首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Vibration-based structural identification is an essential technique for assessing structural conditions by inferring information from the dynamic characteristics of structures. However, the robustness of such techniques in monitoring the progressive damage of real structures has been validated with only a handful of research efforts, largely due to the paucity of monitoring data recorded from damaged structures. In a recent experimental program, a mid-rise cold-formed steel building was constructed at full scale atop a large shake table and subsequently subjected to a unique multi-hazard scenario including earthquake, post-earthquake fire, and finally post-fire earthquake loading. Complementing the simulated hazard events, low-amplitude vibration tests, including ambient vibrations and white noise base excitation tests, were conducted throughout the construction and the test phases. Using the vibration data collected during the multi-hazard test program, this paper focuses on understanding the modal characteristics of the cold-formed steel building in correlation with the construction and the structural damage progressively induced by the simulated hazard events. The modal parameters of the building (i.e., natural frequencies, damping ratios, and mode shapes) are estimated using two input–output and two output-only time-domain system identification techniques. Agreement between the evolution of modal parameters and the observations of the progression of physical damage demonstrates the effectiveness of the vibration-based system identification techniques for structural condition monitoring and damage assessment.  相似文献   

2.
Analysis and comparison of the dynamic responses of three well instrumented (with accelerographs) high-rise buildings shaken during the 1984 Morgan Hill earthquake are presented. The buildings examined in the present work are (i) the Town Park Towers Apartment building, a 10-storey, concrete shear wall building; (ii) the Great Western Savings and Loan building, a 10-storey building with concrete frames and shear walls; and (iii) the Santa Clara County Office building, a 13-storey, moment-resistant steel frame building. The structures are located within 2 km of each other and, as may be confirmed by visual inspection of the recorded seismograms, experienced similar ground motions. One-dimensional and three-dimensional linear structural models are fitted to the observations using the modal minimization method' for structural identification, in order to determine optimal estimates of the parameters of the dominant modes of the buildings. The time-varying character of these parameters over the duration of the response is also investigated. Comparison of the recorded earthquake response of the structures reveals that the type of lateral-load-resisting system has an important effect on the dynamic behaviour of the structures because it controls the spacing of the characteristic modes on the frequency axis. The Santa Clara County Office building has closely spaced natural frequencies and exhibits strong torsional response and modal coupling. Its dynamic behaviour is contrasted with that of the Great Western Savings and Loan building which has well separated natural frequencies and exhibits small torsional response and no modal coupling. Strong modal coupling causes a beating-type phenomenon and makes earthquake response of structures different from that envisioned by codes.  相似文献   

3.
A theoretical framework is presented for the estimation of the physical parameters of a structure (i.e., mass, stiffness, and damping) from measured experimental data (i.e., input–output or output‐only data). The framework considers two state‐space models: a physics‐based model derived from first principles (i.e., white‐box model) and a data‐driven mathematical model derived by subspace system identification (i.e., black‐box model). Observability canonical form conversion is introduced as a powerful means to convert the data‐driven mathematical model into a physically interpretable model that is termed a gray‐box model. Through an explicit linking of the white‐box and gray‐box model forms, the physical parameters of the structural system can be extracted from the gray‐box model in the form of a finite element discretization. Prior to experimental verification, the framework is numerically verified for a multi‐DOF shear building structure. Without a priori knowledge of the structure, mass, stiffness, and damping properties are accurately estimated. Then, experimental verification of the framework is conducted using a six‐story steel frame structure under support excitation. With a priori knowledge of the lumped mass matrix, the spatial distribution of structural stiffness and damping is estimated. With an accurate estimation of the physical parameters of the structure, the gray‐box model is shown to be capable of providing the basis for damage detection. With the use of the experimental structure, the gray‐box model is used to reliably estimate changes in structural stiffness attributed to intentional damage introduced. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
2021年5月21日21时21分至22时32分,云南漾濞先后发生了M5.6级、M6.4级、M5.0级和M5.2级地震,位于大理的某高层建筑结构地震反应观测台阵获取了这4次地震的结构动力响应,观测数据同步性好,数据质量高。该高层建筑为框架剪力墙结构,地上26层,地下1层,三分量加速度测点共8个分别位于建筑的第1层、4层、7层、10层、13层、17层、20层和25层,数据实时传输至中国地震局工程力学研究所燕郊数据中心。本文对结构台阵的观测记录进行了初步分析,绘制建筑结构观测楼层的三向绝对加速度及其傅里叶幅值谱,检验数据同步性和质量,通过滤波和积分得到相对速度和相对位移,利用功率谱方法分析得到频率响应函数,并利用复模态指数函数方法得到两水平方向前三阶模态频率和振型。通过4次地震结构模态频率和振型的初步对比结果表明:主体结构基本完好,这与现场调查结果吻合。该结构台阵获取的前震、主震和余震反应记录,为后续开展深入的模态参数分析、地震损伤识别以及研究框架剪力墙结构的振动特性和抗震性能提供了宝贵数据。  相似文献   

