首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The Banded Gneissic Complex of central Rajasthan, the only gneissic basement in India considered to underlie an early Precambrian sedimentary suite unconformably, comprises composite gneisses formed by extensive migmatization of metasedimentary rocks of diverse composition. The migmatites and the metasedimentaries maintain a structural continuity in a plan of superposed deformations, with the migmatite front involved in the early folding but transgressing the stratigraphic boundaries. Structures in the metasedimentary palaeosomes within the gneisses match in their entirety those in the migmatite host and the metasedimentary bands outside. On a smaller scale of microsections, migmatites show para tectonic crystallization with reference to the first deformation. The Banded Gneissic Complex thus loses its unique position in the Indian Precambrians as older than the earliest decipherable sedimentary series, but is older than the Aravalli rocks of the type area, the partially migmatized metasedimentaries belonging to an earlier series.  相似文献   

2.
The Archaean Peninsular Gneiss of southern India is considered by a number of workers to be the basement upon which the Dharwar supracrustal rocks were deposited. However, the Peninsular Gneiss in its present state is a composite gneiss formed by synkinematic migmatization during successive episodes of folding (DhF1, DhF1a and DhF2) that affected the Dharwar supracrustal rocks. An even earlier phase of migmatization and deformation (DhF*) is evident from relict fabrics in small enclaves of gneissic tonalites and amphibolites within the Peninsular Gneiss. We consider these enclaves to represent the original basement for the Dharwar supracrustal rocks. Tonalitic pebbles in conglomerates of the Dharwar Supergroup confirm the inference that the supracrustal rocks were deposited on a gneissic basement. Whole rock Rb-Sr ages of gneisses showing only the DhF1 structures fall in the range of 3100–3200 Ma. Where the later deformation (DhF2) has been associated with considerable recrystallization, the Rb-Sr ages are between 2500 Ma and 2700 Ma. Significantly, a new Rb-Sr analysis of tonalitic gneiss pebbles in the Kaldurga conglomerate of the Dharwar sequence is consistent with an age of ~2500 Ma and not that of 3300 Ma reported earlier by Venkatasubramanian and Narayanaswamy (1974). Pb-Pb ages based on direct evaporation of detrital zircon grains from the metasedimentary rocks of the Dharwar sequence fall into two groups, 3300–3100 Ma, and 2800–3000 Ma. Stratigraphic, structural, textural and geochronologic data, therefore, indicate that the Peninsular Gneiss of the Dharwar craton evolved over a protracted period of time ranging from > 3300 Ma to 2500 Ma.  相似文献   

3.
The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the “basement” gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province. Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group. Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province.  相似文献   

4.
The Aravalli mountain range (AMR) in the northwestern part of the Indian Peninsula consists of two main Proterozoic metasedimentary and metaigneous sequences, the Aravalli and Delhi Supergroups, respectively, which rest over the Archaean gneissic basement. A synthesis and reinterpretation of the available geological, geochronological and geophysical data, including results of own field work and geophysical interpretations pertaining to the AMR, indicate its origin as an inverted basin: rifting into granitoid basement began ca. 2.5; Ga ago with Aravalli passive rifting (ca. 2.5–2.0 Ga) and Delhi active rifting (ca. 1.9–1.6 Ga). Associated mafic igneous rocks show both continental and oceanic tholeiitic geochemistry and are comparable with Phanerozoic, rift-related magmatic products. Available data showed no conclusive evidence for oceanic lithoshere and island-arc/active margin magmatic activity in the AMR. Subsequent inversion and orogeny (Delhi orogeny, ca. 1.5-1.4 Ga) lead to complex deformation and metamorphism. Only in the western and central zones has the basement been involved in this mid-Proterozoic (Delhi) deformation, whereas it is unaffected in the eastern part, except for local shear zones mainly along the basement/cover interface. The grade of metamorphism increases from the greenschist facies in the east to the amphibolite facies in the west with local HP assemblages. These latter are explained by rapid burial and exhumation of thin and cool continental lithosphere. Subsequently, during a final, mild phase of inversion, the Vindhyan basins consisting mainly of sandstones, limestones and shales, flanking the AMR formed which are comparable to foreland basins. The tectonic evolution of the AMR is therefore interpreted as an example of a major inverted continental rift and of a Proterozoic intra-continental orogen.  相似文献   

