首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
Examination of ENSO events and the accumulated precipitation and δ~(18)O values recorded in theGuliya ice core,China,shows that the relationship between the occurrence of ENSO events and theprecipitation anomaly in Guliya is significant.In the years of El Nino events,the anomalies ofprecipitation and δ~(18)O values in the Guliya ice core were negative anomalies,that is,the ENSO eventsare related to the deficit of precipitation as well as low temperature in the western China.  相似文献   

2.
Examination of ENSO events and the accumulated precipitation and δ18O values recorded in the Guliya ice core,China,shows that the relationship between the occurrence of ENSO events and the precipitation anomaly in Guliya is significant.In the years of El Nino events,the anomalies of precipitation and δ18O values in the Guliya ice core were negative anomalies,that is,the ENSO events are related to the deficit of precipitation as well as low temperature in the western China.  相似文献   

3.
We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

4.
Qinghai Lake, China, is located near the northern limit of the East Asian summer monsoon (EASM) and thus is an ideal region for studies of past monsoonal changes. However, isotope records from this region reflect the combined effects of multiple climatic factors, and make climatic interpretations difficult. The authors use multi-proxy records, generated from the same sediment core from Qinghai Lake, to disentangle these multiple effects in isotope records and to infer EASM variability during the late Holocene. Records of leaf wax (C2s) δD, lake carbonate 5180 and the Dunde ice core δ18O all indicate a millennial-scale depletion of mean isotopic values at -1500-1250 years before present. Compared with independent lake temperature and salinity records, the authors suggest that this depletion of long-term mean isotopic values must have resulted from changes in moisture sources in this region. In contrast, the authors attribute high-frequency (centennial timescale) C2s δD and ice core δ18O variability dominantly to a temperature effect. The multiproxy records provide a coherent picture in that many aspects of this regional climate (temperature, dryness, and moisture source) are strongly linked to the EASM variability.  相似文献   

5.
This paper provides a review of paleoclimate modeling activities in China. Rather than attempt to cover all topics, we have chosen a few climatic intervals and events judged to be particularly informative to the international community. In historical climate simulations, changes in solar radiation and volcanic activity explain most parts of reconstructions over the last millennium prior to the industrial era, while atmospheric greenhouse gas concentrations play the most important role in the20 th century warming over China. There is a considerable model–data mismatch in the annual and boreal winter temperature change over China during the mid-Holocene [6000 years before present(ka BP)], while coupled models with an interactive ocean generally perform better than atmospheric models. For the Last Glacial Maximum(21 ka BP), climate models successfully reproduce the surface cooling trend over China but fail to reproduce its magnitude, with a better performance for coupled models. At that time, reconstructed vegetation and western Pacific sea surface temperatures could have significantly affected the East Asian climate, and environmental conditions on the Qinghai–Tibetan Plateau were most likely very different to the present day. During the late Marine Isotope Stage 3(30–40 ka BP), orbital forcing and Northern Hemisphere glaciation, as well as vegetation change in China, were likely responsible for East Asian climate change. On the tectonic scale,the Qinghai–Tibetan Plateau uplift, the Tethys Sea retreat, and the South China Sea expansion played important roles in the formation of the East Asian monsoon-dominant environment pattern during the late Cenozoic.  相似文献   

6.
The ten-year mean anomalies of seasonal and annual temperatures were reconstructed on the basis ofhistorical documents of cold events such as severe snowing and freezing of lakes and rivers.The assorted eventswere calibrated with instrumental observations of temperature and transformed into ten-year mean anomalies.The reconstructed temperature series show predominance of cold climate in the first four hundred years of theperiod examined.The centenary seasonal temperature anomalies for the 16th to the 19th century vary between-0.1 and -0.7K.The coldest decades concentrated in the middle of 17th and 19th centuries.It provided theirrefutable evidence of the occurrence of the Little Ice Age in China.The minima of ten-year mean temperatureanomalies ranged about -1.5 to 2.0K in spring and winter.Meanwhile,the variance of ten-year mean tempera-ture was increased by more than 20% in comparison to the 20th century.  相似文献   

7.
1. IntroductionAccording to the reconstruction of paleo-temperature based on δ18 O data of ice core in theGreenland (see Jouzel et al., 1987; Grootes et al.,1993; Blunier and Brook, 2001), the current inter-glacial epoch, the Holocene, began at ca. 11.5 thou-sand years before present (ka BP). Multiple sources(pollen data, macrofossils) reveal that the summer cli-mate in the Northern Hemisphere was warmer in theearly to middle Holocene (MH) (ca. 8-6ka BP) relativeto the present climate. …  相似文献   

