首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
Abstract Cangrejo and Bulkhead Shoals are areally extensive, Holocene biodetrital mud‐mounds in northern Belize. They encompass areas of 20 km2 and 35 km2 in distal and proximal positions, respectively, on a wide and shallow‐water, microtidal carbonate shelf where storms are the major process affecting sediment dynamics. Sediments at each mound are primarily biodetrital and comprise part of a eustatically forced, dominantly subtidal cycle with a recognizable deepening‐upward transgressive systems tract, condensed section and shallowing‐upward highstand systems tract. Antecedent topographic relief on Pleistocene limestone bedrock also provided marine accommodation space for deposition of sediments that are a maximum of 7·6 m thick at Cangrejo and 4·5 m thick at Bulkhead. Despite differences in energy levels and location, facies and internal sedimentological architectures of the mud‐mounds are similar. On top of Pleistocene limestone or buried soil developed on it are mangrove peat and overlying to laterally correlative shelly gravels. Deposition of these basal transgressive, premound facies tracked the rapid rate of sea‐level rise from about 6400–6500 years BP to 4500 years BP, and the thin basal sedimentation unit of the overlying mound‐core appears to be a condensed section. Following this, the thick and complex facies mosaic comprising mound‐cores represents highstand systems tract sediments deposited in the last ≈ 4500 years during slow and decelerating sea‐level rise. Within these sections, there is an early phase of progradationally offlapping catch‐up deposition and a later (and current) phase of aggradational keep‐up deposition. The mound‐cores comprise stacked storm‐deposited autogenic sedimentation units, the upper bounding surfaces of which are mostly eroded former sediment–water interfaces below which depositional textures have largely been overprinted by biogenic processes associated with Thalassia‐colonized surfaces. Vertical stacking of these units imparts a quasi‐cyclic architecture to the section that superficially mimics metre‐scale parasequences in ancient rocks. The locations of the mud‐mounds and the tidal channels transecting them have apparently been stable over the last 50 years. Characteristics that might distinguish these mud‐mounds and those mudbanks deposited in more restricted settings such as Florida Bay are their broad areal extent, high proportion of sand‐size sediment fractions and relatively abundant biotic particles derived from adjoining open shelf areas.  相似文献   

2.
Grey shale Member of the Dalmiapuram Formation, Ariyalur Group, Cauvery Basin, India was studied for its stratigraphic position, age, and paleobathymetry with a re-look into the lithological relationship and foraminifer assemblages in the deepened limestone mine excavations at M/s Dalmia Cements, Dalmiapuram. Twenty grey shale samples from Kovandankurchchi (pit-4) and Kallakkudi mines yielded diversified calcareous, benthic, and rare index planktic foraminifera. The foraminiferal assemblages suggest a latest Albian age and middle neritic depositional conditions. The abundance of kaolinite and smectite clay minerals relate to warm/humid climate which corroborate with rising relative sea level during grey shale deposition. The grey shale occurs in patches within the marl bedded limestone member which exhibits cyclic deposition of limestone and marl. The limestone mine sections demonstrate that the grey shale forms part of basal marl bedded limestone, directly overlying the coral algal limestone. The present study demonstrates that the grey shale outcrops in Dalmiapuram Formation should be placed stratigraphically as part of marl bedded limestone. The member status for grey shale which is current usage stands discounted.  相似文献   

