首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plume-Associated Ultramafic Magmas of Phanerozoic Age   总被引:19,自引:12,他引:19  
A parameterization of experimental data in the 0·2–7·0GPa pressure range constrains both forward models of potentialprimary magma compositions that exit the melting regime in themantle and inverse models for computing the effects of olivinefractionation for any olivine-phyric lava suite. This is usedto infer the MgO contents of primary magmas from Gorgona, Hawaii,Baffin Island and West Greenland. They typically contain 18–20%MgO for wide variations in assumed peridotite source compositions,but MgO can drop to 14–17% for Fe-enriched sources, andincrease to 24–26% for fractional melts from Gorgona.Primary magmas with 18–20% MgO have potential temperaturesof 1520–1570°C. For Gorgona picrites with 24% MgO,the potential temperature and initial melting pressure wereabout 1700°C and 8·0 GPa, respectively; melting washot and deep, consistent with the plume model. There are importantrestrictions to magma mixing in mantle plumes. Primary magmasthat exit the melting regime are both well-mixed aggregate fractionalmelts and isolated fractional melts. The latter can originatefrom a hot plume axis and be in equilibrium with olivines havingmg-numbers of 93·0–93·6, but they have MgOcontents and thermal characteristics that are difficult to constrain. KEY WORDS: komatiite; picrite; basalt; MORB; olivine; mantle plumes; primary magmas; equilibrium melting; accumulated fractional melting  相似文献   

2.
The Neoproterozoic Korab Kansi mafic-ultramafic intrusion is one of the largest (100 km2) intrusions in the Southern Eastern Desert of Egypt. The intrusion consists of Fe-Ti-bearing dunite layers, amphibole peridotites, pyroxenites, troctolites, olivine gabbros, gabbronorites, pyroxene gabbros and pyroxene-hornblende gabbros, and also hosts significant Fe-Ti deposits, mainly as titanomagnetite-ilmenite. These lithologies show rhythmic layers and intrusive contacts against the surrounding granites and ophiolitic-island arc assemblages. The wide ranges of olivine forsterite contents (Fo67.9-85.7), clinopyroxene Mg# (0.57–0.95), amphibole Mg# (0.47–0.88), and plagioclase compositions (An85.8-40.9) indicate the role of fractional crystallization in the evolution from ultramafic to mafic rock types. Clinopyroxene (Cpx) has high REE contents (2–30 times chondrite) with depleted LREE relative to HREE, like those crystallized from ferropicritic melts generated in an island-arc setting. Melts in equilibrium with Cpx also resemble ferropicrites crystallized from olivine-rich mantle melts. Cpx chemistry and its host rock compositions have affinities to tholeiitic and calc-alkaline magma types. Compositions of mafic-ultramafic rocks are depleted in HFSE (e.g. Nb, Ta, Zr, Th and U) relative to LILE (e.g. Li, Rb, Ba, Pb and Sr) due to the addition of subduction-related hydrous fluids (rich in LILE) to the mantle source, suggesting an island-arc setting. Fine-grained olivine gabbros may represent quenched melts approximating the primary magma compositions because they are typically similar in assemblage and chemistry as well as in whole-rock chemistry to ferropicrites. We suggest that the Korab Kansi intrusion crystallized at temperatures ranging from ~700 to 1100 °C from ferropicritic magma derived from melting of metasomatized mantle at <5 Kbar. These hydrous ferropicritic melts were generated in the deep mantle and evolved by fractional crystallization under high ƒO2 at relatively shallow depth. Fractionation formed calc-alkaline magmas during the maturation of an island arc system, reflecting the role of subduction-related fluids. The interaction of metasomatized lithosphere with upwelling asthenospheric melts produced the Fe and Ti-rich ferropicritic parental melts that are responsible for precipitating large quantities of Fe-Ti oxide layers in the Korab Kansi mafic-ultramafic intrusion. The other factors controlling these economic Fe-Ti deposits beside parental melts are high oxygen fugacity, water content and increasing degrees of mantle partial melting. The generation of Ti-rich melts and formation of Fe-Ti deposits in few layered intrusions in Egypt possibly reflect the Neoproterozoic mantle heterogeneity in the Nubian Shield. We suggest that Cryogenian-Tonian mafic intrusions in SE Egypt can be subdivided into Alaskan-type intrusions that are enriched in PGEs whereas Korab Kansi-type layered intrusions are enriched in Fe-Ti-V deposits.  相似文献   