8.
A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant temperature drop and an aridiflcation occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support this dedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia has been attributed to climate-induced aridification. A widespread alternation of the ancient cultures was also found in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeoclimatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the cold phase in millennial scale climate oscillations, which may be related to the modulation of the Thermohaline Circulation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment of a GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop in temperature from North Europe, the northern middle East Asia, and northern East Asia  相似文献   

9.
Several consecutive extreme cold events impacted China during the first half of winter 2020/21,breaking the low-temperature records in many cities.How to make accurate climate predictions of extreme cold events is still an urgent issue.The synergistic effect of the warm Arctic and cold tropical Pacific has been demonstrated to intensify the intrusions of cold air from polar regions into middle-high latitudes,further influencing the cold conditions in China.However,climate models failed to predict these two ocean environments at expected lead times.Most seasonal climate forecasts only predicted the 2020/21 La Ni?a after the signal had already become apparent and significantly underestimated the observed Arctic sea ice loss in autumn 2020 with a 1-2 month advancement.In this work,the corresponding physical factors that may help improve the accuracy of seasonal climate predictions are further explored.For the 2020/21 La Ni?a prediction,through sensitivity experiments involving different atmospheric-oceanic initial conditions,the predominant southeasterly wind anomalies over the equatorial Pacific in spring of 2020 are diagnosed to play an irreplaceable role in triggering this cold event.A reasonable inclusion of atmospheric surface winds into the initialization will help the model predict La Ni?a development from the early spring of 2020.For predicting the Arctic sea ice loss in autumn 2020,an anomalously cyclonic circulation from the central Arctic Ocean predicted by the model,which swept abnormally hot air over Siberia into the Arctic Ocean,is recognized as an important contributor to successfully predicting the minimum Arctic sea ice extent.  相似文献   

10.
In mountainous lake areas, lake–land and mountain–valley breezes interact with each other, leading to an "extended lake breeze". These extended lake breezes can regulate and control energy and carbon cycles at different scales. Based on meteorological and turbulent fluxes data from an eddy covariance observation site at Erhai Lake in the Dali Basin,southwest China, characteristics of daytime and nighttime extended lake breezes and their impacts on energy and carbon dioxide exchange in 2015 are investigated. Lake breezes dominate during the daytime while, due to different prevailing circulations at night, there are two types of nighttime breezes. The mountain breeze from the Cangshan Mountain range leads to N1 type nighttime breeze events. When a cyclonic circulation forms and maintains in the southern part of Erhai Lake at night, its northern branch contributes to the formation of N2 type nighttime breeze events. The prevailing wind directions for daytime, N1, and N2 breeze events are southeast, west, and southeast, respectively. Daytime breeze events are more intense than N1 events and weaker than N2 events. During daytime breeze events, the lake breeze decreases the sensible heat flux(Hs) and carbon dioxide flux(FCO_2) and increases the latent heat flux(LE). During N1 breeze events, the mountain breeze decreases Hs and LE and increases FCO_2. For N2 breeze events, the southeast wind from the lake surface increases Hs and LE and decreases suppress carbon dioxide exchange.  相似文献   

11.
We review here proxy records of temperatare and precipitation in China during the Holocene,especially the last two millennia.The quality of proxy data,methodology of reconstruction,and uncertainties in reconstruction were emphasized in comparing different temperatare and precipitation reconstruction and clarilying temporal and spatial patterns of temperature and precipitation during the Holocene.The Holocene climate was generally warm and wet.The warmest period occurred in 9.6-6.2 cal ka BP,whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.O-5.0 cal ka BP.There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes.During past two millennia,a warming trend in the 20th century was clearly detected,but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene.Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900),but the warming of the Medieval Warm Period(AD 900-AD 1300)was not distinct in China,especially west China.The spatial pattern of precipitation showed significant regional differences in China,especially east China.The modern warm period has lasted 20、years from 1987 to 2006.Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