3.
Postulated extreme sea-level rise of up to 1-1.5 km with the late Cryogenian Ghaub deglaciation in Namibia is contentious,as is the great rapidity(<104 yr)of the sea-level rise.Such extreme glacioeustatic events,if real,would have been global and affected all continents.In South Australia,up to six glacial advances and retreats during the late Cryogenian Elatina glaciation indicate a fluctuating ice margin.The latter stage of the Elatina glaciation and the immediate post-glacial environment are examined here for evidence of extreme and rapid sea-level rise.In the central Adelaide Rift Complex,diamictite with faceted and striated clasts occurs at the top of the Elatina Formation<1-2 m beneath the early Ediacaran Nuccaleena Formation’cap carbonate’.One hundred kilometres to the south,~30 m of siltstone and sandstone followed by^6 m of clast-poor diamictite with clasts 10+cm long occur between tidal rhythmites and the cap carbonate.Three hundred kilo metres further south,~70 m of siltsto ne,dolo mitic siltstone and minor dolomite separate tidal rhythmites and early Ediacaran strata.Hence the rhythmites were deposited during a high stand(interstadial or interglacial),not during post-glacial sea-level rise.Storm-generated erosional surfaces within tidal rhythmites at Warren Gorge indicate intermittent rhythmite deposition,and water depth and other palaeoenvironmental factors are uncertain,casting doubt on a published estimate of rapid sea-level rise during rhythmite deposition.The lack of late Cryogenian deeply incised valleys and thick valley-fill deposits in South Australia and central Australia argues against extreme sea-level variations.A hiatus occurred between Elatina deglaciation and deposition of the Nuccaleena cap carbonate,and three palaeomagnetic polarity chrons identified in the cap carbonate imply slow deposition spanning 10^5-10^6 yr.This is supported by independent evidence from magnetic chronostratigraphy for Ediacaran strata in South Australia and California,and by stratigraphic and sedimentological arguments for condensed deposition of cap carbonates.It is concluded that neither extreme nor rapid sea-level rise was associated with late Cryogenian deglaciation in South Australia.  相似文献   

4.
河北柳江盆地中晚寒武世藻类丘礁的演化   总被引:5,自引:0,他引:5  
河北柳江盆地中晚寒武世藻类丘礁十分发育,并形成完好纵向演化序列。藻礁具有两个演化方向,其一是骨骼钙藻Epiphyton向非骨骼蓝绿藻方向演化;其二是块状藻丘向厚层状叠层石礁方向演化。藻类丘礁的演化特征及其沉积相序揭示了该区中晚寒武世时从碳酸盐台地边缘斜坡至台缘浅滩和潮坪环境的演化历史。  相似文献   

5.
This study formulates a comprehensive depositional model for hydromagnesite–magnesite playas. Mineralogical, isotopic and hydrogeochemical data are coupled with electron microscopy and field observations of the hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Four surface environments are recognized: wetlands, grasslands, localized mounds (metre‐scale) and amalgamated mounds composed primarily of hydromagnesite [Mg5(CO3)4(OH)2·4H2O], which are interpreted to represent stages in playa genesis. Water chemistry, precipitation kinetics and depositional environment are primary controls on sediment mineralogy. At depth (average ≈ 2 m), Ca–Mg‐carbonate sediments overlay early Holocene glaciolacustrine sediments indicating deposition within a lake post‐deglaciation. This mineralogical change corresponds to a shift from siliciclastic to chemical carbonate deposition as the supply of fresh surface water (for example, glacier meltwater) ceased and was replaced by alkaline groundwater. Weathering of ultramafic bedrock in the region produces Mg–HCO3 groundwater that concentrates by evaporation upon discharging into closed basins, occupied by the playas. An uppermost unit of Mg‐carbonate sediments (hydromagnesite mounds) overlies the Ca–Mg‐carbonate sediments. This second mineralogical shift corresponds to a change in the depositional environment from subaqueous to subaerial, occurring once sediments ‘emerged’ from the water surface. Capillary action and evaporation draw Mg–HCO3 water up towards the ground surface, precipitating Mg‐carbonate minerals. Evaporation at the water table causes precipitation of lansfordite [MgCO3·5H2O] which partially cements pre‐existing sediments forming a hardpan. As carbonate deposition continues, the weight of the overlying sediments causes compaction and minor lateral movement of the mounds leading to amalgamation of localized mounds. Radiocarbon dating of buried vegetation at the Ca–Mg‐carbonate boundary indicates that there has been ca 8000 years of continuous Mg‐carbonate deposition at a rate of 0·4 mm yr?1. The depositional model accounts for the many sedimentological, mineralogical and geochemical processes that occur in the four surface environments; elucidating past and present carbonate deposition.  相似文献   