3.
The Permian Kalatongke Ni–Cu deposits in the Central Asian Orogenic Belt are among the most important Ni–Cu deposits in northern Xinjiang, western China. The deposits are hosted by three small mafic intrusions comprising mainly norite and diorite. Its tectonic context, petrogenesis, and ore genesis have been highly contested. In this paper, we present a new model involving slab window magmatism for the Kalatongke intrusions. The origin of the associated sulfide ores is explained in the context of this new model. Minor amounts of olivine in the intrusions have Fo contents varying between 71 and 81.5?mol%, which are similar to the predicted values for olivine crystallizing from coeval basalts in the region. Analytic modeling based on major element concentrations suggests that the parental magma of the Kalatongke intrusions and the coeval basalts represent fractionated liquids produced by ~15% of olivine crystallization from a primary magma, itself produced by 7–8% partial melting of depleted mantle peridotite. Positive ε Nd values (+4 to +10) and significant negative Nb anomalies for both intrusive and extrusive rocks can be explained by the mixing of magma derived from depleted mantle with 6–18% of a partial melt derived from the lower part of a juvenile arc crust with a composition similar to coeval A-type granites in the region, plus up to 10% contamination with the upper continental crust. Our model suggests that a slab window was created due to slab break-off during a transition from oceanic subduction to arc–arc or arc–continent collision in the region in the Early Permian. Decompression melting in the upwelling oceanic asthenosphere produced the primary magma. When this magma ascended to pond in the lower parts of a juvenile arc crust, it underwent olivine crystallization and at the same time triggered partial melting of the arc crust. Mixing between these two magmas followed by contamination with the upper crust after the magma ascended to higher crustal levels formed the parental magma of the Kalatongke intrusions. The parental magma of the Kalatongke intrusions was saturated with sulfide upon arrival primarily due to olivine fractional crystallization and selective assimilation of crustal sulfur. Sulfide mineralization in the Kalatongke intrusions can be explained by accumulation of immiscible sulfide droplets by flow differentiation, gravitational settling, and downward percolation which operated in different parts of the intrusions. Platinum-group element (PGE) depletion in the bulk sulfide ores of the Kalatongke deposits was due to depletion in the parental magma which in turn was likely due to depletion in the primary magma. PGE depletion in the primary magma can be explained by a relatively low degree of partial melting of the mantle and retention of coexisting sulfide liquid in the mantle.  相似文献   

4.
The Quérigut mafic–felsic rock association comprisestwo main magma series. The first is felsic comprising a granodiorite–tonalite,a monzogranite and a biotite granite. The second is intermediateto ultramafic, forming small diorite and gabbro intrusions associatedwith hornblendites and olivine hornblendites. A U–Pb zirconage of 307 ± 2 Ma was obtained from the granodiorite–tonalites.Contact metamorphic minerals in the thermal aureole providea maximum emplacement pressure of between 260 and 270 MPa. Petrographiccharacteristics of the mafic and ultramafic rocks suggest crystallizationat <300 MPa, demonstrating that mantle-derived magmas ascendedto shallow levels in the Pyrenean crust during Variscan times.The ultramafic rocks are the most isotopically primitive components,with textural and geochemical features of cumulates from hydrousbasaltic magmas. None of the mafic to ultramafic rocks havedepleted mantle isotope signatures, indicating crustal contaminationor derivation from enriched mantle. Origins for the dioritesinclude accumulation from granodiorite–tonalite magma,derivatives from mafic magmas, or hybrids. The granitic rockswere formed from broadly Proterozoic meta-igneous crustal protoliths.The isotopic signatures, mineralogy and geochemistry of thegranodiorite–tonalites and monzogranites suggest crystallizationfrom different magmas with similar time-integrated Rb/Sr andSm/Nd isotope ratios, or that the granodiorite–tonalitesare cumulates from a granodioritic to monzogranitic parent.The biotite granite differs from the other felsic rocks, representinga separate magma batch. Ages for Quérigut and other Pyreneangranitoids show that post-collisional wrenching in this partof the Variscides was under way by 310 Ma. KEY WORDS: Variscan orogeny; Pyrenees; Quérigut complex; epizonal magmatism; post-thickening; mafic–felsic association  相似文献   