5.
Gneissic rocks in the Chinese Altai Mountains have been interpreted as either Paleozoic metasedimentary rocks or Precambrian basement. This study reports geochemical and geochronological data for banded paragneisses and associated gneissic granitoids collected along a NE–SW traverse in the northwestern Chinese Altai. Petrological and geochemical data suggest that the protoliths of the banded gneisses were possibly immature sediments with significant volcanic input and that the gneissic granitoids were derived from I-type granites formed in a subduction environment. Three types of morphological features can be recognized in zircons from the banded gneisses and are interpreted to correlate with different sources. Zircons from five samples of banded paragneiss cluster predominantly between 466 and 528 Ma, some give Neoproterozoic ages, and a few yield discordant Paleoproterozoic to Archean ages. Zircon Hf isotopic compositions indicate that both juvenile/mantle and crust materials were involved in the generation of the source rocks from which these zircons were derived. In contrast, zircons occur ubiquitously as elongated euhedral prismatic crystals in the four samples of the gneissic granitoids, and define single populations for each sample with mean ages between 380 and 453 Ma. The general absence of Precambrian inheritance and positive zircon ?Hf values for these granitoids suggest insignificant crustal contribution to the generation of the precursor magmas. Our data can be interpreted in terms of a progressive accretionary history in early to middle Palaeozoic times, and the Chinese Altai may possibly represent a magmatic arc built on a continental margin dominated by Neoproterozoic rocks.  相似文献   

6.
华北克拉通阜平杂岩的深熔和混合岩化作用   总被引:3,自引:2,他引:1  
华北克拉通的阜平杂岩长英质岩石中常产出显著的浅色体、岩脉和花岗岩侵入体,并形成广泛的混合岩化作用。通过矿物自形晶的形成、黑云母向角闪石的转换和大量钠长石净边的出现以及其它与熔体活动有关结构的分析,浅色脉体和混合岩化作用的发生与外来熔体的注入有关。在长英质片麻岩中可出现明显的熔体注入,在一些不易片理化的岩石如石英岩中亦可形成浸染状熔体渗入。熔体汇集可形成浅色体、岩脉,直至花岗岩侵入体。而深熔作用本身形成熔体的作用在本区几乎可以忽略不计。在遭受渗透式混合岩化作用的过程中,岩石成分发生了改变,形成开放系统。随着渗透熔体的结晶,可形成一些岩浆锆石,在副片麻岩中则很容易被当作碎屑锆石。  相似文献   

7.
Several bodies of granulites comprising charnockite, charno-enderbite, pelitic and calc-silicate rocks occur within an assemblage of granite gneiss/granitoid, amphibolite and metasediments (henceforth described as banded gneisses) in the central part of the Aravalli Mountains, northwestern India. The combined rock assemblage was thought to constitute an Archaean basement (BGC-II) onto which the successive Proterozoic cover rocks were deposited. Recent field studies reveal the occurrence of several bodies of late-Palaeoproterozoic (1725 and 1621 Ma) granulites within the banded gneisses, which locally show evidence of migmatization at c. 1900 Ma coeval with the Aravalli Orogeny. We report single zircon ‘evaporation’ ages together with information from LA-ICP-MS U-Pb zircon datings to confirm an Archaean (2905 — ca. 2500 Ma) age for the banded gneisses hosting the granulites. The new geochronological data, therefore, suggest a polycyclic evolution for the BGC-II terrane for which the new term Sandmata Complex is proposed. The zircon ages suggest that the different rock formations in the Sandmata Complex are neither entirely Palaeoproterozoic in age, as claimed in some studies nor are they exclusively Archaean as was initially thought. Apart from distinct differences in the age of rocks, tectono-metamorphic breaks are observed in the field between the Archaean banded gneisses and the Palaeoproterozoic granulites. Collating the data on granulite ages with the known tectono-stratigraphic framework of the Aravalli Mountains, we conclude that the evolution and exhumation of granulites in the Sandmata Complex occurred during a tectono-magmatic/metamorphic event, which cannot be linked to known orogenic cycles that shaped this ancient mountain belt. We present some field and geochronologic evidence to elucidate the exhumation history and tectonic emplacement of the late Palaeoproterozoic, high P-T granulites into the Archaean banded gneisses. The granulite-facies metamorphism has been correlated with the thermal perturbation during the asymmetric opening of Delhi basins at around 1700 Ma.  相似文献   