6.
《Sedimentary Geology》2001,139(3-4):171-203
Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20–50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga.The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale.Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs.The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp.Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.  相似文献   

7.
Bryozoan mounds from the middle Danian (Lower Palaeocene) of the Danish Basin represent a possibly new class of non‐cemented skeletal mounds. The sedimentology and palaeoecology of the mounds have recently been studied in detail. Three‐dimensional images of middle Danian bryozoan mound structures in the Limhamn limestone quarry, south‐west Sweden, obtained from combined reflected ground‐penetrating radar signals and outcrop analysis provide new information about the architecture and growth development of such mounds. The mounds are composed of bryozoan limestone and dark‐grey to black flint bands which outline mound geometries. Ground‐penetrating radar data sections are collected over a 120 m by 60 m grid of data lines with trace spacing of 0·25 m, providing a depth penetration of 7 to 12 m and a vertical resolution of ca 0·30 m. The ground‐penetrating radar images outline the geometry of the internal layering of the mounds which, typically, have widths and lengths of 30 to 60 m and heights of 5 to 10 m. Mound architecture and growth show great variability in the ground‐penetrating radar images. Small‐scale mound structures with a palaeorelief of only a few metres may constitute the basis for growth of larger mounds. The outermost beds of the individual mounds are commonly characterized by sub‐parallel to parallel reflections which have a circular to slightly oval appearance in map view. The mounds are mainly aggrading and do not show clear signs of pronounced lateral migration during growth, although some mound structures indicate a preferential growth direction towards the south. Growth patterns interpreted from the ground‐penetrating radar images suggest that the palaeocurrents in the study area may have shown great variability, even on a small scale. This observation is in contrast to results from studies of extensive, slightly older early Danian mound complexes exposed in coastal cliffs at Stevns Klint and Karlby Klint located 50 and 200 km away from the study area, respectively. At these locations the mounds show a remarkably uniform development and typically are asymmetrical, clearly showing migration directions towards the south. These differences in mound geometry may be the result of differences in the current systems and water depths that existed during formation of the early and middle Danian mounds, respectively. The mounds at Limhamn were located closer to the basin margin in shallower water than those at Stevns Klint and Karlby Klint. In addition, the difference in mound architecture may be due to the occurrence of non‐layered, irregular coral mounds intercalated with the bryozoan mounds at Limhamn.  相似文献   

8.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

9.
Physical evidence for the drainage of glacial lakes remains relatively rare in depositional records, giving rise to much debate on the location of outlets and discharge pathways, as well as on the climate impact of the attendant meltwater forcing. Lake Ojibway developed following the withdrawal of the Laurentide Ice Sheet in northern Ontario and Quebec, Canada. The late‐stage evolution of this large ice‐dammed lake was influenced by the complex dynamics of the retreating ice margin, which highly complicates the identification of the termination of Lake Ojibway in glaciolacustrine sediment records. Here, we document the composition of sections of rhythmites that contain in their upper part an anomalously thick and whitish bed (10–15 cm) that is in turn overlain by ~1 m of faintly bedded rhythmites. Grain‐size analyses showed that the thick whitish bed consists primarily of fine to coarse silt (2–63 μm), contrasting with the lower and upper rhythmites that are largely dominated by clay (<2 μm). The detrital carbonate content of the thick silt bed is characterized by consistently high values (2.5 to 2.8%), whereas the bounding rhythmites show lower and highly variable values. Oxygen isotope measurements further show a marked change going from typical glacial meltwater values (~ ?29.6 to ?27.7‰; VSMOW) for the lower rhythmites and the silt bed to modern‐like meteoric values (?18.4 to ?14.6‰) for the uppermost rhythmites. These data suggest that this marker bed may be associated with a major drawdown event that possibly corresponds to the final drainage of Lake Ojibway. AMS radiocarbon dating of ostracods extracted from the drainage bed also documents an important hardwater effect within the Ojibway basin.  相似文献   