12.
洱海流域近50年气候变化特征及其对洱海水资源的影响   总被引:7,自引:0,他引:7  
黄慧君  王永平  李庆红 《气象》2013,39(4):436-442
利用1961-2010年洱海流域的气候和洱海水资源等资料,统计分析了洱海流域气候变化特征及不同气候类型对洱海水资源量的影响,并建立了洱海水资源量与洱海流域降水量、气温的定量关系,对洱海水资源量进行定量估计.结果表明:近50年洱海流域气温呈波动上升趋势,气候变暖明显;21世纪的第一个10年是洱海流域近50年来最暖的10年.年降水量总体上呈减少趋势.洱海水资源量与年降水量之间有显著的正相关关系,而与气温呈明显的负相关关系.洱海流域气候类型在20世纪60和70年代以偏冷和偏湿为主,进入80年代后开始出现暖年,特别是21世纪的第一个10年,气候以偏暖和偏干为主,未出现过偏冷年.在偏干和偏暖的年份洱海水资源均为枯水年;而偏湿和偏冷的年份洱海水资源多为丰水年;气候正常的年份,洱海水资源多为正常.可根据洱海流域未来气候趋势的预测结果,分别通过气候类型及回归预测方程对洱海水资源的丰欠作定性的估计和定量的预测.  相似文献   

13.
ENSO Events Recorded in the Guliya Ice Core   总被引:7,自引:0,他引:7  
Based on the ENSO chronology and climatic information recovered from the Guliya ice core in the Tibetan Plateau, China, the ENSO teleconnection was investigated. The results showed that the negative precipitation anomalies are significantly associated with El Niño years but poorly with negative anomaly of 18O. Thus, the ice core records can be used as an archive of extremely global climate anomalies such as ENSO events.  相似文献   

14.
采用正交小波分解研究了近2 ka来青藏高原古里雅冰芯记录的气温和冰川积累量演变多尺度特征,得到了与构成序列中主要气候事件对应的尺度分量。用130 a尺度以上分量几乎可以重建冰芯记录中的主要冷暖或干湿气候事件。平均而言,温度和冰川积累量配置在大多数时间尺度上都呈正相关,即暖湿/冷干配置,但在130 a尺度上是负相关,即冷湿/暖干配置。20世纪以来的快速增暖增湿发生在260 a尺度上。线性增暖趋势和千年尺度分量都是暖湿/冷干配置并占有较大的方差,它们在很大程度上左右着百年尺度上的温湿配置。二者的结合直接导致千年尺度上温湿配置在8世纪出现由冷湿/暖干向暖湿/冷干气候型的转变。  相似文献   

15.
Based on previous climate model simulations of a split of the polar jet stream during the late Pleistocene, we hypothesize that (1) 20–13.5 ka BP, season-to-season variation in the latitudinal maximum of the jet stream core led to enhanced wetness in the Great Basin, and (2) after 13.5 ka BP, northward movement of the jet stream resulted in increased aridity similar to today. We suggest that the enhanced effective wetness was due to increased precipitation combined with an energy-limited reduction in evaporation rates that was caused by increased summer cloud cover. A physically based thermal evaporation model was used to simulate evaporation for Lake Lahontan under various hypothesized paleoclimates. The simulated evaporation rates, together with hypothetical rates of precipitation and discharge, were input to a water balance model of Lake Lahontan. A 42% reduction in evaporation rate, combined with maximum historical rates of precipitation (1.8 times the mean annual rate) and discharge (2.4 times the mean annual rate), were sufficient to maintain Lake Lahontan at its 20-15 ka BP level. When discharge was increased to 3.8 times the present-day, mean annual rate, the 13.5 ka BP maximum level of Lake Lahontan was attained within 1400 years. A 135-m drop from the maximum level to Holocene levels was simulated within 300 years under the imposition of the present-day hydrologic balance.  相似文献   

16.
Simultaneous measurements of soluble and insoluble impurities were made on the 950 m deep Vostok (78°30′S, 106°54′E, 3420 m a.s.l.) ice core, spanning roughly 50000 yr, using various analytical techniques. We observed higher continental (×37) and marine (×5.1) inputs during the last glacial age than during the Holocene stage. A study of microparticle compositions and of volcanic indicators (Zn, H2SO4), shows that the high observed crustal input is not due to enhanced volcanism, but is rather of continental eolian origin. For the first time, the ionic balance along a deep ice core is established, mainly used in discussing the evolution of the Cl to Na ratio over central East Antarctica with changing climatic conditions: the presence of relatively high amounts of Na2SO4 in the marine aerosol at the Vostok site during the Holocene is demonstrated. Comparison with the Dome C (74°39′S, 124°10′E, 3040 m a.s.l.) results confirms the chronology of the major events: (i) maximum terrestrial input around the last glacial maximum (~18 ka BP); (ii) end of the high continental flux over Antarctica near 13 ka BP; (iii) marine input varying in an opposing manner to isotopic fluctuations with rather high concentrations beginning to decrease when isotopic values increase and reaching Holocene values at the end of the transition between cold and warmer climate conditions. Detailed comparison with results provided by deep ice cores from other sites which are probably more influenced by oceanic air masses seems to indicate that most of the aerosol reaching central East Antarctica travel over large distance probably at rather high altitude through the troposphere. We can consider that central East Antarctica is well representative of the upper part of the troposphere (higher than i.e., 3000 m) and should, therefore, provide valuable data for global and Antarctic paleoclimatological models.  相似文献   