8.
Structural, stratigraphic and petrologic studies between Amet and Sembal in the Udaipur district of southcentral Rajasthan indicate that all the rocks belonging to the Banded Gneissic Complex, the Aravalli Group and the Raialo Formation have been involved in isoclinal folding on a westerly trend, co-axial refolding, and upright folding on a north to north-northeast trend. There is neither an unconformity nor an overlap between the Aravallis and the Raialos. The conglomerates supposed to mark the erosional unconformity above the Banded Gneissic Complex near Rajnagar is a tectonic mélange of folded and torn quartz veins in mica schist within the Aravalli Group. The Aravalli—Raialo metasediments have been migmatized synkinematically with the first folding to give rise to the Banded Gneissic Complex; the gneissic complex does not have any separate stratigraphic entity. By contrast, there is an undoubted erosional unconformity between the type Aravalli rocks and the underlying Sarara granite to the south. These relations, coupled with the continuity of the Aravalli rocks of Udaipur northward to the metasedimentary rocks of the Sembal—Amet area along the strike, and a comparable structural history, point to granitic rocks of at least two generations in the Early Precambrian of central and southern Rajasthan. Preliminary radiometric dating of rocks of known stratigraphic—structural relationship seems to confirm the presence of granitic rocks of two ages in the Early Precambrian, and of a considerable interval between the deposition of the Aravalli—Raialo rocks and the Delhi rocks. The Udaipur granite, post-dating the first deformation but preceding the upright folding on the northerly trend, provides evidence for granitic activity of a third phase before the deposition of rocks of the Delhi Group.  相似文献   

9.
In the Orlica–?nie?nik Dome (NE Bohemian massif), alternating belts of orthogneiss with high‐pressure rocks and belts of mid‐crustal metasedimentary–metavolcanic rocks commonly display a dominant subvertical fabric deformed into a subhorizontal foliation. The first macroscopic foliation is subvertical, strikes NE–SW and is heterogeneously folded by open to isoclinal folds with subhorizontal axial planes parallel to the heterogeneously developed flat‐lying foliation. The metamorphic evolution of the mid‐crustal metasedimentary rocks involved successive crystallization of chlorite–muscovite–ilmenite–plagioclase–garnet, followed by staurolite‐bearing and then kyanite‐bearing assemblages in the subvertical fabric. This was followed by garnet retrogression, with syntectonic crystallization of sillimanite and andalusite parallel to the shallow‐dipping foliation. Elsewhere, andalusite and cordierite statically overgrew the flat‐lying fabric. With reference to a P–T pseudosection for a representative sample, the prograde succession of mineral assemblages and the garnet zoning pattern with decreasing grossular, spessartine and XFe are compatible with a PT path from 3.5–5 kbar/490–520 °C to peak conditions of 6–7 kbar/~630 °C suggesting burial from 12 to 25 km with increasing temperature. Using the same pseudosection, the retrograde succession of minerals shows decompression to sillimanite stability at ~4 kbar/~630 °C and to andalusite–cordierite stability at 2–3 kbar indicating exhumation from 25 km to around 9–12 km. Subsequent exhumation to ~6 km occurred without apparent formation of a deformation fabric. The structure and petrology together with the spatial distribution of the metasedimentary–metavolcanic rocks, and gneissic and high‐pressure belts are compatible with a model of burial of limited parts of the upper and middle crust in narrow cusp‐like synclines, synchronous with the exhumation of orogenic lower crust represented by the gneissic and high‐pressure rocks in lobe‐shaped and volumetrically more important anticlines. Converging PTD paths for the metasedimentary rocks and the adjacent high‐pressure rocks are due to vertical exchanges between cold and hot vertically moving masses. Finally, the retrograde shallow‐dipping fabric affects both the metasedimentary–metavolcanic rocks and the gneissic and high‐pressure rocks, and indicates that the ~15‐km exhumation was mostly accommodated by heterogeneous ductile thinning associated with unroofing of a buoyant crustal root.  相似文献   