5.
This paper verifies the feasibility of the proposed system identification methods by utilizing shaking table tests of a full‐scale four‐story steel building at E‐Defense in Japan. The natural frequencies, damping ratios and modal shapes are evaluated by single‐input‐four‐output ARX models. These modal parameters are prepared to identify the mass, damping and stiffness matrices when the objective structure is modelled as a four degrees of freedom (4DOF) linear shear building in each horizontal direction. The nonlinearity in stiffness is expressed as a Bouc–Wen hysteretic system when it is modelled as a 4DOF nonlinear shear building. The identified hysteretic curves of all stories are compared to the corresponding experimental results. The simple damage detection is implemented using single‐input‐single‐output ARX models, which require only two measurements in each horizontal direction. The modal parameters are equivalent‐linearly evaluated by the recursive Least Squares Method with a forgetting factor. When the structure is damaged, its natural frequencies decrease, and the corresponding damping ratios increase. The fluctuation of the identified modal properties is the indirect information for damage detection of the structure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A method that estimates mass and stiffness matrices of shear building from modal test data is presented in this paper. The method depends on only measurable points that are less in number than the total structural degrees of freedom, and on the first two orders of structural mode measured. So it is applicable to most of the general test. Based on this method modal data of unmeasurable points are estimated, then global mass and stiffness matrices of structure are obtained by using the first two orders of modal data. Taking advantage of iteration the optimum global mass and stiffness matrices are gained. Finally, an example is studied in this paper. Its result shows that this method is reliable. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
Structural identification based on measured dynamic data is formulated in a multi‐objective context that allows the simultaneous minimization of the various objectives related to the fit between measured and model predicted data. Thus, the need for using arbitrary weighting factors for weighting the relative importance of each objective is eliminated. For conflicting objectives there is no longer one solution but rather a whole set of acceptable compromise solutions, known as Pareto solutions, which are optimal in the sense that they cannot be improved in any objective without causing degradation in at least one other objective. The strength Pareto evolutionary algorithm is used to estimate the set of Pareto optimal structural models and the corresponding Pareto front. The multi‐objective structural identification framework is presented for linear models and measured data consisting of modal frequencies and modeshapes. The applicability of the framework to non‐linear model identification is also addressed. The framework is illustrated by identifying the Pareto optimal models for a scaled laboratory building structure using experimentally obtained modal data. A large variability in the Pareto optimal structural models is observed. It is demonstrated that the structural reliability predictions computed from the identified Pareto optimal models may vary considerably. The proposed methodology can be used to explore the variability in such predictions and provide updated structural safety assessments, taking into consideration all Pareto structural models that are consistent with the measured data. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the damage assessment of a three‐story half‐scale precast concrete building resembling a parking garage through structural identification. The structure was tested under earthquake‐type loading on the NEES large high‐performance outdoor shake table at the University of California San Diego in 2008. The tests provide a unique opportunity to capture the dynamic performance of precast concrete structures built under realistic boundary conditions. The effective modal parameters of the structure at different damage states have been identified from white‐noise and scaled earthquake test data with the assumption that the structure responded in a quasi‐linear manner. Modal identification has been performed using the deterministic‐stochastic subspace identification method based on the measured input–output data. The changes in the identified modal parameters are correlated to the observed damage. In general, the natural frequencies decrease, and the damping ratios increase as the structure is exposed to larger base excitations, indicating loss of stiffness, development/propagation of cracks, and failure in joint connections. The analysis of the modal rotations and curvatures allowed the localization of shear and flexural damages respectively and the checking of the effectiveness of repair actions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A simple modal damping identification model developed by the present authors for classically damped linear building frames is extended here to the non-classically damped case. The modal damping values are obtained with the aid of the frequency domain modulus of the roof-to-basement transfer function and the resonant frequencies of the structure (peaks of the transfer function) as well as the modal participation factors and mode shapes of the undamped structure. The assumption is made that the modulus of the transfer function of the non-classically damped structure matches the one of the classically damped structure in a discrete manner, i.e., at the resonant frequencies of that function modulus. This proposed approximate identification method is applied to a number of plane building frames with and without pronounced non-classical damping under different with respect to their frequency content earthquakes and its limitations and range of applicability are assessed with respect to the accuracy of both the identified damping ratios and that of the seismic structural response obtained by classical mode superposition and use of those identified modal damping ratios.  相似文献   