17.
The 2191 m long ice core recovered at Byrd Station Antarctica in 1968 (BS68) was measured continuously by an electrical conductivity method (ECM). The ECM curve inferes the acidity of seasonal ice layers and major peaks, which identify clearly intermediate and prominent past volcanic activity over the last 50,000 years. We here also present recent data for a suite of the most striking volcanic events that occurred around 17.5 ka ± 0.5 BP. These events emitted enormous amounts of HCl and HF into the atmosphere.  相似文献   

18.
A striking characteristic of glacial climate in the North Atlantic region is the recurrence of abrupt shifts between cold stadials and mild interstadials. These shifts have been associated with abrupt changes in Atlantic Meridional Overturning Circulation (AMOC) mode, possibly in response to glacial meltwater perturbations. However, it is poorly understood why they were more clearly expressed during Marine Isotope Stage 3 (MIS3, ~60?C27?ka BP) than during Termination 1 (T1, ~18?C10?ka BP) and especially around the Last Glacial Maximum (LGM, ~23?C19?ka BP). One clue may reside in varying climate forcings, making MIS3 and T1 generally milder than LGM. To investigate this idea, we evaluate in a climate model how ice sheet size, atmospheric greenhouse gas concentration and orbital insolation changes between 56?ka BP (=56k), 21k and 12.5k affect the glacial AMOC response to additional freshwater forcing. We have performed three ensemble simulations with the earth system model LOVECLIM using those forcings. We find that the AMOC mode in the mild glacial climate type (56k and 12.5k), with deep convection in the Labrador Sea and the Nordic Seas, is more sensitive to a constant 0.15?Sv freshwater forcing than in the cold type (21k), with deep convection mainly south of Greenland and Iceland. The initial AMOC weakening in response to freshwater forcing is larger in the mild type due to an early shutdown of Labrador Sea deep convection, which is completely absent in the 21k simulation. This causes a larger fraction of the freshwater anomaly to remain at surface in the mild type compared to the cold type. After 200?years, a weak AMOC is established in both climate types, as further freshening is compensated by an anomalous salt advection from the (sub-)tropical North Atlantic. However, the slightly fresher sea surface in the mild type facilitates further weakening of the AMOC, which occurs when a surface buoyancy threshold (?0.6?kg?m?3 surface density anomaly to the 56k reference state) is stochastically crossed in the Nordic Seas. While described details are model-specific, our results imply that a more northern location of deep convection sites during milder glacial times may have amplified frequency and amplitude of abrupt climate shifts.  相似文献   

19.
A great deal of palaeoenvironmental and palaeoclimatic evidence suggests that a predominant tem-perature drop and an aridification occurred at ca. 4.0 ka BP. Palaeoclimate studies in China support thisdedution. The collapse of ancient civilizations at ca. 4.0 ka BP in the Nile Valley and Mesopotamia hasbeen attributed to climate-induced aridification. A widespread alternation of the ancient cultures was alsofound in China at ca. 4.0 ka BP in concert with the collapse of the civilizations in the Old World. Palaeo-climatic studies indicate that the abrupt climate change at 4.0 ka BP is one of the realizations of the coldphase in millennial scale climate oscillations, which may be related to the modulation of the ThermohalineCirculation (THC) over the Atlantic Ocean. Therefore, this study conducts a numerical experiment ofa GCM with SST forcing to simulate the impact of the weakening of the THC. Results show a drop intemperature from North Europe, the northern middle East Asia, and northern East Asia and a significantreduction of precipitation in East Africa, the Middle East, the Indian Peninsula, and the Yellow RiverValley. This seems to support the idea that coldness and aridification at ca. 4.0 ka BP was caused by theweakening of the THC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号