10.
Bulk carbonate samples of hemipelagic limestone–marl alternations from the Middle and Upper Triassic of Italy are analysed for their isotopic compositions. Middle Triassic samples are representative of the Livinallongo Formation of the Dolomites, while Upper Triassic hemipelagites were sampled in the Pignola 2 section, within the Calcari con Selce Formation of the Southern Apennines in Southern Italy. Triassic hemipelagites occur either as nodular limestones with chert nodules or as plane‐bedded limestone–marl alternations which are locally silicified. In the Middle Triassic Livinallongo Formation, diagenetic alteration primarily affected the stable isotopic composition of sediment surrounding carbonate nodules, whereas the latter show almost pristine compositions. Diagenesis lowered the carbon and oxygen isotope values of bulk carbonate and introduced a strong correlation between δ13C and δ18O values. In the Middle Triassic successions of the Dolomites, bulk carbonate of nodular limestone facies is most commonly unaltered, whereas carbonate of the plane‐bedded facies is uniformly affected by diagenetic alteration. In contrast to carbonate nodules, plane‐bedded facies often show compaction features. Although both types of pelagic carbonate rocks show very similar petrographic characteristics, scanning electron microscopy studies reveal that nodular limestone consists of micrite (< 5 μm in diameter), whereas samples of the plane‐bedded facies are composed of calcite crystals ca 10 μm in size showing pitted, polished surfaces. These observations suggest that nodular and plane‐bedded facies underwent different diagenetic pathways determined by the prevailing mineralogy of the precursor sediment, i.e. probably high‐Mg calcite in the nodular facies and aragonite in the case of the plane‐bedded facies. Similar to Middle Triassic nodular facies, Upper Triassic nodular limestones of the Lagonegro Basin are also characterized by uncorrelated δ13C and δ18O values and exhibit small, less than 5 μm size, crystals. The alternation of calcitic and aragonitic precursors in the Middle Triassic of the Dolomites is thought to mirror rapid changes in the type of carbonate production of adjacent platforms. Bioturbation and dissolution of metastable carbonate grains played a key role during early lithification of nodular limestone beds, whereby early stabilization recorded the carbon isotopic composition of sea water. The bulk carbonate δ13C values of Middle and Upper Triassic hemipelagites from Italy agree with those of Tethyan low‐Mg calcite shells of articulate brachiopods, confirming that Triassic hemipelagites retained the primary carbon isotopic composition of the bottom sea water. A trend of increasing δ13C from the Late Anisian to the Early Carnian, partly seen in the data set presented here, is also recognized in successions from tropical palaeolatitudes elsewhere. The carbon isotopic composition of Middle and Upper Triassic nodular hemipelagic limestones can thus be used for chemostratigraphic correlation and palaeoenvironmental studies.  相似文献   

11.
鄂西利川见天坝长兴组生物礁内部构成及成礁模式   总被引:4,自引:0,他引:4  
鄂西利川见天坝位于川东碳酸盐岩台地与鄂西海槽之间的台地边缘相带,晚二叠世长兴期该区水体逐渐由深变浅,发育了一套规模巨大的加积—进积型台地边缘生物礁沉积。通过野外露头剖面精细地质写实研究,对该区生物礁内部构成特征进行了深入解剖,探讨了该区生物礁发育模式。研究表明利川见天坝生物礁礁体位于长兴组层序1的高位体系域,其内部由4...  相似文献   