5.
Major and trace element data for the Tertiary, Shiant IslesMain Sill, NW Scotland, are used to discuss its complex internaldifferentiation. Vertical sections through the sill exhibitsharp breaks in chemistry that coincide with changes in texture,grain size and mineralogy. These breaks are paired, top andbottom, and correspond to the boundaries of intrusive units,confirming a four-phase multiple-intrusion model based on fieldrelations, petrography, mineralogy and isotopes. Whole-rockchemistry is consistent with this model and necessitates onlyminor revisions to the intrusive and differentiation mechanismspreviously proposed. The rocks contain strongly zoned minerals(e.g. olivine Fo70–5, clinopyroxene Mg# = 75–5,plagioclase An75–5) indicating almost perfect fractionalcrystallization, but whole-rock compositions do not show suchextreme variations. Thus, while residual liquids became highlyevolved in situ, they mainly became trapped within the crystalnetwork and did not undergo wholesale inward migration. Someinward (mainly upward) concentration of residual liquids didoccur to form a ‘sandwich horizon’, but the morevolatile-rich, late-stage liquids that did not crystallize insitu appear to have migrated to higher levels in the sill toform pegmatitic horizons. Parental liquid compositions are modelledfor the intrusive units and it is concluded that the originalparent magma formed by partial melting of upper mantle thatwas more depleted in LREE than the sources of most ScottishTertiary basaltic rocks. Incompatible trace elements in thepicrodolerite–crinanite intrusive unit support isotopeevidence that its parent magma was contaminated by crustal material.Attempts to reconcile the chemical characteristics of the sillwith a recently proposed petrogenetic model based on a singleintrusion of magma differentiated by novel, but controversial,processes fail comprehensively. It is predicted that the complexpetrogenetic history of the Shiant Isles sill is not unusualand could become the model for other large (>50 m thick)sills. KEY WORDS: alkali basalt; differentiation; geochemistry; multiple intrusion; Shiant Isles; sill  相似文献   

6.
望江山层状岩体位于扬子地块北缘新元古代汉南杂岩带中,岩体从底部到顶部由超镁铁质岩过渡为中性岩:底部主要由辉石岩和橄长岩组成;中部为辉长苏长岩和辉长岩;上部为辉长岩和闪长岩。研究以中部岩相带橄榄辉长苏长岩、辉长苏长岩和辉长岩为对象,通过主要矿物的主微量元素和全岩主微量元素的分析,查明望江山岩体来源于尖晶石二辉橄榄岩组成的大陆下岩石圈地幔,并且地幔源区受到了来自俯冲板片流体的交代,岩体中部带的母岩浆为拉斑玄武质岩浆。钛铁矿—磁铁矿矿物对成分计算表明,母岩浆在形成时具有较高氧逸度。通过单斜辉石压力计得到岩体的侵位深度约为12.9~18 km。对岩体母岩浆橄榄石分离结晶过程的模拟计算表明,中部带橄榄石为母岩浆经过~28%分离结晶的产物。此外,铂族元素(PGE)组成暗示岩体并未经历过大规模的硫化物熔离,可能与缺乏地壳物质混染有关。岩体中单斜辉石与岛弧环境堆晶岩中单斜辉石成分相似,不同于裂谷环境中堆晶单斜辉石的成分;同时,全岩Th/Yb和Nb/Yb比值也与岛弧玄武岩比值相似,因此矿物和全岩成分均说明望江山层状岩体应形成于岛弧环境。研究认为扬子北缘在新元古代长期的俯冲过程中,大洋板片断离导致软流圈上涌,提供热源使交代大陆下岩石圈地幔部分熔融形成具有岛弧特征的镁铁质岩浆,在局部伸展环境中上升侵位形成汉南杂岩带中镁铁—超镁铁质层状岩体。   相似文献   

