首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The spectrum of velocity and magnetic fields in the solar wind is self-similar (power-law type) in the frequency range greater than >1/day indicating well-mixed turbulence. But it loses self-similarity for lower frequencies indicating the presence of large-scale patterns, which are intermittently generated inside the Sun and propagate from the Sun to the Earth.Here we discuss the spatia–temporal characteristics and origin of the 1.3-year quasi-periodic pattern found inside the Sun by helioseismic methods and detected in the solar wind. To identify and characterize this pattern on the Sun we use time series of solar magnetic Carrington maps generated at the Wilcox Solar Observatory and independent component data analysis. This analysis shows the latitudinal distribution of the pattern, its variable frequency and intermittent appearance.  相似文献   

2.
The dynamics of the absolute global values (Φ) of the large-scale open solar magnetic field (LOSMF) fluxes at an interval of one solar rotation in 2006–2012 has been studied based on the Wilcox Solar Observatory data and using the ISOPAK original package for modeling the solar magnetic field. The reference points and the duration of the final quasi-biennial interval in cycle 23 (January 2006–May 2007; 17 months) and the phases of the cycle 24 minimum (May 2007–November 2009; 30 months), growth (November 2009–May 2012; 30 months), and the beginning of the maximum (May 2012–January 2013) have been determined. It has been indicated that the absolute values (Φ) decreased sharply at the beginning of the minimum, growth, and the maximum phases to ~(2, 1.25, 0.75) × 1022 Mx, respectively. During the entire minimum phase, LOSMF corotated super-quasi-rigidly westward in the direction of solar rotation; at the beginning of the growth phase, this field started corotating mostly eastward. The LOSMF polarity reversal in the current cycle 24 started in May–June 2012 (CR 2123–2124), when fields of southern polarity rushed from the Sun’s southern hemisphere toward the north. The statement that the solar cycle is a continuous series of quasi-biennial LOSMF intervals is confirmed. In particular, the minimum and growth phases are characterized by opposite LOSMF rotation directions, i.e., super-quasi-rigid corotation (twisting) and detwisting, with identical duration at least in cycle 24.  相似文献   

3.
Strong magnetic fields at latitudes of ±40° are studied on the basis of synoptic maps of the photospheric magnetic field from the Kitt Peak Observatory (1976–2003). The time variations and imbalance between positive and negative magnetic fluxes are studied for the Southern and Northern hemispheres. A change in the imbalance between fluxes of leading/following sunspots with a 22-year magnetic cycle is shown. The imbalance sign coincides with the sign of the global magnetic field in the Northern/Southern solar hemispheres, respectively.  相似文献   

4.
A Polish-made vertical ionosonde (VI) has been operated at the Kandilli Observatory in Istanbul, for almost one year (May 1993 - April 1994) as part of the COST 238, PRIME Project, The critical frequencies were obtained for every half-hour interval. The data obtained during this campaign, on the descending branch of solar cycle 22, and the data measured earlier in Istanbul for cycle 20 were analysed and the characteristic behaviour of the F2 region ionosphere over Istanbul has been determined. This is a unique data set for this area. Several markers of the solar cycle activities in terms of the daily relative sunspot numbers, F10.7 cm solar radio flux and solar flare index, and the magnetic daily index of Ap were then used to seek the possible influence of the solar and ionospheric activities on the critical frequencies observed in Istanbul. It was found that the solar flare index, as a solar activity index, was more reliable in determining quiet ionospheric days. It is shown that the minimum and maximum time values of the solar activity are more convenient for ionospheric prediction and modelling.  相似文献   

5.
6.
The studies are based on the experimental mass sounding of the interplanetary plasma near the Sun at radial distances of R = 4−70 R S, performed at Pushchino RAO, Russian Academy of Sciences, and on the calculated magnetic fields in the solar corona based on the magnetic field strength and structure measured on the Sun’s surface at J. Wilcox Solar Observatory, United States. The experimental data make it possible to localize the position of the boundary closest to the Sun of the transition transonic region of the solar wind in the near-solar space (R ≈ 10−20 R S) and to perform an interrelated study of the solar wind structure and its sources, namely, the magnetic field components in the solar corona based on these data. An analysis of the evolution of the flow types in 2000–2007 makes it possible to formulate the physically justified criterion responsible for the time boundaries of different epochs in the solar activity cycle.  相似文献   

