions (CIRs). Understanding how particles are accelerated in these places has been a central topic of space physics. However, because observations of energetic particles are often made at spacecraft near the Earth, propagation of energetic particles in the solar wind smears out many distinct features of the acceleration process. The propagation of a charged particle in the solar wind closely relates to the turbulent electric field and magnetic field of the solar wind through particle-wave interaction. A correct interpretation of the observations therefore requires a thorough understanding of the solar wind turbulence. Conversely, one can deduce properties of the solar wind turbulence from energetic particle observations. In this article I briefly review some of the current state of knowledge of particle acceleration and transport in the inner heliosphere and discuss a few topics which may bear the key features to further understand the problem of particle acceleration and transport.  相似文献   

14.
We present results obtained at El Leoncito (CASLEO, San Juan, Argentina) with the CARPET charged particles detector installed in April 2006. The observed modulation of the cosmic ray flux is discussed as a function of its time variability and it is related to longer solar activity variations and to shorter variations during solar and geomagnetic transient activity. Short period (few minutes, few hours) cosmic ray modulation events are observed during rain time (precipitation) and significant variations of the atmospheric electric field. Complementary observations of the atmospheric electric field indicate that its time variations play an important role in the detected cosmic ray event.  相似文献   

15.
Using observations with a high angular resolution of ??1??, we reveal a cyclotron radiation source with a ring-shaped structure of the image. The source is located in the solar corona above the main spot of the NOAA 11140 active region. Observations were carried out during the solar eclipse of January 4, 2011, using two RT-32 radio telescopes that operated at wavelengths of 3.5, 6.2, and 13 cm and registered Stokes parameters I and V. The features of the structure are interpreted within the known theory of the cyclotron radio radiation of hot coronal plasma (2?C4 MK) in the presence of the strong magnetic field of the sunspot (??3 kG).  相似文献   

16.
2001年1月26日高纬磁层顶通量管事件的观测研究   总被引:7,自引:4,他引:3       下载免费PDF全文
2001年1月26日11:10~11:40UT, ClusterⅡ卫星簇位于午后高纬磁鞘边界层和磁鞘区,此 时行星际磁场Bz为南向. 本文对在此期间观测到的多次磁通量管事件作了详细的研究 ,获得一系列的新发现:(1)高纬磁鞘边界层磁通量管的出现具有准周期性,周期约为78s ,比目前已知的磁层顶向阳面FTE的平均周期(8~11min)小得多. (2)这些通量管都具有 强的核心磁场;其主轴多数在磁场最小变化方向,少数在中间变化方向,有些无法用PAA判 定其方向(需要用电流管PAA确定),这与卫星穿越通量管的相对路径有关. (3)每个事件 都存在很好的HT参考系,在HT参考系中这些通量管是准定常态结构;所有通量管都沿磁层顶 表面运动,速度方向大体相同,都来自晨侧下方. 通量管的径向尺度为1~2RE, 与通 常的FTE通量管相当. (4)起源于磁层的强能离子大体上沿着管轴方向由磁层向磁鞘运动; 起源于太阳风的热等离子体沿管轴向磁层传输. 通量管为太阳风等离子体向磁层输运和磁层 粒子向行星际空间逃逸提供了通道. (5)每个通量管事件都伴随有晨昏电场的反转,该电 场为对流电场.  相似文献   

17.
Data on high-energy processes on the Sun are summarized. We refine the classification of flares and substantiate the view that a coronal mass ejection and a flare proper are manifestations of the same common process, at least for the most powerful events. Next, we analyze data on the acceleration of electrons (RHESSI, Mars Odyssey) and protons. The existence of two peaks of hard X-ray emission spaced 10–20 min apart and the evolution of its spectra are shown to be indicative of two acceleration episodes. We have analyzed the spectra of 172 proton increases identified with the ratio of the proton fluxes at energies above 10 and 100 MeV near the Earth. These spectra turn out to be virtually the same for most of the large flares under favorable conditions for the escape of particles from the corona and their propagation in the interplanetary space. This is an argument for the invariance of the main features of efficient particle acceleration in powerful events. This process takes place at the explosive phase of a flare and its source is located low, immediately above the chromosphere, in the region adjacent to sunspots. There is a reason to believe that, in this case, a rapid simultaneous acceleration of electrons and protons takes place with the capture of some fraction of the particles into magnetic traps. However, there exist a few events in which an additional number of protons with energies as high as 10–30 MeV escape from the corona at the post-eruptive phase of flare development. Analysis of these cases with softer particle spectra more likely suggests an additional particle acceleration at coronal heights (about 30 000 km) than the facilitation of particle escape from magnetic traps. We estimate the contribution from the proton flux at an energy above 10 MeV arising at the post-eruptive phase of a flare to the total particle flux at the maximum of a proton increase and discuss possible particle acceleration mechanisms at significant coronal heights.  相似文献   

18.
Results of photospheric magnetic field extrapolation in a potential approximation and of the technique for separating the open part of magnetic flux have revealed that changes in the relationship between the open part of the south polarity magnetic flux obtained in the chromosphere and corona from July to November 2006 correlate with variations in the Akasofu parameter calculated from data on the solar wind parameters and interplanetary magnetic field at Lagrange point L1, and with the K p index.  相似文献   

19.
Coronal mass ejections (CMEs) and solar flares are the large-scale and most energetic eruptive phenomena in our solar system and able to release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind. When these high-speed magnetized plasmas along with the energetic particles arrive at the Earth, they may interact with the magnetosphere and ionosphere, and seriously affect the safety of human high-tech activities in outer space. The travel time of a CME to 1 AU is about 1–3 days, while energetic particles from the eruptions arrive even earlier. An efficient forecast of these phenomena therefore requires a clear detection of CMEs/flares at the stage as early as possible. To estimate the possibility of an eruption leading to a CME/flare, we need to elucidate some fundamental but elusive processes including in particular the origin and structures of CMEs/flares. Understanding these processes can not only improve the prediction of the occurrence of CMEs/flares and their effects on geospace and the heliosphere but also help understand the mass ejections and flares on other solar-type stars. The main purpose of this review is to address the origin and early structures of CMEs/flares, from multi-wavelength observational perspective. First of all, we start with the ongoing debate of whether the pre-eruptive configuration, i.e., a helical magnetic flux rope (MFR), of CMEs/flares exists before the eruption and then emphatically introduce observational manifestations of the MFR. Secondly, we elaborate on the possible formation mechanisms of the MFR through distinct ways. Thirdly, we discuss the initiation of the MFR and associated dynamics during its evolution toward the CME/flare. Finally, we come to some conclusions and put forward some prospects in the future.  相似文献   

20.
Abstract

The magnetohydrodynamic stability of a class of magnetohydrostatic equilibria is investigated. The effect of gravity is included as well as the stabilising influence of the dense photospheric line-tying.

Although the two-dimensional equilibria exhibit a catastrophe point, when the ratio of plasma pressure to magnetic pressure exceeds a critical value, arcade structures, with both footpoints connected to the photosphere, become unstable to three-dimensional disturbances before the catastrophe point is reached.

Numerical results for field lines that are open into the solar corona suggest that they are completely stable. Although there is no definite proof of stability, this would allow the point of non-equilibrium to be reached.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号