10.
The Cambro‐Ordovician Glenelg River Complex in the Harrow district, western Victoria, consists of extensive granitic rocks associated with a migmatitic metasedimentary envelope. Metasedimentary rocks comprise amphibolite facies massive‐laminated quartzo‐feldspathic schists and layered gneisses with minor sillimanite‐bearing horizons. Intercalated are stromatic and nebulitic migmatites of granitic and tonalitic character; textural evidence suggests that both varieties developed by in situ partial melting. Ranging from adamellite to leucotonalite, granitic rocks contain abundant magmatic muscovite, commonly with garnet and sillimanite, and exhibit generally unrecrystallised igneous textures. Heterogeneous structurally concordant plutons transitional to migmatites and more uniform intrusive phases are delineated with both types hosting diverse metasedimentary enclaves, micaceous selvages and schlieren; a gneissic foliation of variable intensity is defined by the latter. These petrographic attributes are consistent with derivation of plutons by anatexis of a peraluminous metasedimentary protolith. The schlieric foliation is not tectonically imposed, but rather directly inherited from the migmatitic precursor, compositional variations within which are preserved by the layered Schofield Adamellite. The most mafic granitic body (Tuloona Granodiorite) also has igneous microgranular enclaves indicating a more complex petrogenesis. Metasedimentary rocks experienced five episodes of folding, the latest involving macroscopic open warps. This is analogous to the structural history elucidated elsewhere in the Glenelg River Complex, by inference a coherent tectonic entity whose present metamorphic and stratigraphic configuration might be governed by F5 folding. Structures within migmatites intimate that partial melting proceeded throughout the deformational history and peaked syn‐D4 to pre‐D5, whilst temperatures had waned to sub‐biotite grade in the southwestern Glenelg River Complex. Granitic rocks were generated during this anatectic culmination and were therefore emplaced late in the orogenic history relative to other syntectonic phases of the Glenelg River Complex.  相似文献   

11.
The Central Hebei Basin (CHB) is one of the largest sedimentary basins in the North China Craton, extending in a northeast-southwest direction with an area of 〉350 km2. We carried out SHRIMP zircon dating, Hf-in-zircon isotopic analysis and a whole-rock geochemical study on igneous and metasedi- mentary rocks recovered from drill holes that penetrated into the basement of the CHB, Two samples of gneissic granodiorite (XG1-1) and gneissic quartz diorite 048-1) have magmatic ages of 2500 and 2496 Ma, respectively. Their zircons also record metamorphic ages of 2.41-2.51 and ~2.5 Ga, respec- tively. Compared with the gneissic granodiorite, the gneissic quartz diorite has higher REE contents and lower Eu/Eu* and (La/Yb)n values. Two metasedimentary samples (MG1, H5) mainly contain ~2,5 Ga detrital zircons as well as late Paleoproterozoic metamorphic grains. The zircons of different origins have eHf (2.5 Ga) values and Hf crustal model ages ranging from 0 to 5 and 2.7 to 2,9 Ga, respectively, Therefore, ~2.5 Ga magmatic and Paleoproterozoic metasedimentary rocks and late Neoarchean to early Paleoproterozoic and late Paleoproterozoic tectono-thermal events have been identified in the basement beneath the CHB. Based on regional comparisons, we conclude that the early Precambrian basement beneath the CHB is part of the North China Craton.  相似文献   

