首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Stable-boundary-layer regimes from the perspective of the low-level jet   总被引:2,自引:0,他引:2  
This paper reviews results from two field studies of the nocturnal stable atmospheric boundary layer (SBL) over the Great Plains of the United States. Data from a scanning remote-sensing system, a High-Resolution Doppler Lidar (HRDL), provided measurements of mean and turbulent wind components at high spatial and temporal resolution through the lowest 500–1000 m of the atmosphere. This data set has allowed the characteristics of the low-level jet (LLJ) maximum (speed, height, direction) to be documented through entire nights. LLJs form after sunset and produce strong shear in the layer below the LLJ maximum or nose, which is a source of turbulence and mixing in the SBL. Simultaneous HRDL measurements of turbulence quantities related to turbulence kinetic energy (TKE) has allowed the turbulence in the subjet layer to be related to LLJ properties. Turbulence structure was found to be a function of the bulk stability of the subjet layer. For the strong-LLJ (> 15 m s−1), weakly stable cases the strength of the turbulence is proportional to the strength of the LLJ. For these cases with nearly continuous turbulence in the subjet layer, low-level jet scaling, in which lengths are scaled by the LLJ height and velocity variables are scaled by the LLJ speed, was found to be appropriate. For the weak-wind (< 5 m s−1 in the lowest 200 m), very stable boundary layer (vSBL), the boundary layer was found to be very shallow (sometimes < 10 m deep), and turbulent fluxes between the earth’s surface and the atmosphere were found to be essentially shut down. For more intermediate wind speeds and stabilities, the SBL shows varying degrees of intermittency due to various mechanisms, including shearinstability and other gravity waves, density currents, and other mesoscale disturbances.  相似文献   

2.
The diurnal structure of the boundary layer during Indian summer monsoon period is studied using a one-dimensional meteorological boundary layer model and the observations collected from the Monsoon Trough Boundary Layer Experiment conducted in 1990 at Jodhpur, India. The model was initialized with the observed temperature profiles at 0530 LST on 17 July, 1990 at Jodhpur and was run for 26 hours. The study is carried out with a geostrophic wind speed of 9.5 m s−1 corresponding to the strong wind simulation. The mean thermodynamic and wind structure simulated by the model are in good agreement with those observed from 30 m tower. The computed surface layer characteristics such as the surface fluxes, TKE and standard deviations of velocity components are found to be reasonably in good agreement with those based on turbulence measurements. The shear and buoyancy budget computed from the model are also compared with the turbulence measurements. The integrated cooling budget in the nocturnal boundary layer is examined.  相似文献   

3.
大气边界层研究进展   总被引:1,自引:0,他引:1  
大气边界层对云和对流的发展、演变有重要作用.本文回顾了在大气边界层高度计算方法,边界层的时空分布特征、结构和发展机理,以及边界层参数化方案等方面的主要研究进展.大气边界层高度计算方法主要分为基于大气廓线观测数据计算和基于模式参数化方案计算两大类;大气边界层高度频率分布形态具有明显的日变化特征,并且稳定、中性和对流边界层高度的频率分布呈现出不同的Gamma分布特征;地面湿度状况对边界层发展影响明显,对于不同的下垫面热力性质和地形状况,大气边界层高度呈现出明显的空间差异,青藏高原边界层高度明显高于一般平原地区;在强烈的地面加热驱动下,对流边界层与残余层通过正反馈机制循环增长可以形成4000 m以上的超高大气边界层;研制大气边界层、浅对流以及云物理方案的统一参数化框架是未来数值预报模式的发展趋势.  相似文献   

4.
The hydrostatic model SALSA is used to simulate a particular event observed during the Greenland Ice Margin EXperiment “GIMEX” (on July 12th, 1991). The time evolution of the large-scale flow was incorporated in the model through time dependent boundary conditions which were updated using the closest upwind sounding. A turbulent scheme for the stable boundary layer and an appropriate parametrization of the surface fluxes implemented in the same model, are used for this study. The simulation results are discussed and compared to the available observations. The computed turbulent fluxes are correctly estimated. The model predicts a mixing zone of about 1500 m high which is in good agreement with tundra site observations. Over the ice cap, the katabatic layer is correctly simulated by the model. Its height of 80–300 m is well estimated. The comparison between the simulation and observations taken at ice cap sites is reasonably valid. The ablation computed along the ice cap corresponds well to the values reconstructed of observations at sites 4 and 9. Finally, a sensibility study to a specified westward geostrophic wind (2 ms−1) shows that the consideration of this latter improves the simulated tundra wind evolution.  相似文献   

