首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   5篇
地球物理   5篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2001年1月26日高纬磁层顶通量管事件的观测研究   总被引:7,自引:4,他引:3       下载免费PDF全文
2001年1月26日11:10~11:40UT, ClusterⅡ卫星簇位于午后高纬磁鞘边界层和磁鞘区,此 时行星际磁场Bz为南向. 本文对在此期间观测到的多次磁通量管事件作了详细的研究 ,获得一系列的新发现:(1)高纬磁鞘边界层磁通量管的出现具有准周期性,周期约为78s ,比目前已知的磁层顶向阳面FTE的平均周期(8~11min)小得多. (2)这些通量管都具有 强的核心磁场;其主轴多数在磁场最小变化方向,少数在中间变化方向,有些无法用PAA判 定其方向(需要用电流管PAA确定),这与卫星穿越通量管的相对路径有关. (3)每个事件 都存在很好的HT参考系,在HT参考系中这些通量管是准定常态结构;所有通量管都沿磁层顶 表面运动,速度方向大体相同,都来自晨侧下方. 通量管的径向尺度为1~2RE, 与通 常的FTE通量管相当. (4)起源于磁层的强能离子大体上沿着管轴方向由磁层向磁鞘运动; 起源于太阳风的热等离子体沿管轴向磁层传输. 通量管为太阳风等离子体向磁层输运和磁层 粒子向行星际空间逃逸提供了通道. (5)每个通量管事件都伴随有晨昏电场的反转,该电 场为对流电场.  相似文献   
2.
2004-03-18 23:10~23:50 UT期间,“双星(Double Star)”探测一号卫星(TC 1)在向阳面磁层顶高纬晨侧由内向外穿越磁层顶,其时TC_1的GSM坐标为 (75RE, -55RE, -54RE), RE为地球半径.穿越过程中TC_1观测到了8个通量管和1个磁通量传输事件(FTEs).在此期间Cluster星簇位于向阳面太阳风内,其GSM坐标为(180RE, -31RE, -62RE),其4颗卫星监测到行星际磁场(IMF)的BZ分量持续南向,BY有较大的负值.本文的研究表明:TC_1观测到的前7个通量管具有准周期重现性,周期大约是1~4 min,明显小于以前所观测到的FTEs的平均周期(8~11 min);所有的通量管都具有较强的核心场.本文分别使用最小方差分析法(MVA)和Grad_Shafranov反演方法(GSR)对通量管的轴向进行了分析和对比,发现所有的通量管主轴基本沿晨昏向,结果显示GSR方法在轴向分析上比MVA优越.本文使用GSR方法对通量管的磁场结构进行了分析,恢复出了通量管的磁场在卫星穿越面的结构图;此外,本文还对这次多重通量管事件进行了deHoffmann Teller(HT)分析,结果表明,所有通量管大致朝南极方向运动,均来源于向日面低纬区域.这说明它们可能起源于向日面低纬区,由该区的磁场分量重联产生.  相似文献   
3.
讨论了三种根据Cluster Ⅱ四颗卫星的磁场测量数据计算空间电流的方法及其误差,论证了这几种方法的内在一致性,并得到了完全相同的计算结果. 进而依据Cluster Ⅱ 磁场探测资料,计算了2001年1月26日多重磁通量管和FTE事件中高纬磁层顶边界层和磁鞘区的电流密度. 结果表明,磁通量管内电流密度较大,可达到约10-8A/m2;计算精度较高,结果可靠. 本文还应用最小方差分析法(MVA),发现电流方向与通量管的轴向基本一致;论证了电流MVA分析在研究通量管性质时的作用,同时提出了电流管的概念.  相似文献   
4.
利用TC1、Cluster和Polar结合极光和同步高度及地磁的观测,研究了2004年9月14日1730~1930 UT时间段的亚暴偶极化过程.此前行星际磁场持续南向几个小时.亚暴初发(Onset)开始于1823 UT.2 min之后,同步高度的LANL 02A在子夜附近观测到了明显的能量电子增强(Injection)事件,而TC1在1827UT左右在磁尾(-10,-2, 0)RE (GSE)观测到了磁场BX的突然下降,伴随着等离子体压强和温度的突然增加及磁场的强烈扰动.在(-16, 1, 3)RE (GSE) 的Cluster上相同的仪器观测到相同的现象,只是比TC1观测到的晚大约23 min,在1850 UT左右.虽然Polar在更靠近地球的较高纬度(-75, 35, -40)RE (GSE)附近,也在1855 UT左右观测到了这种磁场偶极化现象.以上的观测时序表明TC1、Cluster观测到的磁场偶极化比亚暴偶极化初始发生分别晚4 min和27 min.说明偶极化由近磁尾向中磁尾传播.详细计算表明偶极化源区的位置大约在X=-77RE~-86RE,而传播速度大约为70 km·s-1.在这个事件中亚暴的物理图像可能是中磁尾的近地重联产生的地向高速流到达近磁尾,为近磁尾的亚暴触发创造了条件;亚暴在近磁尾触发之后,磁场偶极化峰面向中磁尾传播.  相似文献   
5.
利用CRRES/MICS的观测数据,研究了磁暴期间内磁层离子成分的变化.对1991年两个典型磁暴和12个大磁暴的分析表明,组成暴时环电流的离子可以分成两组,一组由O+、低能H+和He+组成,起源于电离层(IOP);另一组为高能H+和He++,主要来自太阳风(SOP).宁静时环电流主要成分为SOP,大磁暴主相极大时环电流的主要成分是IOP.大磁暴期间离子可被注入到很低的高度(L=3-4).IOP对环电流的贡献随磁暴强度增大而增加,在大磁暴主相极大时可达80%(数密度).IOP中O+的快速增减是导致Dst指数在磁暴主相期间快速下降和恢复相中快速增长的主要原因.小磁暴中(Dst>-50nT)O+对环电流的贡献可以忽略不计.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号