12.
The Menderes Massif, in western Anatolia, has been described as a lithological succession comprising a basal ‘Precambrian gneissic core of sedimentary origin’ overlain in sequence by ‘Palaeozoic schist’ and ‘Mesozoic-Cenozoic marble’ forming the envelope. The boundary between core and schist envelope was interpreted as a major unconformity, the ‘Supra-Pan-African unconformity’. By contrast, our field observations and geochemical data show that around the southern side of Besparmak Mountain, north of Selimiye (Milas), the protoliths of highly deformed, mylonitized augen gneisses are granitoid rocks intrusive into the adjacent Palaeozoic metasedimentary schists. The field relationships indicate the age of intrusion to be younger than late Permian and there is no evidence for the existence of either an exposed Precambrian basement or the ‘Supra-Pan-African unconformity’ in this sector of the Menderes Massif.  相似文献   

13.
The origin of dome-and-keel structural geometries in Archean granite–greenstone terrains appears to lack any modern analogues and is still poorly understood. The formation of these geometries is investigated using structural and anisotropy of magnetic susceptibility (AMS) data for the Chinamora batholith in Zimbabwe. The roughly circular-shaped batholith is surrounded by ca. 2.72–2.64 Ga greenstones. The batholith granitoid suites have been divided on the basis of their ages and fabric relationships into four distinct units: (i) banded basement gneisses; (ii) granodioritic gneisses; (iii) equigranular granites; and (iv) central porphyritic granites. In the gneissic granites a partial girdle (N–S) of poles to the magnetic foliation is developed that has been folded around a consistent, flat lying magnetic lineation plunging at shallow angles to the E or W. In the equigranular granites, the magnetic lineation generally plunges to the NW. The magnetic foliation has a variable strike, no clear trends can be distinguished. The AMS measurements of the porphyritic granite revealed a NW–SE striking foliation and showed subhorizontal magnetic lineations. The magnetic foliation is subparallel to the macroscopic foliation. Wall rocks are moderately inclined and show radial or concentric lineations, triaxial strain ellipsoids and kinematics that demonstrate off-the-dome sliding and coeval pluton expansion. The results of the observations do not point to a single emplacement process. Neither the observed structural data nor the magnetic fabric support a model envisaging spherically ‘ballooning’. It is argued that pluton diapirism played a major part in the formation of the fabrics in the gneisses, whereas the fabrics in the porphyritic granites reflect emplacement as laccolith-like sheets.  相似文献   

14.
平阳片麻状奥长花岗岩位于河北阜平县平阳镇一带,围岩为包括混合岩和片麻岩在内的变质表壳岩,层位上相当于阜平群的下部,产阳地区空间上存在高级变质作用、混合岩化作用和深熔作用的“三位一体”,因而由变质岩到花岗岩显示了系统的岩石学、岩相学以及产出关系上的渐变过渡特点,花岗岩中的变质表壳岩以及部分包体不仅在岩性上可和外围的同类岩石对比,而且也显示了明显的深熔作用改造的痕迹,有较为充分的语气表明平阳片麻状花岗岩总体上是原地深熔的奥长花岗岩,局部发生了一定尺度的位移。平阳地区变质表壳岩的深熔作用经历了以流体活动占主导地位、以矿物的溶解和重结晶为主要特点的早期阶段,演变为以部分矿物的熔融占主导地位的高级阶段,平阳片麻状奥长花岗岩的形成代表了阜平岩群变质表壳岩深熔作用的高级演化阶段,对于客观认识阜平岩群的组成和地质演化具有重大意义。  相似文献   