5.
A high-resolution three-dimensional model of the Clyde Sea and the adjacent North Channel of the Irish Sea is used to compute the major diurnal and semidiurnal tides in the region, the associated energy fluxes and thickness of the bottom boundary layer. Initially, the accuracy of the model is assessed by performing a detailed comparison of computed tidal elevations and currents in the region, against an extensive database that exists for the M2, S2, N2, K1 and O1 tides. Subsequently, the model is used to compute the tidal energy flux vectors in the region. These show that the major energy flux is confined to the North Channel region, with little energy flux into the Clyde Sea. Comparison with the observed energy flux in the North Channel shows that its across-channel distribution and its magnitude are particularly sensitive to the phase difference between elevation and current. Consequently, small changes in the computed values of these parameters due to slight changes of the order of the uncertainty in the open-boundary values to the model, can significantly influence the computed energy flux. The thickness of the bottom boundary layer in the region is computed using a number of formulations. Depending upon the definition adopted, the empirical coefficient C used to determine its thickness varies over the range 0.1 to 0.3, in good agreement with values found in the literature. In the North Channel, the boundary layer thickness occupies the whole water depth, and hence tidal turbulence produced at the sea bed keeps the region well mixed. In the Clyde Sea, the boundary layer thickness is a small fraction of the depth, and hence the region stratifies.Responsible Editor: Phil Dyke  相似文献   

6.
With the exception of intermittency and waves, a brief review of the observed and modeled mean structure of the nocturnal boundary layer (NBL) is presented. The effect of gentle slopes on strong and weak wind NBL was investigated here using a one-dimensional model, with a simple correction term to account for the slope effects, identical to the one used by Brost and Wyngaard (1978). The study indicates that the wind profiles, temperature profiles and surface layer turbulence characteristics are extremely sensitive to the imposed geostrophic wind when small slopes are present especially for light winds. This is due to the complex interaction between the buoyancy driven slope flow and the imposed geostrophic wind that in turn influence the shear generation of turbulence. Finally, the current issues in the modeling of weak wind boundary layer are discussed.  相似文献   

7.
Water and energy fluxes are inextricably interlinked within the interface of the land surface and the atmosphere. In the regional earth system models, the lower boundary parameterization of land surface neglects lateral hydrological processes, which may inadequately depict the surface water and energy fluxes variations, thus affecting the simulated atmospheric system through land-atmosphere feedbacks. Therefore, the main objective of this study is to evaluate the hydrologically enhanced regional climate modelling in order to represent the diurnal cycle of surface energy fluxes in high spatial and temporal resolution. In this study, the Weather Research and Forecasting model (WRF) and coupled WRF Hydrological modelling system (WRF-Hydro) are applied in a high alpine catchment in Northeastern Tibetan Plateau, the headwater area of the Heihe River. By evaluating and intercomparing model results by both models, the role of lateral flow processes on the surface energy fluxes dynamics is investigated. The model evaluations suggest that both WRF and coupled WRF-Hydro reasonably represent the diurnal variations of the near-surface meteorological fields, surface energy fluxes and hourly partitioning of available energy. By incorporating additional lateral flow processes, the coupled WRF-Hydro simulates higher surface soil moisture over the mountainous area, resulting in increased latent heat flux and decreased sensible heat flux of around 20–50 W/m2 in their diurnal peak values during summertime, although the net radiation and ground heat fluxes remain almost unchanged. The simulation results show that the diurnal cycle of surface energy fluxes follows the local terrain and vegetation features. This highlights the importance of consideration of lateral flow processes over areas with heterogeneous terrain and land surfaces.  相似文献   