12.
Cross‐bedded grainstones on carbonate ramps and shelves are commonly related to the locus of major wave energy absorption such as shorelines, shoals or shelf breaks. In contrast, on the Early Tortonian carbonate platform of Menorca (Balearic Islands), coarse‐grained, cross‐bedded grainstones are found at a distance from the palaeoshoreline where they were deposited below the wavebase. Excellent exposures along continuous outcrops on the sea cliffs of Menorca reveal the depositional profile and three‐dimensional distribution of the different facies belts of the Tortonian ramp depositional system. Basinward from the palaeoshoreline, fan deltas and beach deposits pass into 5‐km‐wide gently dipping bioturbated dolopackstone (inner and middle ramp), then into 12–20°‐dipping dolograinstone/rudstone clinobeds (ramp slope) and, finally, into subhorizontal fine‐grained basinal dolowackestone to dolopackstone (outer ramp). In this Miocene example, coarse‐grained grainstones exist in five different settings other than beach deposits: (1) on the middle ramp, where cross‐bedded grainstones were deposited by currents roughly parallel to the shoreline at 40–70 m estimated water depth and are interbedded with gently dipping bioturbated dolomitized packstones; (2) on the upper slope, where clinobeds are composed mostly of in situ rhodoliths and red‐algae fragments; (3) on the lower slope, as small‐scale bedforms (small three‐dimensional subaqueous dunes) migrating parallel to the slope; (4) at the transition between the lower slope and the outer ramp, where mollusc‐rich and rhodolithic rudstones and grainstones, interbedded in dolomitized laminated wackestones containing abundant planktonic foraminifera, infill slide/slump scars as upslope‐backstepping bodies (backsets); (5) at the toe of the slope, where coarse skeletal grainstones indicate bedform migration parallel to the platform margin, induced by currents at more than 150 m estimated water depth. This Late Miocene example also illustrates how changes in intrabasinal environmental conditions (nutrients and/or temperature) may produce changes in stratal patterns and facies architecture if they affect the biological system. Two depositional sequences compose the Miocene platform on Menorca, where a reef‐rimmed platform prograded onto an earlier distally steepened ramp. The transition from the ramp to the reef‐rimmed platform was effected by an increase in accommodation space caused by ecological changes, promoting a shift from a grain‐ to a framework‐producing biota.  相似文献   

13.
The microfacies of a Lower Cretaceous carbonate drillcore from Oman are characterized using optimizing matrices of Jaccard's similarity coefficients of community. Other than systems tract boundaries, there is no obvious evidence of individual parasequences in the core. However, diagnostic patterns in microfossil distribution identify environmental gradients recording changes in water depth. These gradients are used to define individual parasequences, parasequence sets, stacking patterns and key surfaces. The patterns suggest that deposition was controlled by successive fourth‐ to fifth‐order (high‐frequency) relative sea‐level cycles superimposed on an underlying third‐order relative sea‐level rise. Although the correlation of these depositional subunits to systematic changes in water depth and the rate of carbonate accumulation alone is not incontrovertible proof of such a sea‐level control, concurrent multiorder relative sea‐level cyclicity provides by far the most likely explanation. A microfacies deposited when the water depth was shallowing is characterized by a relay of microfossils with affinities that shallow upwards. Conversely, a microfacies that records a gradual increase in water depth has a relay of microfossils with affinities that deepen upwards. Microfacies characterized by an assemblage of microfossils with similar affinities record deposition when the benthic environmental conditions remained stable, either because of an equilibrium between shallow water carbonate deposition and rising sea level, or in deeper water where sediment composition was relatively insensitive to changes of water depth. Microfacies characterized by mixed affinity assemblages record syndepositional reworking. During periods of embedded multiorder sea‐level changes, individual parasequences within systems tracts are shown to record more complex environmental gradients than simply the repetition of successive shallowing‐up units as traditionally represented in carbonate sequence stratigraphic models. The microfacies of an individual parasequence may shallow up, or may record both deepening‐up and shallowing‐up depositional phases, as well as periods of sedimentation when benthic environments remained stable. Individual parasequence boundaries may be submarine or subaerial unconformities, or be conformable, as part of a predictable stratigraphic pattern related to the temporal position of an individual parasequence within the underlying third‐order cycle of relative sea‐level change. The hitherto ubiquitous use of assemblages to describe carbonate microfacies, coupled with the widespread use of the metre‐scale shallowing‐up template to identify parasequences, may have led to such complexities previously being overlooked.  相似文献   