15.
A generalised crustal structure of Fiordland is proposed.Detailed mapping in part of Western Fiordland has led to the recognition of a basement granulite facies lower crustal material, probably Precambrian in age) separated by a regional thrust zone from a cover sequence (amphibolite facies gneisses, of Lower Paleozoic age). With the recognition of the basement—cover relationship and the aid of aeromagnetic anomalies Fiordland has been divided into four, generally north-northeast trending, regions. The Western Fiordland region is composed chiefly of basement rocks. The Central Fiordland and Southwestern Fiordland regions are made up predominantly of amphibolite and greenschist-facies metasediments and gneissic granodiorites of the cover sequence, which in Central Fiordland have a regional dip to the east, off the basement. The Eastern Fiordland region is characterised by a series of basic, intermediate and acid intrusive rocks. The more prominent magnetic anomalies in Eastern Fiordland, Southwestern Fiordland, and a large anomaly off the coast of Western Fiordland, are all considered to be caused by intrusive bodies. The presence of a positive gravity anomaly over Western Fiordland, coupled with a gravity low offshore, is consistent with the lower crust being uplifted and exposed in this area. Continuing shallow and intermediate-depth seismic activity beneath Fiordland, as well as the large size of the gravity anomaly, suggest that tectonic forces are currently acting to maintain Western Fiordland at its unusually high level.Fiordland thus displays a cross-section of continental crust: Precambrian(?) metaigneous granulites in the lower crust; Lower Paleozoic metasedimentary amphibolitefacies gneisses and melted equivalents in the middle crust; Mesozoic intrusives, and overlying Cretaceous and Tertiary sediments in the upper crust.  相似文献   

16.
Strongly-deformed marbles may be easily confused with linear and elongated carbonatite intrusions. Both rocks may present similar texture and foliation to the host rock, or even cross cutting field relationships, which could be interpreted either as igneous or high-grade metamorphosed marble. Diagnostic criteria are even more complex when there is evidence of melting of the metasedimentary carbonate rock, such as has been described in the Himalayas and in the Eastern Ghats, India.In the Alto Moxotó Terrane, a high-grade gneissic domain of the Borborema Province, Northeastern Brazil, there are metacarbonates associated with banded gneisses and different metaplutonic rocks. Field evidence indicates the absence of other metasedimentary rocks associated with these marbles, thus suggesting that these carbonates were separated from other siliciclastic metasedimentary rocks. The presence of marble also suggests that it may represent the initial stage of a crustal carbon recycling into the mantle. These marbles present many field similarities to carbonatites (e.g., fluid-flow structure) and, together with metagranites and metamafic intrusions, may represent a major collisional tectonic suture.A detailed study of the carbon, oxygen and strontium isotopic composition of these marbles is presented. This study aims to identify the origin of the different isotopic components. It is argued that these rocks were subjected to temperature and pressure conditions that were sufficiently high to have melted them. The isotopic data presented here support this interpretation and indicate the mixing of two components: (i) one characterized by radiogenic Sr isotopes and mantle-like carbon isotopes, which is associated with the gneissic and mafic rocks, and (ii) another characterized by low 87Sr/86Sr ratios and highly positive δ13C values. Available geochemical data for the upper Paleoproterozoic indicate that the 87Sr/86Sr ratio of ocean water, varying between 0.7050 (2.25 ± 0.25 Ga) and 0.7047 (1.91 Ga), falls within the lower range of the samples from Itatuba and thus reinforces the interpretation that these marbles are sedimentary-derived and were partially contaminated by interaction with the host gneissic and mafic rocks.  相似文献   

17.
The Fomopea granitic pluton is emplaced in gnessic and amphibolitic basement.These gneissic and amphibolitic basement rocks are represented in the pluton's body as sub-rounded,elongated or stretched xe...  相似文献   