8.
非均匀灌溉棉田能量平衡特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
运用国际能量平衡实验(EBEX-2000)的湍流、净辐射和土壤观测资料,运用涡动相关法分析了非均匀灌溉引起的热内边界层发展条件下近地层感热、潜热通量特征,并对有无灌溉两种条件下的能量闭合度进行了对比分析.在计算感热、潜热通量过程中,分别将Schotanus订正和Webb订正纳入了考虑范围,研究了两种订正方法对计算湍流热通量的影响.研究结果发现,由于非均匀灌溉生成的热内边界层使得近地层感热通量受到抑制,潜热通量出现波动,该现象在8.7 m比2.7 m 更为显著.非均匀灌溉导致的热内边界层的存在使得近地层能量闭合度偏低,能量平衡比率约为0.65;而没有热内边界层存在时,近地层能量平衡比率约为0.70.本实验中,Schotanus订正使得感热通量显著减小,其订正量日平均值约为-8 W/m2,占净辐射的近4%;Webb订正量日平均值约为2 W/m2,对能量平衡的影响较小.  相似文献   

9.
Effects of convective and mechanical turbulence at the entrainment zone are studied through the use of systematic Large-Eddy Simulation (LES) experiments. Five LES experiments with different shear characteristics in the quasi-steady barotropic boundary layer were conducted by increasing the value of the constant geostrophic wind by 5 m s-1 until the geostrophic wind was equal to 20 m s-1. The main result of this sensitivity analysis is that the convective boundary layer deepens with increasing wind speed due to the enhancement of the entrainment heat flux by the presence of shear. Regarding the evolution of the turbulence kinetic energy (TKE) budget for the studied cases, the following conclusions are drawn: (i) dissipation increases with shear, (ii) the transport and pressure terms decrease with increasing shear and can become a destruction term at the entrainment zone, and (iii) the time tendency of TKE remains small in all analyzed cases. Convective and local scaling arguments are applied to parameterize the TKE budget terms. Depending on the physical properties of each TKE budget contribution, two types of scaling parameters have been identified. For the processes influenced by mixed-layer properties, boundary layer depth and convective velocity have been used as scaling variables. On the contrary, if the physical processes are restricted to the entrainment zone, the inversion layer depth, the modulus of the horizontal velocity jump and the momentum fluxes at the inversion appear to be the natural choices for scaling these processes. A good fit of the TKE budget terms is obtained with the scaling, especially for shear contribution.  相似文献   