7.
Two picrite flows from the SW rift zone of Mauna Loa containxenoliths of dunite, harzburgite, lherzolite, plagioclase-bearinglherzolite and harzburgite, troctolite, gabbro, olivine gabbro,and gabbronorite. Textures and olivine compositions precludea mantle source for the xenoliths, and rare earth element concentrationsof xenoliths and clinopyroxene indicate that the xenolith sourceis not old oceanic crust, but rather a Hawaiian, tholeiitic-stagemagma. Pyroxene compositions, phase assemblages and texturalrelationships in xenoliths indicate at least two different crystallizationsequences. Calculations using the pMELTS algorithm show thatthe two sequences result from crystallization of primitive MaunaLoa magmas at 6 kbar and 2 kbar. Independent calculations ofolivine Ni–Fo compositional variability in the plagioclase-bearingxenoliths over these crystallization sequences are consistentwith observed olivine compositional variability. Two parentsof similar bulk composition, but which vary in Ni content, arenecessary to explain the olivine compositional variability inthe dunite and plagioclase-free peridotitic xenoliths. Xenolithsprobably crystallized in a small magma storage area beneaththe rift zone, rather than the large sub-caldera magma reservoir.Primitive, picritic magmas are introduced to isolated rift zonestorage areas during periods of high magma flux. Subsequenteruptions reoccupy these areas, and entrain and transport xenolithsto the surface. KEY WORDS: xenolith; Hawaii; volcano plumbing; mineral composition; picrite  相似文献   

8.
The Coolac Serpentinite, in the Tumut region of southeastern NSW, is one of many Alpine-type, linear ultramafic bodies exposed in the Lachlan Orogen of New South Wales. Despite the significance of such oceanic lithosphere throughout the orogen to tectonic models, few studies on the genesis of these bodies in the Lachlan Orogen have been documented. A significant proportion of the Coolac ultramafic rocks are only partially serpentinised, making them good candidates for detailed petrological and geochemical studies. The Coolac peridotites include harzburgites with mineral compositions and bulk-rock REE concentrations similar to abyssal peridotites. Assuming depleted mantle compositions, HREE concentrations are limited (0.2–0.3 × primitive mantle) implying melt extraction of 15–20%. Conversely, some Cr-spinel data within the harzburgites (Cr# = 0.22–0.27) indicate partial melting of only 9–11%. Adsorbed mantle pyroxenes, excess olivine and LREE enrichment suggest melt–rock interactions led to the refertilisation of the harzburgites. Isotope characteristics of a ca 501 Ma allochthonous tonalite block derived from melting of altered oceanic crust and a ca 439 Ma oceanic granite intrusion indicate an identical source that separated from the fertile mantle at 660 Ma. This places chronological constraints on the harzburgites, which are the result of two-stage melting involving a lherzolite protolith formed during the break-up of Rodinia followed by harzburgite formation during a further melt extraction event within an extensional phase of the Delamerian Orogeny. The harzburgites were enriched via melt–rock interactions soon after formation as well as during phases of the Benambran Orogeny beginning at ca 439 Ma and ending around ca 427 Ma with the emplacement of the North Mooney Complex, a layered ultramafic–gabbro association that has characteristics of Alaskan-style intrusions similar to the Fifield complexes of the central Lachlan Orogen.  相似文献   

9.
Mantle preconditioning may be defined as the extraction of smallmelt fractions from mantle asthenosphere during its flow tothe site of magma generation. Equations may be written for mantlepreconditioning, assuming that the mantle comprises enriched‘plums’ in a depleted matrix. The equations takeinto account variations in mass fraction of plums, the relativerate of melting of plums and matrix, the temperature and pressureof melt extraction, the mass fraction of melt extracted, theextent of chemical exchange between plums and matrix, and theefficiency of melt extraction. Monitoring mineralogical changesand variations in partition coefficients along the inferredPTt path of the mantle asthenosphere allows theequations to be correctly applied to the conditions under whichmelt extraction takes place. Numerical experiments demonstratethe influence of petrogenetic variables on the shape of meltextraction trajectories and provide new criteria for distinguishingbetween melt extraction and mixing as the cause of regionalgeochemical gradients. Representative examples of arc–back-arcsystems (Scotia), continental break-up (Afar) and plume–ridgeinteraction (Azores) indicate that the compositions of the mantlesources of mid-ocean ridge basalts and island arc basalts maybe determined, at least in part, by the melt extraction historiesof their asthenospheric sources. KEY WORDS: geochemical modelling; mantle flow; isotope ratios; trace elements  相似文献   