7.
Synoptic maps for 1976–2003 obtained at the Kitt Peak National Solar Observatory are used to analyze the longitudinal distribution of the solar photospheric magnetic field. The superposition of synoptic maps gives different pictures for the rise-maximum phase and the decline-minimum phase. Two characteristic periods correspond to different situations in the 22-year solar magnetic cycle in the course of which both the global magnetic field and the magnetic field of the leading sunspot in a group change their sign.  相似文献   

8.
Geomagnetism and Aeronomy - The properties of solar bipoles based on data from magnetic field observations at Mount Wilson Observatory during the period of 1917–2016 are considered. Special...  相似文献   

9.
Using the data of 1960–1999 on solar magnetic fields on the source surface and the Higuchi method, the fractal dimension of changes in the solar magnetic field energy at various heliolatitudes and in different time intervals is analyzed. The fractal dimension obtained on a moving 1-year interval displays substantial time variations. The 11-year cycle, which dominates at high latitudes, and quasi-biennial variations (QBVs), which dominate at low latitudes and are similar to QBVs of solar activity indices, are traced in these variations. Thus, solar QBVs that appear in all heliomagnetic activity indices are also present in the fractal structure of the solar magnetic field variations.  相似文献   

10.
A comparison of the actual filament height above the solar photosphere with the limiting height calculated by magnetic data provides information about the filament stability margin and its readiness for eruption. A method is proposed for the determination of the height of solar filaments by a comparison of the position of the upper edge of the filament (spine) with the position of the polarity-inversion line of the potential magnetic field calculated for different heights. The line closest to the filament spine corresponds to its height. Observations of the Solar Terrestrial Relations Observatory (STEREO) spacecraft were used to verify the proposed method when they were at an angular distance of ~90° from the Earth and provided a side view of the filaments near the central meridian in observations from the Earth and near-Earth orbits. The proposed method can be useful in the estimation of the possible geoeffectiveness of filaments on the solar disk.  相似文献   

11.
The magnetic flux longitudinal distribution in the equatorial solar zone has been studied. The magnetic synoptic maps of the Wilcox Solar Observatory (WSO) during Carrington rotations (CRs) 2052–2068 in 2007 and early 2008 have been analyzed. The longitudinal distributions of the area of the zones where the photospheric magnetic field locally enhanced have been constructed for each CR. The obtained distributions indicate that the zones are located discretely and that a clearly defined one narrow longitudinal interval with the maximum flux is present. The longitudinal position of this maximum shifted discretely by ≈130° at an interval of 5.5 ± 0.5 CRs. A longitudinal shift of the zones with an increased magnetic flux multiple of 60° was observed between the hemispheres. In addition, a time shift of ≈2.5 CRs existed between the instants when the position of maximum fluxes in different hemispheres shifted. The established peculiarities of the magnetic flux longitudinal distribution and time dynamics are interpreted as an action of supergiant convection cells. These actions result in that magnetic fields are removed from the generation region through the channels that are formed between such cells at a longitudinal interval of 120°. The average synodic rotation velocity of the considered equatorial channels, through which the magnetic flux emerges, is 13.43° day–1.  相似文献   

12.
本文对陕、甘、宁、青四省(区)地震活动性指数A_(N-W)(b)、兰州地磁台记录的磁暴活动性指数K(b)和太阳黑子相对数年均值R(N)进行统计分析,得出了太阳活动和地震以及磁暴活动均存在约21年、11年、5年、3年和2年左右的显著周期。它们的互相关幅度和交互谐幅度也表明,在上述显著周期内三者存在明显的相关性。理想低通滤波后的SC型磁暴K(b)和A_(N-W)(b)间的相关系数高达0.886。根据分析本文指出,陕、甘、宁、青四省(区)地震活动在以后五年内还会继续增强。最后就太阳活动和磁暴与地震的发生的关系作了讨论。  相似文献   