10.
The vertical structures and their dynamical character of PM2.5 and PM10 over Beijing urban areas are revealed using the 1 min mean continuous mass concentration data of PM2.5 and PM10 at 8, 100, and 320 m heights of the meteorological observation tower of 325 m at Institute of Atmospheric Physics, Chinese Academy of Sciences (IAP CAS tower hereafter) on 10―26 August, 2003, as well as the daily mean mass concentration data of PM2.5 and PM10 and the continuous data of CO and NO2 at 8, 100 (low layer), 200 (middle layer), and 320 m (high layer) heights, in combination with the same period meteorological field observation data of the meteorological tower. The vertical distributions of aerosols observed on IAP CAS tower in Beijing can be roughly divided into two patterns: gradually and rapidly decreasing patterns, I.e. The vertical distribution of aerosols in calm weather or on pollution day belongs to the gradually decreasing pattern, while one on clean day or weak cold air day belongs to the rapidly decreasing pattern. The vertical distributive characters of aerosols were closely related with the dynamical/thermal structure and turbulence character of the atmosphere boundary layer. On the clean day, the low layer PM2.5 and PM10 concentrations were close to those at 8 m height, while the concentrations rapidly decreased at the high layer, and their values were only one half of those at 8 m, especially, the concentration of PM2.5 dropped even more. On the clean day, there existed stronger turbulence below 150 m, aerosols were well mixed, but blocked by the more stronger inversion layer aloft, and meanwhile, at various heights, especially in the high layer, the horizontal wind speed was larger, resulting in the rapid decrease of aerosol concentration, I.e. Resulting in the obvious vertical difference of aerosol concentrations between the low and high layers. On the pollution day, the concentrations of PM2.5 and PM10 at the low, middle, and high layers dropped successively by, on average, about 10% for each layer in comparison with those at 8 m height. On pollution days, in company with the low wind speed, there existed two shallow inversion layers in the boundary layer, but aerosols might be, to some extent, mixed below the inversion layer, therefore, on the pollution day the concentrations of PM2.5 and PM10 dropped with height slowly; and the observational results also show that the concentrations at 320 m height were obviously high under SW and SE winds, but at other heights, the concentrations were not correlated with wind directions. The computational results of footprint analysis suggest that this was due to the fact that the 320 m height was impacted by the pollutants transfer of southerly flow from the southern peripheral heavier polluted areas, such as Baoding, and Shijiazhuang of Hebei Province, Tianjin, and Shandong Province, etc., while the low layer was only affected by Beijing's local pollution source. The computational results of power spectra and periods preliminarily reveal that under the condition of calm weather, the periods of PM10 concentration at various heights of the tower were on the order of minutes, while in cases of larger wind speed, the concentrations of PM2.5 and PM10 at 320 m height not only had the short periods of minute-order, but also the longer periods of hour order. Consistent with the conclusion previously drawn by Ding et al., that air pollutants at different heights and at different sites in Beijing had the character of "in-phase" variation, was also observed for the diurnal variation and mean diurnal variation of PM2.5 and PM10 at various heights of the tower in this experiment, again confirming the "in-phase" temporal/spatial distributive character of air pollutants in the urban canopy of Beijing. The gentle double-peak character of the mean diurnal variation of PM2.5 and PM10 was closely related with the evident/similar diurnal variation of turbulent momentum fluxes, sensible heat fluxes, and turbulent kinetic energy at various heights in the urban canopy. Besides, under the condition of calm weather, the concentration of PM2.5 and PM10 declined with height slowly, it was 90% of 8 m concentration at the low layer, a little lesser than 90% at the middle layer, and 80% at the high layer, respectively. Under the condition of weak cold air weather, the concentration remarkably dropped with height, it was 70% of 8 m concentration at the low layer, and 20%―30% at the middle and high layers, especially the concentration of PM2.5 was even lower.  相似文献   

11.
本文利用2006年夏季大气边界层观测资料,采用涡动相关法分析了我国西北地区戈壁下垫面碳收支及水热循环的规律和特征,并分析了大气湍流特征.结果表明:夏季白天的CO2湍流通量呈逆输送特征,即CO2白天向下输送,夜间向上输送,平均数值为-0.199 mg·m-2·s-1,整体上表现为碳汇;戈壁地区湿度小,其数值受水平来流的影响较大,日变化特征不明显;温度的归一化标准差与稳定度参数的关系满足Monin-Obukhov Similarity (MOS)理论;温度和CO2的能谱相似;互谱uc与uθ,wc与wθ相似;水汽和CO2的输送主要受水平方向湍流的影响.  相似文献   

12.
Multiscale analysis of vegetation surface fluxes: from seconds to years   总被引:2,自引:0,他引:2  
The variability in land surface heat (H), water vapor (LE), and CO2 (or net ecosystem exchange, NEE) fluxes was investigated at scales ranging from fractions of seconds to years using eddy-covariance flux measurements above a pine forest. Because these fluxes significantly vary at all these time scales and because large gaps in the record are unavoidable in such experiments, standard Fourier expansion methods for computing the spectral and cospectral statistical properties were not possible. Instead, orthonormal wavelet transformations are proposed and used. The are ideal at resolving process variability with respect to both scale and time and are able to isolate and remove the effects of missing data (or gaps) from spectral and cospectral calculations. Using the spectra, we demonstrated unique aspects in three appropriate ranges of time scales: turbulent time scales (fractions of seconds to minutes), meteorological time scales (hour to weeks), and seasonal to interannual time scales corresponding to climate and vegetation dynamics. We have shown that: (1) existing turbulence theories describe the short time scales well, (2) coupled physiological and transport models (e.g. CANVEG) reproduce the wavelet spectral characteristics of all three land surface fluxes for meteorological time scales, and (3) seasonal dynamics in vegetation physiology and structure inject strong correlations between land surface fluxes and forcing variables at monthly to seasonal time scales. The broad implications of this study center on the possibility of developing low-dimensional models of land surface water, energy, and carbon exchange. If the bulk of the flux variability is dominated by a narrow band or bands of modes, and these modes “resonate” with key state and forcing variables, then low-dimensional models may relate these forcing and state variables to NEE and LE.  相似文献   