14.
记述了新生代深海冷水碳酸盐泥丘近期的9个重要研究事件;总结了冷水泥丘具有全球海洋(大陆斜坡为主)分布、形态各异、冷水枝状珊瑚构筑泥丘的特点;介绍了冷水泥丘形成的(地质流体渗流和微生物作用)内因及(海底牵引底流作用)外因两种主要观点.对2005年IODP 307航次实施的北大西洋Porcupine Seabight冷水泥丘大洋钻探工作初步成果进行了编译,公布了中国科学家在碳氧同位素方面的初步实验结果.实验结果显示上新世中期以来的2 Ma里冷水碳酸盐泥丘启动和发育过程中存在2次碳氧同位素偏移事件(Ⅰ和Ⅱ),碳氧同位素偏移事件Ⅰ与泥丘的启动相呼应,暗示北大西洋古海洋气候发生巨大变化,可能与北极冰盖极盛有关.  相似文献   

15.
Limestone–marl alternations are usually directly interpreted to reflect cyclic palaeoenvironmental signals. However, uncertainty in such interpretations stems from the differential diagenesis that most limestone–marl alternations have undergone. Differential diagenesis results in markedly different alterations between limestones and marls and in the loss of comparability of many measurable parameters. For an unequivocal interpretation of the origin of rhythmic alternations, diagenetically robust parameters or parameters that clearly indicate the degree of diagenetic bias are required. The present study uses a multiproxy approach (independent biotic, sedimentary and geochemical parameters) in order to unravel the palaeoenvironmental signal recorded in Valanginian (Early Cretaceous) limestone–marl alternations from the Blake‐Bahama Basin (DSDP site 391). Using this approach, terrestrial and marine influences can be distinguished, changes in nutrient levels estimated and prediagenetic differences in the non‐carbonate fraction constrained. Surprisingly, no systematic variations in any of these parameters were observed between limestone and marl layers, implying that none of these was directly responsible for the formation of the rhythmic alternation. Hence, none of the current models of sedimentary formation of limestone–marl rhythmites is applicable here. Calcareous nannofossils are equally well preserved in limestone and marl layers, ruling out their dissolution in marl layers as a source of the calcite cement in the limestone beds. Sr values of 700–900 p.p.m. indicate that aragonite may have been present in the original, pelagic sediment. The assumption of fine‐grained sedimentary aragonite imported from nearby carbonate platforms as the source of the cement would explain a number of otherwise enigmatic features in these rhythmites, including the source of the calcite cement observed in the limestones, the equally good preservation of calcareous nannofossils in limestones and marls and the higher concentration of calcareous nannofossils in marl layers. The study demonstrates that examination of diagenetically inert parameters or parameters in which diagenetic effects can be filtered can yield unexpected results. Clearly, careful analysis of such parameters needs to be undertaken in order to make reliable palaeoenvironmental interpretations from rhythmite successions.  相似文献   

16.
Sedimentology and budget of a Recent carbonate mound, Florida Keys   总被引:2,自引:0,他引:2  
The sedimentology of a Recent carbonate mound is investigated to further our understanding of mound building communities, surface and subsurface mound sediments, and the overall sediment budget of mounds. Nine sedimentary facies of the surface of Tavernier mound, Florida Keys are described. These sediments are composed of Neogoniolithon, Halimeda, Porites, mollusc and foraminiferal grains, and lime mud. Muds rich in aragonite and high magnesian calcite show little mineralogical variation over the mound surface. Geochemical evidence suggests that the mud is mainly formed from breakdown of codiacean algae and Thalassia blade epibionts. Production rates of the facies are established from in situ growth rate experiments and standing-crop surveys. Annual calcium carbonate production is c. 500gm-2, intermediate between reef and other bay and lagoonal environment production rates in the Caribbean. The internal structure of the mound, studied from piston cores and sediment probes, indicates that seven facies can be identified. Five of these can be related to the present-day facies, and occur in the upper part of the mound (gravel-mound stage). The remaining two facies, characterized by molluscs and aragonite-rich muds, occur in the lower part of the mound (mud-mound stage), and are most similar to facies from typical Florida Bay mud mounds. Mangrove peats within the mound indicate former intertidal areas and C14 dates from these peats provide a time framework for mound sedimentation. The mound appears to have formed because of an initial valley in the Pleistocene surface which accumulated mud in a shallow embayment during the Holocene transgression. A sediment budget for the mound is presented which compares production rates from present-day facies with subsurface sediment masses. During the mud mound stage production rates were similar to accumulation rates and the mound was similar to the present-day mounds of Florida Bay. During the gravel mound stage (3400 yr BP-present day), conditions were more normal marine and the establishment of Porites and Neogoniolithon on the mound increased production rates 10% over accumulation rates. This excess sediment is thought to be transported off the mound to the surrounding seabed. Models are proposed which divide carbonate mounds on the basis of internal versus external sediment supply. Comparisons are made with other Recent and ancient mounds. Similarities exist between the roles of the biotic components of late Palaeozoic mounds but major differences are found when structures and early diagenesis are compared.  相似文献   