10.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

11.
Anorthosite-bearing layered intrusions are unique to the Archaean rock record and are abundant in the Archaean craton of southern West Greenland and the Superior Province of Canada. These layered intrusions consist mainly of ultramafic rocks, gabbros, leucogabbros and anorthosites, and typically contain high-Ca (>An70) megacrystic (2–30 cm in diameter) plagioclase in anorthosite and leucogabbro units. They are spatially and temporally associated with basalt-dominated greenstone belts and are intruded by syn-to post-tectonic granitoid rocks. The layered intrusions, greenstone belts and granitoids all share the geochemical characteristics of Phanerozoic subduction zone magmas, suggesting that they formed mainly in a suprasubduction zone setting. Archaean anorthosite-bearing layered intrusions and spatially associated greenstone belts are interpreted to be fragments of oceanic crust, representing dismembered subduction-related ophiolites. We suggest that large degrees of partial melting (25–35%) in the hotter (1500–1600 °C) Archaean upper mantle beneath rifting arcs and backarc basins produced shallow, kilometre-scale hydrous magma chambers. Field observations suggest that megacrystic anorthosites were generated at the top of the magma chambers, or in sills, dykes and pods in the oceanic crust. The absence of high-Ca megacrystic anorthosites in post-Archaean layered intrusions and oceanic crust reflects the decline of mantle temperatures resulting from secular cooling of the Earth.  相似文献   

12.
Several spinel peridotite xenoliths from Spitsbergen have Sr–Ndisotopic compositions that plot to the right of the ‘mantlearray’ defined by oceanic basalts and the DM end-member(depleted mantle, with low 87Sr/86Sr and high 143Nd/144Nd).These xenoliths also show strong fractionation of elements withsimilar compatibility (e.g. high La/Ce), which cannot be producedby simple mixing of light rare earth element-depleted peridotiteswith ocean island basalt-type or other enriched mantle melts.Numerical simulations of porous melt flow in spinel peridotitesapplied to Sr–Nd isotope compositions indicate that thesefeatures of the Spitsbergen peridotites can be explained bychemical fractionation during metasomatism in the mantle. ‘Chromatographic’effects of melt percolation create a transient zone where thehost depleted peridotites have experienced enrichment in Sr(with a radiogenic isotope composition) but not in Nd, thusproducing Sr–Nd decoupling mainly controlled by partitioncoefficients and abundances of Sr and Nd in the melt and theperidotite. Therefore, Sr–Nd isotope decoupling, earlierreported for some other mantle peridotites worldwide, may bea signature of metasomatic processes rather than a source-relatedcharacteristic, contrary to models that invoke mixing with hypotheticalSr-rich fluids derived from subducted oceanic lithosphere. Pbisotope compositions of the Spitsbergen xenoliths do not appearto be consistently affected by the metasomatism. KEY WORDS: Spitsbergen; lithospheric mantle; metasomatism; radiogenic isotopes; theoretical modelling  相似文献   