13.
Abstract

The nonlinear equations of motion are integrated numerically in time for a region of x‐y‐z space of volume 3h × h × h, where h turns out to be a height slightly above the level where the wind first attains the geostrophic flow direction. Only the ideal case is treated of a horizontal lower boundary, neutral stability, horizontal homogeneity of all dependent mean variables except the mean pressure, and statistically steady state. The resulting flow patterns are turbulent and the eddies transport required amounts of momentum vertically.

Topics which are investigated include the relative directions of stress, wind shear and wind; differences in Ekman wind spirals for the neutral numerical case and a stable atmospheric case; profiles of dimensionless turbulence statistics; effect of allowing the mean density to be either constant or to decrease with height; effect of the wind direction or latitude upon the turbulence intensities; and characteristic structure of the eddies in the planetary boundary layer.  相似文献   

14.
— The process of dispersion of air pollutants, in a broad sense, can be considered as the net outcome of various mechanisms involved in the transport of air pollutants from the source to the receptor. The major mechanisms are: (1) advection of pollutants by mean air motion, (2) mixing of pollutants by atmospheric turbulence and (3) mass diffusion due to concentration gradients. In addition, the physical and chemical nature of the effluent, the location of the stack and the nature of the terrain downwind from the stack, effect the dispersion of the pollutants. Various physical and mathematical aspects related to the transport and diffusion of air pollutants in the atmospheric boundary layer are discussed here. Further, some aspects of dispersion in a weak wind stable boundary layer are described. Finally, the current issues in the modeling of weak wind boundary layer are illustrated.  相似文献   

15.
鄱阳湖夏季水热通量特征及环境要素影响分析   总被引:2,自引:2,他引:0  
气候变化加速了全球水文循环过程,然而,气候变化如何影响水体蒸发及其水热通量交换仍然不清楚.基于涡度相关系统观测鄱阳湖水体水热通量过程,在小时和日尺度分析了水热通量的变化规律及其主要影响因子.研究表明,潜热通量日变化波动剧烈,大部分为正值,变化范围在-50~580 W/m2之间.而感热通量数值较小,变化范围在-50~50 W/m2之间.8月份潜热通量和感热通量均呈波动下降趋势,均值分别为167.4和15.9 W/m2.8月份日平均潜热通量和感热通量之和大于净辐射,这是由于这一时段储存在水体中的热量释放并补充潜热通量和感热通量.小时尺度上潜热通量日变化在相位上与净辐射无显著相关性,而与风速显著相关.在日尺度变化趋势上,8月份日平均潜热通量仍主要受到风速和水温的影响,感热通量则主要受到风速和饱和水汽压差的影响.  相似文献   

16.
Based on the ultrasonic anemometer/thermometer data in the East Antarctic coastal area ice sheets ob-tained first by Chinese scientists, turbulent intensity, kinetic energy and sensible heat of turbulence, surface roughness height drag coefficient and normalized variation were calculated and analysed using the eddy-correlation method. The results show that the values of roughness height and drag coefficient are 4.3 X 10 m and 1.8x 10 -3, respectively. These turbulent parameters have apparent diurnal variations. Project supported by the National Natural Science Foundation of China (Grant No. 49675252).  相似文献   

17.
We have carried out a series of recordings reproducing the small scale structures of temperature and windspeed within the boundary layer. The results obtained have been processed by computer and a direct comparison made between the slope of the spectral density functions and the theoretical slopen=5/3 defining the turbulence in the region of the inertial subrange.The measurements made at various altitudes on thin atmospheric samples demonstrate the variability of the spectral density slope with altitude. The hypotheses put forward by A. M. Obukhov, R. Bolgiano, G. H. Shur, P. Misme, A. Monin or S. Panchev, for example, enable the spectral variations and certain discontinuities in the turbulence observed during the experiments, within and beyond the boundary layer, to be explained.
  相似文献   