13.
The spatiotemporal and chaotic dynamics of variations in area of sunspot groups related conventionally to small (area <50 Msh) and large (area >50 Msh) populations is analyzed. The Greenwich Observatory–Marshall Space Flight Center data were used. The results show that both sunspot populations have a single initial source, which is a magnetic flux generated by the dynamo process (presumably at the bottom of the convective zone) and is responsible for the 11—22-year periodicity of solar activity. A possible explanation of the revealed different behavior of the considered populations is that the magnetic flux is partially involved in another process responsible for the shaping of primarily very large sunspot groups. This process develops presumably in the upper layer of the convective zone with an unstable amplitude and a period varying within 1–2 years. The analysis of power spectrum of the Wolf number time series has indicated the difference between dynamic characteristics of the two studied processes.  相似文献   

14.
本文根据苏黎世天文台太阳黑子11年周期资料和太阳黑子磁场磁性变化周期特征,构建了太阳黑子磁场磁性指数MI(Magnetic Index)时间序列.分析表明:太阳活动磁性周期平均长度为222年,但是每个周期长度是不相等的;多数情况周期短时磁性指数较大,对应太阳活动水平强;周期变长时磁性指数较小,对应太阳活动水平较弱;太阳黑子磁场磁性指数序列也具有80~90年的世纪周期. 进一步研究指出,太阳黑子磁场磁性指数曲线由极小值升至极大值时期,太阳磁场南向,行星际磁场磁力线与地磁场磁力线重联,此时磁层为开磁层,太阳风将携带大量等离子体从向阳面进入地球磁层,从而使输入的动量、能量和物质大幅度增加,与北半球对流层增温时期对应;太阳黑子磁场磁性指数曲线由极大值下降至极小值时期,太阳磁场北向,与磁层顶地磁场同向,行星际磁场不会与地磁场发生重联,此时磁层为闭磁层,这种情况下,只有少数带电粒子能够穿越磁力线进入地球磁层,与北半球对流层降温时期对应.  相似文献   

15.
Recent years allowed us to study long-term variations in the cosmic ray (CR) intensity at an unusually deep solar activity (SA) minimum between cycles 23 and 24 and during the SA growth phase in cycle 24, which was the cycle when SA was the lowest for the epoch of regular ground-based CR observations since 1951. The intensity maximum, the value of which depends on the particle energy, was observed in CR variations during the period of an unusually prolonged SA minimum: the CR density during the aformentioned period (2009) is higher than this density at previous CR maxima in cycles 19–23 for low-energy particles (observed on spacecraft and in the stratosphere) and medium-energy particles (observed with neutron monitors). After 2009 CR modulation at the SA growth phase was much weaker over three years (2010–2012) than during the corresponding SA growth periods in the previous cycles. The possible causes of this anomaly in CR variations, which are related to the CR residual modulation value at a minimum between cycles 23 and 24 and to variations in SA characteristics during this period, were examined. The contribution of different solar magnetic field characteristics and indices, taking into account sporadic solar activity, has been estimated.  相似文献   

16.
This paper presents the analysis results of the magnetic flux inside and outside a polar coronal hole in the north during the period August 1?C2, 2010. The location of the polar coronal hole is determined from Extreme Ultraviolet (EUV) images in the Fe XII, XXIV (193 ?) line, obtained by an Atmospheric Imager Assembly (AIA) of the Solar Dynamics Observatory (SDO). Magnetic data are represented by the line-of-sight component of the magnetic field strength, measured with an Helioseismic and Magnetic Imager (HMI). Both data sets are sampled at an interval of 720 s and are remapped onto a Carrington coordinate grid with a resolution of 0.001 in sine latitude and 0.1 degree in longitude. The preliminary results show a magnetic flux of the new cycle??s polarity (positive polarity in the north) appearing inside the coronal hole on a time scale of several hours. This ??new flux?? does not correlate with the magnetic flux of the old solar cycle (negative polarity in the north).  相似文献   