13.
This paper addresses the composition, geochemistry, isotopic characteristics, and age of rocks from the Carter Seamount of the Grimaldi seamount group at the eastern margin of the Central Atlantic. The age of the seamount was estimated as 57–58 Ma. Together with other seamounts of the Grimaldi system and the Nadir Seamount, it forms a “hot line” related to the Guinea Fracture Zone, which was formed during the late Paleocene pulse of volcanism. The Carter Seamount is made up of olivine melilitites, ankaramites, and analcime-bearing nepheline tephrites, which are differentiated products of the fractional crystallization of melts similar to an alkaline ultramafic magma. The volcanics contain xenoliths entrained by melt at different depths from the mantle, layer 3 of the oceanic crust, which was formed at 113–115 Ma, and earlier magma chambers. The rocks were altered by low-temperature hydrothermal solutions. The parental melts of the volcanics of the Carter Seamount were derived at very low degrees of mantle melting in the stability field of garnet lherzolite at depths of no less than 105 km. Anomalously high Th, Nb, Ta, and La contents in the volcanics indicate that a metasomatized mantle reservoir contributed to the formation of their primary melts. The Sr, Pb, and Nd isotopic systematics of the rocks show that the composition of the mantle source lies on the mixing line between two mantle components. One of them is a mixture of prevailing HIMU and the depleted mantle, and the other is an enriched EM2-type mantle reservoir. These data suggest that the formation of the Carter Seamount volcanics was caused by extension-related decompression melting in the Guinea Fracture Zone of either (1) hot mantle plume material (HIMU component) affected by carbonate metasomatism or (2) carbonated basic enclaves (eclogites) ubiquitous in the asthenosphere, whose isotopic characteristics corresponded to the HIMU and EM2 components. In the former case, it is assumed that the melt assimilated during ascent the material of the metasomatized subcontinental mantle (EM2 component), which was incorporated into the oceanic lithospheric mantle during rifting and the breakup of Pangea.  相似文献   

14.
One of the goals of igneous petrology is to use the subtle andmore obvious differences in the geochemistry of primitive basaltsto place constraints on mantle composition, melting conditionsand dynamics of mantle upwelling and melt extraction. For thisgoal to be achieved, our first-order understanding of mantlemelting must be refined by high-quality, systematic data oncorrelated melt and residual phase compositions under knownpressures and temperatures. Discrepancies in earlier data onmelt compositions from a fertile mantle composition [MORB (mid-oceanridge basalt) Pyrolite mg-number 87] and refractory lherzolite(Tinaquillo Lherzolite mg-number 90) are resolved here. Errorsin earlier data resulted from drift of W/Re thermocouples at1 GPa and access of water, lowering liquidus temperatures by30–80°C. We demonstrate the suitability of the ‘sandwich’technique for determining the compositions of multiphase-saturatedliquids in lherzolite, provided fine-grained sintered oxidemixes are used as the peridotite starting materials, and thechanges in bulk composition are considered. Compositions ofliquids in equilibrium with lherzolitic to harzburgitic residueat 1 GPa, 1300–1450°C in the two lherzolite compositionsare reported. Melt compositions are olivine + hypersthene-normative(olivine tholeiites) with the more refractory composition producinga lower melt fraction (7–8% at 1300°C) compared withthe model MORB source (18–20% at 1300°C). KEY WORDS: mantle melting; sandwich experiments; reversal experiments; anhydrous peridotite melting; thermocouple oxidation; olivine geothermometry  相似文献   

15.
Do We Really Need Mantle Components to Define Mantle Composition?   总被引:2,自引:0,他引:2  
We discuss the concept of components in the Earth's mantle startingfrom a petrological and geochemical approach, but adopting anew method of projection of geochemical and isotopic data. Thisallows the compositional variability of magmatic associationsto be evaluated in multi-dimensional space, thus simultaneouslyaccounting for a large number of compositional variables. Wedemonstrate that ocean island basalts (OIB) and mid-ocean ridgebasalts (MORB) are derived from a marble-cake mantle, in whichdifferent degrees of partial melting of recycled lithosphere,which are heterogeneous in age and composition, contribute tothe magma genesis. This view is supported by the variabilityin the geochemical and isotopic signatures of OIB that are observedon the scale of a single ocean island as well as on that ofan ocean, mostly varying between two extreme compositions, thatare not strictly related to the commonly accepted mantle components(DMM, EMI, EMII, HIMU). Rather they are a distinctive featureof the mantle source sampled at each ocean island and are stronglydependent on the Pb isotope system. We recommend a change inperspective in studies of MORB–OIB geochemistry from onebased on physically distinct mantle components to a model basedon the existence of a marble-cake-like upper mantle. Althoughresembling the statistical upper mantle, this model impliesthat geochemical homogenization can be attained only withinthe limits of local mantle composition, so that a world-wideuniform depleted reservoir cannot be sampled by simply extendingthe volume of the region undergoing partial melting. KEY WORDS: geochemistry; isotope; mantle; OIB  相似文献   