18.
The PROMICS-3 instrument on Interball-2 is nominally identical to the PROMICS-3 instrument on Interball-1. It performs three-dimensional measurements of ions in the energy range 4 eV–70 keV with mass separation and of electrons in the energy range 300 eV–35 keV. Interball-2 was launched on August 29, 1996, into an orbit with the same inclination as that of Interball-1, 63°, but with apogee at 20 000 km. In this study the PROMICS-3 instrument on Interball-2 is briefly described and examples of the first results are presented. Firstly, we report observations of upward moving molecular ions with energies of up to 700 eV at the poleward edge of the auroral oval. Previous observations of outflowing molecular ions have been at lower altitudes and lower energies. Secondly, we show observations of dawnside magnetosheath plasma injections. Using conjugate data from both PROMICS-3 instruments we have found dispersion structures above the morningside auroral oval, which occurred simultaneously with isolated “pockets” of magnetosheath plasma at a distance of XGSM = −14 to −12 RE, which had been injected into the inner part of the low-latitude boundary layer. These isolated plasma structures were sites of strong field-aligned currents and are proposed to be the magnetospheric counterparts of the dispersion structures.  相似文献   

19.
大气边界层湍流的动力非平稳性的验证   总被引:7,自引:1,他引:6       下载免费PDF全文
首次用验证时间序列中是否存在动力非平稳性的一种简单图示方法——space time index法来分析大气边界层湍流的动力平稳性特征.本文以取自淮河流域和威斯康星森林下垫面条件下的三维高精度风速和温度、湿度湍流脉动资料对大气边界层湍流的平稳性特征进行了分析.结果表明space time index方法能有效地检验大气边界层湍流信号中是否存在动力平稳性.另外,均匀下垫面条件(水稻田)及复杂下垫面条件(森林)下的大气边界层湍流信号中几乎都存在动力非平稳性,大气湍流动力学非平稳性可能是边界层湍流信号相当普遍具有的一种特性.大气边界层湍流中的间歇性和相干结构使得其非平稳性图形的特征不同于一般时间序列非平稳性图形的“V”型特征;森林下垫面条件下的湍流信号比相对均匀下垫面(水稻田)下的湍流信号更有组织性,相干结构更强.  相似文献   

20.
Using a coupled large‐eddy simulation–land surface model framework, the impact of two‐dimensional soil moisture heterogeneity on the cloudy boundary layer under varied free‐atmosphere stabilities is investigated. Specifically, the impacts of soil moisture heterogeneity length scale and heterogeneity in terms of soil moisture gradients on micrometeorological states, surface fluxes, boundary layer characteristics, and cloud development are examined. The results show that mesoscale circulations due to surface heterogeneity in soil moisture play an important role in transferring water vapour within the boundary layer and in regulating cloud distribution at the entrainment zone, which, in turn, provides feedbacks on boundary layer/surface energy budgets. The initial domain‐averaged soil moisture is identical for all homogenous and heterogeneous cases; however, the soil moisture heterogeneity in gradient and length scale between dry and wet regions has a significant impact on the estimates of near‐surface micrometeorological properties and surface fluxes, which further affect the boundary layer states and characteristics. Both liquid water potential temperature and liquid water mixing ratio increase with an increasing soil moisture gradient, whereas the amount of specific humidity decreases. Heterogeneity length scale and free atmosphere stability also amplify these impacts on the boundary layer structure and cloud formation. In a low atmospheric stability condition that potentially allows for a deeper boundary layer and a higher entrainment rate, cloud base height and cloud thickness significantly increase as the soil moisture gradient and length scale increase. Analysis to differentiate the influences of surface heterogeneity type (i.e. length scale vs gradient) shows that in general soil moisture gradient provides a larger impact than heterogeneity length scale, although the heterogeneity length scale is large enough to initiate circulation features responsible for differences in the coupled system between homogeneous and heterogeneous soil moisture cases. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号