10.
A scheme is proposed to calculate the effect of torsion on each lateral load resisting element of asymmetrical buildings in the context of the response spectrum technique. The scheme consists of: (i) Obtain the modal shear and torque on the building by the response spectrum technique, (ii) Compute the total modal shear forces on each frame by resolving the modal shear and torque on the building according to principles of structural mechanics. The shears on each frame due to the lateral load effect and torsional effect are combined algebraically, (iii) Obtain the total shear force on each frame by combining the total modal shears on that frame in a root sum square manner. Since the proper phase relationship between the lateral load effect and torsional effect is accounted for on a modal basis, it is believed that the proposed scheme provides a more realistic load estimate on the frames than the conventional approach. An example of a simplified mono-symmetrical frame structure is chosen to illustrate the accuracy of the proposed scheme, using dynamic time-history analysis as a standard for comparison.  相似文献   

11.
The recorded earthquake response of a base-isolated building—the Foothill Communities Law and Justice Center in Rancho Cucamonga—shaken by the 1985 Redlands earthquake (ML 4–8) is discussed and analysed by employing system identification techniques. The calculated response of one-dimensional and three-dimensional linear structural models is fitted to the recorded motions of the superstructure using the ‘modal minimization method’ for structural identification, in order to determine optimal estimates of the parameters of the dominant modes of the building. Simple one-dimensional analyses are used to identify also the effective values of key parameters (e.g. damping) of the isolation system. Furthermore, the recorded motions obtained from the densely instrumented foundation (i.e. below the isolation bearings) of the structure and from the free-field station located 330 ft
  • 1 1 ft =0.3048 m; 1 mile=1.609 km.
  • from the building show how the presence of the structure affects the incoming seismic waves. It is observed that the transverse component of motion (i.e. the component which is perpendicular to the long dimension of the plan of the building) is affected by the presence of the structure considerably more than the longitudinal component. Factors contributing to this effect are the extreme length of the structure (414 ft) and the rotational motions of the superstructure caused by the spatial variability of ground motion. It is pointed out that, despite the fact that the shift in the effective frequency of the structure induced by the isolation was very small, the elastomeric bearings were very effective in reducing the accelerations transmitted to the structure. This is attributed to the damping capacity of the isolation. Based on the observed response of the building to this small earthquake it can be stated with confidence that the structure performed according to expectations.  相似文献   

    12.
    Accurate prediction of the dynamic responses of a high-rise building subjected to dynamic loads such as earthquake and wind excitations requires the information of its structural dynamic properties such as modal parameters including natural frequencies and damping ratios. This paper presents the identification results of the modal parameters based on field vibration tests on a 600-m high skyscraper. A set of tests, including ambient vibration test (AVT) and free vibration test (FVT), were conducted on the skyscraper to identify its modal parameters. Firstly, this paper presents and discusses the modal parameters of the skyscraper assessed by several identification methods applied to the AVT measurements. These methods include the wavelet transform (WT) method, the stochastic subspace identification (SSI) method, and the random decrement technique (RDT). Secondly, an active mass damper (AMD) system with total mass 1000 tons equipped into the skyscraper was used to excite the building for estimation of the modal parameters by FVT. Thirdly, this paper presents observations on the structural dynamic behavior of the skyscraper with the operation of the AMD system during a typhoon event. The field measurement results show that the AMD system functioned efficiently for suppression of the wind-induced vibrations of the skyscraper during the typhoon. This paper aims to further understand the structural dynamic properties of super-tall buildings and provide useful information for structural design and vibration control of future skyscrapers.  相似文献   