16.
Quaternary lavas from the NE Japan arc show geochemical evidenceof mixing between mantle-derived basalts and crustal melts atthe magmatic front, whereas significant crustal signals arenot detected in the rear-arc lavas. The along-arc chemical variationsin lavas from the magmatic front are attributable almost entirelyto geochemical variations in the crustal melts that were mixedwith a common mantle-derived basalt. The mantle-derived basaltshave slightly enriched Sr–Pb and depleted Nd isotopiccompositions relative to the rear-arc lavas, but the variationis less pronounced if crustal contributions are eliminated.Therefore, the source mantle compositions and slab-derived fluxesare relatively uniform, both across and along the arc. Despitethis, incompatible element concentrations are significantlyhigher in the rear-arc basalts. We examine an open-system, fluid-fluxedmelting model, assuming that depleted mid-ocean ridge basalt(MORB)-source mantle melted by the addition of fluids derivedfrom subducted oceanic crust (MORB) and sediment (SED) hybridsat mixing proportions of 7% and 3% SED in the frontal- and rear-arcsources, respectively. The results reproduce the chemical variationsfound across the NE Japan arc with the conditions: 0·2%fluid flux with degree of melting F = 3% at 2 GPa in the garnetperidotite field for the rear arc, and 0·7% fluid fluxwith F = 20% at 1 GPa in the spinel peridotite field beneaththe magmatic front. The chemical process operating in the mantlewedge requires: (1) various SED–MORB hybrid slab fluidsources; (2) variable amounts of fluid; (3) a common depletedmantle source; (4) different melting parameters to explain across-arcchemical variations. KEY WORDS: arc magma; crustal melt; depleted mantle; NE Japan; Quaternary; slab fluid  相似文献   

17.
坡十Ni矿化超镁铁侵入体的矿化岩相主要为第二侵入期次的(斜长)单辉橄榄岩、(斜长)二辉橄榄岩、 纯橄岩等岩相。坡十超镁铁岩的橄榄石成分变化范围较大, 橄榄石的Fo值在76.8~89.6之间, Ni含量为767×10-6~4 580×10-6。铬尖晶石的Mg#值和Cr#值变化范围分别为19.4~41.9和49.8~64.8, 原生铬尖晶石中Cr2O3和Al2O3表现为负相关, 蚀变改造的铬尖晶石则表现为正相关。橄榄石成分剖面显示坡十母岩浆处于一个动态的岩浆系统中, 成分稳定的新鲜岩浆的补给、 持续向上的动力及浅部橄榄石快速分离结晶,造成了不同深度橄榄石成分的不同变化。坡十侵入体母岩浆估算结果为MgO=14.49%, FeO=10.01%,模拟结果显示橄榄石中Ni含量的变化主要受橄榄石结晶分异和硫化物不混溶作用共同控制,其中橄榄石与硫化物熔体发生明显的Fe-Ni交换反应。坡十母岩浆中橄榄石分离结晶造成的硫饱和,是坡十硫化物熔离的重要因素。橄榄石高Fo值、母岩浆高MgO、超镁铁岩中斜长石发育、矿物高结晶温度和铬尖晶石成分的弧岩浆特征显示,塔里木东北缘坡十侵入体是俯冲交代的岩石圈地幔部分熔融形成的母岩浆的产物,表现出低压高温的演化特征,其中源区熔融机制可能与塔里木二叠纪地幔柱提供的热源或该区大规模拆沉作用造成的软流圈上涌有关。  相似文献   