17.
Solar coronal holes (CHs) at a minimum of the 23rd activity cycle were investigated using Solar and Heliospheric Observatory (SOHO) data, ground-based observational data from the radio telescopes of the Kislovodsk Solar Station, Pulkovo Observatory (KSS PO), Russian Academy of Sciences, and radioheliograph data from the Nobeyama Observatory (Japan). The 2006–2008 period was characterized by a small number of active regions on the solar disk; nevertheless, this period is favorable for studying low-contrast objects in the radio band (CHs). We investigate the evolution of CH areas, the location of CHs on the solar disk, and the features of their radiation in the radio band. We present the results of observations of the total (March 29, 2006) and partial (August 1, 2008) solar eclipses by the RT-3 and RT-2 radio telescopes of the KSS PO. Based on the eclipse observation data, compact sources were identified on the solar disk and the contribution of CHs to the integral radio emission flux was estimated. A rare effect (increased radio emissions of high-latitude CHs at a wavelength of 4.9 cm) was revealed, which may be caused by X-ray bright points in CHs. Here, polar CHs are characterized by low levels of radio emission.  相似文献   

18.
The high-latitude geomagnetic effects of an unusually long initial phase of the largest magnetic storm (SymH ~–220 nT) in cycle 24 of the solar activity are considered. Three interplanetary shocks characterized by considerable solar wind density jumps (up to 50–60 cm–3) at a low solar wind velocity (350–400 km/s) approached the Earth’s magnetosphere during the storm initial phase. The first two dynamic impacts did not result in the development of a magnetic storm, since the IMF Bz remained positive for a long time after these shocks, but they caused daytime polar substorms (magnetic bays) near the boundary between the closed and open magnetosphere. The magnetic field vector diagrams at high latitudes and the behaviour of high-latitude long-period geomagnetic pulsations (ipcl and vlp) made it possible to specify the dynamics of this boundary position. The spatiotemporal features of daytime polar substorms (the dayside polar electrojet, PE) caused by sudden changes in the solar wind dynamic pressure are discussed in detail, and the singularities of ionospheric convection in the polar cap are considered. It has been shown that the main phase of this two-stage storm started rapidly developing only when the third most intense shock approached the Earth against a background of large negative IMF Bz values (to–39 nT). It was concluded that the dynamics of convective vortices and the related restructing of the field-aligned currents can result in spatiotemporal fluctuations in the closing ionospheric currents that are registered on the Earth’s surface as bay-like magnetic disturbances.  相似文献   

19.
The solar wind modulates the flux of galactic cosmic rays impinging on Earth inversely with solar activity. Cosmic ray ionisation is the major source of air's electrical conductivity over the oceans and well above the continents. Differential solar modulation of the cosmic ray energy spectrum modifies the cosmic ray ionisation at different latitudes, varying the total atmospheric columnar conductance. This redistributes current flow in the global atmospheric electrical circuit, including the local vertical current density and the related surface potential gradient. Surface vertical current density and potential gradient measurements made independently at Lerwick Observatory, Shetland, from 1978 to 1985 are compared with modelled changes in cosmic ray ionisation arising from solar activity changes. Both the lower troposphere atmospheric electricity quantities are significantly increased at cosmic ray maximum (solar minimum), with a proportional change greater than that of the cosmic ray change.  相似文献   

20.
On October 14, 1995, a C1.6 long duration event (LDE) started in active region (AR) NOAA 7912 at approximately 5:00 UT and lasted for about 15 h. On October 18, 1995, the Solar Wind Experiment and the Magnetic Field Instrument (MFI) on board the Wind spacecraft registered a magnetic cloud (MC) at 1 AU, which was followed by a strong geomagnetic storm. We identify the solar source of this phenomenon as AR 7912. We use magnetograms obtained by the Imaging Vector Magnetograph at Mees Solar Observatory, as boundary conditions to the linear force-free model of the coronal field, and, we determine the model in which the field lines best fit the loops observed by the Soft X-ray Telescope on board Yohkoh. The computations are done before and after the ejection accompanying the LDE. We deduce the loss of magnetic helicity from AR 7912. We also estimate the magnetic helicity of the MC from in situ observations and force-free models. We find the same sign of magnetic helicity in the MC and in its solar source. Furthermore, the helicity values turn out to be quite similar considering the large errors that could be present. Our results are a first step towards a quantitative confirmation of the link between solar and interplanetary phenomena through the study of magnetic helicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号