    13.
    The problem of identification of the modal parameters of a structural model using measured ambient response time histories is addressed. A Bayesian spectral density approach (BSDA) for modal updating is presented which uses the statistical properties of a spectral density estimator to obtain not only the optimal values of the updated modal parameters but also their associated uncertainties by calculating the posterior joint probability distribution of these parameters. Calculation of the uncertainties of the identified modal parameters is very important if one plans to proceed with the updating of a theoretical finite element model based on modal estimates. It is found that the updated PDF of the modal parameters can be well approximated by a Gaussian distribution centred at the optimal parameters at which the posterior PDF is maximized. Examples using simulated data are presented to illustrate the proposed method. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

    14.
    This paper presents an efficient procedure to determine the natural frequencies, modal damping ratios and mode shapes for torsionally coupled shear buildings using earthquake response records. It is shown that the responses recorded at the top and first floor levels are sufficient to identify the dominant modal properties of a multistoried torsionally coupled shear building with uniform mass and constant eccentricity even when the input excitation is not known. The procedure applies eigenrealization algorithm to generate the state‐space model of the structure using the cross‐correlations among the measured responses. The dynamic characteristics of the structure are determined from the state‐space realization matrices. Since the mode shapes are obtained only at the instrumented floor (top and first floors) levels, a new mode shape interpolation technique has been proposed to estimate the mode shape coefficients at the remaining floor levels. The application of the procedure has been demonstrated through a numerical experiment on an eight‐storied torsionally coupled shear building subjected to earthquake base excitation. The results show that the proposed parameter identification technique is capable of identifying dominant modal parameters and responses even with significant noise contamination of the response records. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

    15.
    The problem of determining linear models of structures from seismic response data is investigated using ideas from the theory of system identification. The approach is to determine the optimal estimates of the model parameters by minimizing a selected measure-of-fit between the responses of the structure and the model. Because earthquake records are normally available from only a small number of locations in a structure, and because of noise in the records, it is necessary in practice to estimate parameters of the dominant modes in the records, rather than the stiffness and damping matrices of the linear model. A new algorithm is developed to determine the optimal estimates of the modal parameters. After tests with simulated data, the method is applied to a multi-storey building using records from the 1971 San Fernando earthquake in California. New information is obtained concerning the properties of the lower modes of the building and the time-varying character of the equivalent linear parameters.  相似文献   

    16.
    Tracking modal parameters and estimating the current structural state of a building from seismic response measurements, particularly during strong earthquake excitations, can provide useful information for building safety assessment and the adaptive control of a structure. Therefore, online or recursive identification techniques need to be developed and implemented for building seismic response monitoring. This paper develops and examines different methods to track modal parameters from building seismic response data. The methods include recursive data‐driven subspace identification (RSI‐DATA) using Givens rotation algorithm, and RSI‐DATA using Bona fide algorithm. The question on how well the results of RSI‐DATA reflect the real condition is investigated and verified with a bilinear SDOF simulation study. Time‐varying modal parameters of a four‐story reinforced concrete school building are identified based on a series of earthquake excitations, including several seismic events, large and small. Discussions on the different methods' ability to track the time‐varying modal parameters are presented. The variation of the identified building modal frequencies and damping ratios from a series of event‐by‐event seismic responses, particularly before and after retrofitting of the building is also discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