17.
Cold‐water coral mound morphology and development are thought to be controlled primarily by current regime. This study, however, reveals a general lack of correlation between prevailing bottom current direction and mound morphology (i.e. footprint shape and orientation), as well as current strength and mound size (i.e. footprint area and height). These findings are based on quantitative analyses of a high‐resolution geophysical dataset collected with an Autonomous Underwater Vehicle from three cold‐water coral mound sites at the toe of slope of Great Bahama Bank. The three sites (80 km2 total) have an average of 14 mounds km?2, indicating that the Great Bahama Bank slope is a major coral mound region. At all three sites living coral colonies are observed on the surface of the mounds, documenting active mound growth. Morphometric analysis shows that mounds at these sites vary significantly in height (1 to 83 m), area (81 to 6 00 000 m2), shape (mound aspect ratio 0·1 to 1) and orientation (mound longest axis 0 to 180°). The Autonomous Underwater Vehicle measured bottom current data depict a north–south flowing current that reverses approximately every six hours. The tidal nature of this current and its intermittent deviations during reversals are interpreted to contribute to the observed mound complexity. An additional factor contributing to the variability in mound morphometrics is the sediment deposition rate that varies among and within sites. At most locations sedimentation rate lags slightly behind mound growth rate, causing mounds to develop into large structures. Where sedimentation rates are higher than mound growth rates, sediment partially or completely buries mounds. The spatial distribution and alignment of mounds can also be related to gravity mass deposits, as indicated by geomorphological features (for example, slope failure and linear topographic highs) in the three‐dimensional bathymetry. In summary, variability in sedimentation rates, current regime and underlying topography produce extraordinarily high variability in the distribution, development and morphology of coral mounds on the Great Bahama Bank slope.  相似文献   

18.
The relationship between diagenetic chlorite rims and depositional facies in deltaic strata of the Lower Cretaceous Missisauga Formation was investigated using a combination of electron microprobe, bulk geochemistry and X‐ray diffraction data. The succession studied comprises several stacked parasequences. The delta progradational facies association includes: (i) fluvial or distributary channel sandstones (some with tidal influence); (ii) thick‐bedded delta‐front graded beds of sandstone interpreted as resulting from fluvial hyperpycnal flow during floods and storms; and (iii) more distal muddier delta‐front and prodeltaic facies. The transgressive facies association includes lag conglomerate, siderite‐cemented muddy sandstone and mudstone, and bioclastic sandy limestone. Chlorite rims are absent in the fluvial facies and best developed in thick sandstones lacking mudstone baffles. Good quality chlorite rims are well correlated with Ti in bulk geochemistry. Ti is a proxy for Fe availability, principally from the breakdown of abundant detrital ilmenite (FeTiO3). Under conditions of sea floor diagenesis, the abrupt decrease in sedimentation rate at transgressive surfaces caused progressive shallowing of the sulphate‐depletion level and of the overlying Eh‐controlled diagenetic zones, resulting in conditions suitable for diagenetic formation of berthierine to migrate upwards through the packet of reservoir sandstones. This early diagenetic berthierine suppressed silica cementation and later recrystallized to chlorite. Thick euhedral outer chlorite rims were precipitated from formation water in sandstone lacking muddy baffles on this chlorite substrate and inhibited late carbonate cementation. This study thus shows that the preservation of porosity by chlorite rims is a two‐stage process. Rapidly deposited delta‐front turbidite facies create early diagenetic conditions that eventually lead to the formation of chlorite rims, but the best quality chlorite rims are restricted to sandstones with high permeability during burial diagenesis.  相似文献   