18.
The Hongseong area, located in the western Gyeonggi Massif, South Korea, can be correlated with the northern margin of the South China block (Yangtze Craton). This area experienced Neoproterozoic igneous activity related to subduction before the amalgamation of Rodinia. Several isolated, lenticular, and serpentinized ultramafic–mafic bodies occur in the Hongseong area. The Baekdong body, one of the largest ultramafic bodies, has been highly deformed and metamorphosed to eclogite- and granulite-facies. The petrogenesis and tectonic environment of the Baekdong rocks are assessed using the composition of unaltered cores of spinel and olivine grains, and show that these rocks represent the mantle section of a suprasubduction ophiolite. The rocks originated from oceanic lithosphere that formed during the transition from nascent back-arc to mature island arc, related to subduction roll-back. During the back-arc stage, Al-rich spinel harzburgite formed through melt–rock interaction caused by the intrusion of magma. This magma was produced in small amounts, by less than 10% of partial melting of the wedge mantle. Subsequently, during the mature island arc stage, Cr-rich spinel dunite formed through melt–rock interaction caused by the intrusion of relatively evolved magma that formed by 30–35% partial melting due to a high input of volatiles from the subducted slab and sediments. The Baekdong ultramafic rocks, together with the Bibong ultramafic rocks, indicate that a suprasubduction tectonic setting prevailed before the amalgamation of Rodinia (at 860–890 Ma) in the Hongseong area, which may be an extension of the northern margin of the Yangtze Craton.  相似文献   

19.
During late Palaeozoic time, extensive magmatism and associated ore deposits were developed in the eastern Tianshan orogenic belt (ETOB), Northwest China, which is part of the Central Asian Orogenic Belt. To understand the petrogenesis of the intrusions in this area, we performed in situ zircon U–Pb and Hf isotopic analyses on the Tuwu–Yandong (TW–YD) stocks and the Xianshan, Hulu, Luodong, and Poshi batholiths. Two major suites of intrusive rocks have been recognized in the ETOB: (1) 338–339 Ma plagiogranite porphyries and 265–300 Ma ultramafic and mafic rocks, of which the former are associated with 323 Ma porphyry Cu–Mo deposits and have enriched radiogenic Hf isotopic compositions (?Hf(t) = +11.5 to +15.6), which were derived from a depleted mantle source, whereas the latter are associated with 265–300 Ma magmatic Ni–Cu deposits and have variable Hf isotopic compositions (?Hf(t) = ?10.3 to +14.3), indicating an origin via the hybridization of depleted mantle magma and variable amounts of ancient lower-crustal components. The proposed magma sources, combined with the geochemical differences between these two suites of intrusive rocks, indicate that in the lower to middle Carboniferous, a N-dipping subduction zone beneath the Dananhu arc triggered the emplacement of granitic porphyries in the Tousuquan and Dananhu island arc belt in the east Tianshan, leading to the formation of the TW and YD porphyry Cu–Mo deposits. In the Upper Carboniferous to Lower Permian, large mafic–ultramafic complexes were emplaced during the closure of the ancient Tianshan Ocean, resulting in the formation of several magmatic Cu–Ni sulphide deposits.  相似文献   

20.
Tertiary ultramafic volcanism on Gorgona Island, Colombia, is manifested not only by komatiite flows, but also by a more voluminous sequence of tuff breccias, which is cut by comagmatic picrite dikes. The ultramafic pyroclastic rocks are chaotic to stratified mixtures of angular to subrounded glassy picritic blocks and a fine grained volcaniclastic matrix that consists primarily of plastically-deformed, glassy globules. The entire deposit is interpreted to have formed by an explosive submarine eruption of phenocryst-laden picritic magma. MgO contents of tuff breccias and picrite dikes range from 21 to 27 wt%. Relative to nearby komatiite flows, these rocks are MgO-rich, and FeO-, TiO2- and Ni-poor. HREE concentrations are very low (N<0.2), indicating derivation from a more highly depleted mantle source region. Nd isotopic data suggest a cogenetic relationship between the picritic magma that formed the tuff breccia and associated dikes and that which produced the komatiite flows. Nevertheless Pb isotopic data as well as whole rock geochemistry preclude such a connection, either due to olivine fractionation/accumulation or to different degrees of partial melting. These ultramafic rock types crystallized from magmas which most likely were extracted from distinct mantle source regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号