    17.
    地震作用下钢框架高层结构的抗震性能研究   总被引:1,自引:0,他引:1       下载免费PDF全文
    邢磊  贾宝新  邢锐 《地震工程学报》2019,41(6):1482-1487
    钢框架高层建筑结构是当前高层建筑设计中使用最为广泛的技术,为提升其抗震性能,本文研究将调谐质量阻尼器安装在钢框架高层建筑结构顶部,考虑到建筑空间需求、防止集中荷载和提升控制效果等因素,在相同楼层或同顶部接近楼层中设置数个较小的、频率一致的子控制装置,通过设置调谐质量阻尼器受控结构等效阻尼比求极值的方法,获取最优刚度与最优阻尼系数;将获取的结果在有限元软件中进行模态分析获取模态质量,实现钢框架高层建筑结构扭转振动的减振控制。实验结果表明,地震荷载下,该方法使得建筑结构顶层角位移峰值和角加速度峰值分别降低50%和30%左右,建筑结构响应下降19%~26%,提高了高层建筑结构的稳定性。  相似文献   

    18.
    A bridge health monitoring system is presented based on vibration measurements collected from a network of acceleration sensors. Sophisticated structural identification methods, combining information from the sensor network with the theoretical information built into a finite element model for simulating bridge behavior, are incorporated into the system in order to monitor structural condition, track structural changes and identify the location, type and extent of damage. This work starts with a brief overview of the modal and model identification algorithms and software incorporated into the monitoring system and then presents details on a Bayesian inference framework for the identification of the location and the severity of damage using measured modal characteristics. The methodology for damage detection combines the information contained in a set of measurement modal data with the information provided by a family of competitive, parameterized, finite element model classes simulating plausible damage scenarios in the structure. The effectiveness of the damage detection algorithm is demonstrated and validated using simulated modal data from an instrumented R/C bridge of the Egnatia Odos motorway, as well as using experimental vibration data from a laboratory small-scaled bridge section.  相似文献   

    19.
    Structural damage assessment under external loading, such as earthquake excitation, is an important issue in structural safety evaluation. In this regard, an appropriate data analysis and system identification technique is required to interpret the measured data and to identify the state of the structure. Generally, the recursive system identification algorithm is used. In this study, the recursive subspace identification (RSI) algorithm based on the matrix inversion lemma algorithm with oblique projection technique (RSI-Inversion-Oblique) is applied to investigate the time-varying dynamic characteristics. The user-defined parameters used in the RSI-Inversion-Oblique technique are carefully discussed, which include the size of the data Hankel matrix (i), model order to extract the physical modes, and forgetting factor (FF) to detect the time-varying system modal frequencies. Response data from the Northridge earthquake from the Sherman Oaks building (CSMIP) is used as an example to examine a systematic method to determine the suitable user-defined parameters in RSI. It is concluded that the number of rows in the data Hankel matrix significantly influences the identification of the time-varying fundamental modal frequency of the structure. An algorithmic model order selection method using the eigenvalue distribution of RSI-Inversion can detect the system modal frequencies at each appending data window without causing any abnormality.  相似文献   

    20.
    Two new algorithms have been introduced as a further development of a robust interferometric method for structural health monitoring (SHM) of buildings during earthquakes using data from seismic sensors. The SHM method is intended to be used in an automatic seismic alert system, to issue a warning of significant damage during or immediately after the earthquake, and facilitate decision making on evacuation, to avoid loss of life and injury from possible collapse of the weekend structure during aftershock shaking. The method identifies a wave velocity profile of the building by fitting an equivalent layered shear beam model in impulse response functions (virtual source at roof) of the recorded earthquake response. The structural health is monitored by detecting changes in the identified velocities in moving time windows, the initial window being used as reference. Because the fit involves essentially matching phase difference between motion at different floors, the identified velocity profile is not affected by rigid body rocking, and soil-structure interaction in general, as demonstrated in this paper. Consequently, detected changes in wave velocity during an earthquake are not affected by changes in the soil-foundation system, which is a major advantage over SHM by detecting changes in the observed modal frequencies. Further, the method is robust when applied to real buildings and large amplitude earthquake response, as demonstrated in previous work. The new fitting algorithms introduced are the nonlinear least squares (LSQ) fit and the time shift matching (TSM) algorithms. The former involves waveform inversion of the impulse responses, and the latter - iterative matching of the pulse time shifts, both markedly reducing the identification error as compared to the previously used direct ray algorithm, especially for more detailed models, i.e., with fewer floors per layer. Results are presented of identification of the NS, EW and torsional responses of the densely instrumented Millikan Library (9-story reinforced concrete building in Pasadena, California) during a small earthquake.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号