19.
The Raipur Group of the Chattisgarh Basin preserves two major Late Mesoproterozoic carbonate platforms. The lower platform is about 490-m thick, separated from the upper platform (~ 670 m thick) by a 500-m thick calcareous shale. Carbonate strata cover almost 40% of the Chattisgarh Basin outcrop and represent two major platform types: a) a non-stromatolitic ramp (the Charmuria/Sarangarh Limestone) and b) a platform developed chiefly in the intertidal to shallow subtidal environment with prolific growth of stromatolites (the Chandi/Saradih Limestone). The first platform consists primarily of the black Timarlaga limestone that is locally replaced by early diagenetic dolomite. This carbonate platform experienced strong storm waves and was subsequently drowned by a major transgression, during which extensive black limestone–marl rhythmite was deposited, followed by deposition of the Gunderdehi Shale. The carbonate factory was later re-established with development of an extensive stromatolite-dominated Charmuria/Sarangarh platform that ranged from restricted embayment to open-marine conditions. Sea-level change played a major role in controlling the broad facies pattern and platform evolution. The δ13C signatures of the Chattisgarh limestones, falling within a relatively narrow range (0 to + 4‰) are typical for Upper Mesoproterozoic carbonate rocks. δ18O values, however, have a greater range (− 5.7 to − 13.3‰) indicating significant diagenetic alteration of some samples. Likely dysoxic or anoxic conditions prevailed during deposition of the black Timarlaga limestone and well-oxygenated conditions during deposition of the Gunderdehi Shale and Saradih/Chandi stromatolite. The lack of 17β,21α (moretanes) and high Tmax values suggest mature organic matter in the non-stromatolitic ramp. A paucity of diagnostic eukaryotic steroids indicates that algae were rare in the Chattisgarh Basin. A high content of hopanes supports a generally bacterially-dominated Proterozoic ocean in which various stromatolites flourished.  相似文献   

20.
Heterozoan temperate‐water carbonates mixed with varying amounts of terrigenous grains and muddy matrix (Azagador limestone) accumulated on and at the toe of an inherited escarpment during the late Tortonian–early Messinian (late Miocene) at the western margin of the Almería–Níjar Basin in south‐east Spain. The escarpment was the eastern end of an uplifting antiform created by compressive folding of Triassic rocks of the Betic basement. Channelized coralline‐algal/bryozoan rudstone to coarse‐grained packstone, together with matrix‐supported conglomerate, are the dominant lithofacies in the higher outcrops, comprising the deposits on the slope. These sediments mainly fill small canyon‐shaped, half‐graben depressions formed by normal faults active before, during and after carbonate sedimentation. Roughly bedded and roughly laminated coralline‐algal/bryozoan rudstone to coarse‐grained packstone are the main lithofacies forming an apron of four small (kilometre‐scale) lobes at the toe of the south‐eastern side of the escarpment (Almería area). Channelized and roughly bedded coralline‐algal/bryozoan rudstone to coarse‐grained packstone, conglomerates, packstone and sandy silt accumulated in a small channel‐lobe system at the toe of the north‐eastern side of the escarpment (Las Balsas area). Carbonate particles and terrigenous grains were sourced from shallow‐water settings and displaced downslope by sediment density flows that preferentially followed the canyon‐shaped depressions. Roughly laminated rudstone to packstone formed by grain flows on the initially very steep slope, whereas the rest of the carbonate lithofacies were deposited by high‐density turbidite currents. The steep escarpment and related break‐in‐slope at the toe favoured hydraulic jumps and the subsequent deposition of coarse‐grained, low‐transport efficiency skeletal‐dominated sediment in the apron lobes. Accelerated uplift of the basement caused a relative sea‐level fall resulting in the formation of outer‐ramp carbonates on the apron lobes, which were in turn overlain by lower Messinian coral reefs. The Almería example is the first known ‘base of slope’ apron within temperate‐water carbonate systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号