18.
《International Geology Review》2012,54(10):1161-1183
The Cerro Olivo Complex is one of the few occurrences of the basement rocks in the Dom Feliciano Belt. It contains migmatitic paragneisses and orthogneisses that host granites of ca. 600–540 Ma Aiguá Batholith. The main orthogneisses are rich in orthopyroxene + Ca-plagioclase (Cerro Bori unit), but K-feldspar augen gneisses are also common (Centinela-Punta del Este unit). The paragneisses (Chafalote unit) are semi-pelitic migmatites that contain restites of metapelites, quartzites, amphibolites, and calc-silicate rocks. A clockwise pressure–temperature–time (PT-t) path and two deformational events affected the Cerro Olivo Complex rocks. Granulitic high-pressure (HP)–high-temperature (HT) peak conditions were followed by low pressure (LP)–HT decompression. The first deformation (K1) developed an E–W gneissic foliation and westward-stretching lineations, whereas the second (K2) produced NS to NE–SW low-temperature mylonitic foliation and southward-stretching lineations. New SHRIMP U–Pb data from zircon cores in magmatic textural domains yield an intrusive age of 782 ± 7 million years for the Cerro Bori unit. The zircon rims have an age of 657 ± 7 million years, reflecting a younger partial melting event. Inherited ages in zircon xenocrysts span from 2655 to 768 million years, but are mostly ca. 1.0–1.2 thousand million years old. Bulk-rock geochemistry indicates a magmatic arc setting for the source rocks. The Cerro Bori unit represents calk-alkaline tonalitic and granodioritic rocks mixed with minor gabbros; in contrast, the Centinela unit consists of post-orogenic granites. A continental magmatic arc developed between ca. 800 and 770 Ma attending convergence of the Kalahari and Rio de la Plata palaeocontinents, but prior to their collision.  相似文献   

19.
Augen gneisses and related migmatites commonly form extensive areas in deep crystalline terrains and are interlayered with horizons of undoubted metasedimentary rocks. Augen gneiss, migmatite, and hornblende gneiss near McMurdo Sound, Antarctica, is interlayered with calcareous metasedimentary rocks on all scales and passes gradationally into quartzo-feldspathic gneiss. Numerous discontinuous lenses and layers of metasedimentary rocks in augen gneiss have been disrupted by transposition of layering and form tectonic inclusions. Calc-silicate layers have reacted with the surrounding rocks and become partially amphibolitized. Field evidence suggests that augen gneiss formed from quartzo-feldspathic gneiss by local metasomatism that accompanied strong deformation and smoothed out original metasedimentary differences. Locally partial melting took place. The final result is a sequence of augen gneiss, hornblende gneiss, and migmatite with thin amphibolite lenses and layers. The metasedimentary rocks are correlated with lower grade limestones and calcareous arenites including graywackes 125 km to the south. The quartzo-feldspathic gneiss would thus represent highly metamorphosed graywacke and sandstone. Augen gneiss and quartzo-feldspathic gneiss have similar chemical compositions, but augen gneiss seems to be somewhat more mafic. The composition of augen gneiss is more mafic than average continental shield surface rock and less mafic than the average crustal rock. Evidence indicates that augen gneiss and related rocks formed by homogenization of rocks that were originally sedimentary and its composition may reflect the bulk composition of material supplied to the crust earlier in the earth's history.  相似文献   

20.
Age determinations, mostly by Rb---Sr analyses, of the Precambrian rocks of Rajasthan by us and by others are summarized and discussed. Broad periods of acid magmatism at (1) 3000−2900 m.y., (2) 2600−2500 m.y., (3) 2000−1900 m.y., (4) 1700−1500 m.y. and (5) 850−750 m.y. were identified. The oldest rocks in the area are the yet undated banded gneisses (BGC) east of Udaipur, intruded by the Untala granite dated at 2950 m.y. and hence of mid-Archean age. The basal status hitherto attributed to the Berach granite dated at 2600 m.y. is no longer tenable. The radiometric control on the beginning and duration of the overlying Aravalli Supergroup is not yet satisfactory, though a lower limit at 2000 m.y. is indicated. Heron's original Delhi rocks have recorded two magmatic events widely separate in space and time. While the earliest granitic activity at 1600 m.y. is recorded only in the Alwar basin in the northeast, the younger activity between 850-750 m.y. is widespread, as shown by the nearly concordant ages of “Erinpura-type” granites along the Aravalli mountain Range and the Malani rhyolites in the western plains of the Aravalli Range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号