首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   3篇
  2006年   1篇
  2002年   2篇
  1998年   1篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
Pumice samples from Fukutoku-oka-no-ba in the Izu–Bonin – Mariana (IBM) arc were analysed for 40 trace elements and Sr, Nd, and Pb isotopic compositions. These samples are shoshonites (59.4–61.8 wt% SiO2), characterized by high contents of K2O (3.74–4.64 wt%), Ba (1274–1540 p.p.m.), Rb (91–105 p.p.m.), and light rare earth elements. The characteristics of alkali-element enrichment are similar to those of other parts of the Alkalic Volcano Province (AVP) in the northern Mariana and southernmost Volcano arcs. Sr (87Sr/86Sr = 0.7036–0.7038) and Pb isotopic compositions (206Pb/204Pb = 19.08–19.11, 207Pb/204Pb = 15.62–15.63, 208Pb/204Pb = 38.85–38.91) of Fukutoku-oka-no-ba pumice are relatively radiogenic, whereas Nd is unradiogenic (143Nd/144Nd = 0.51283–0.51286). Fukutoku-oka-no-ba is isotopically distinct from Iwo Jima and is similar to the Hiyoshi Volcanic Complex, suggesting that Fukutoku-oka-no-ba might have a magma source similar to that of the Hiyoshi volcanic complex. Plots of Pb and Nd isotopes for AVP lavas trend toward the fields of ocean island basalt (OIB) source and pelagic sediments, which are possible sources of AVP enrichments.  相似文献   
2.
Extremely low-K basaltic andesite to andesite lavas at Nekomavolcano, situated in the frontal volcanic zone of the NE Honshuarc, were produced from melts that originated in the lower crust.Multiple incompatible trace element model calculations suggestthat extremely low-K basalt found in the same arc is a naturalanalog for the source composition. However, fractional crystallization,magma mixing, and crustal contamination models of primary low-Kbasalt cannot reproduce the Nekoma chemical composition. Derivationof melts from an extremely low-K amphibolitic lower-crustalrock with the residual mineral phases hornblende, olivine, pyroxenes,plagioclase, and magnetite is plausible. Major element compositionsof Nekoma lavas are very similar to those of experimental meltsof amphibolite dehydration melting, which further support theproposal. Light rare earth elements are slightly enriched, buttotal rare earth element abundances are relatively low, suggestinga high degree of partial melting of the source. Ba/Th ratiosare low for frontal arc lavas, reflecting modification of theratio during partial melting. Zr/Hf and Nb/Ta ratios are significantlygreater than is usual for arc lavas, suggesting an anomaloussource composition. Markedly low K, Rb, Cs contents in the extremelylow-K lavas are attributed to an extremely low-K source. Underplatingof an extremely low-K basalt originating from a hydrous depletedmantle wedge could form such an amphibolite. In contrast, Ndand Sr isotope ratios fall close to Bulk Earth values, indicatingan isotopically enriched source. Hornblende-bearing rocks maypredominate in the lower crust of the NE Honshu arc, based onthe observation of crustal xenoliths. The presence of largelow-Vp regions at lower-crustal depths beneath the frontal arcis suggested by geophysical observations. These observationsfurther support lower-crustal melting beneath Nekoma as theorigin of the intermediate low-K lavas. KEY WORDS: amphibolite source; crustal melting; low-K andesite; Sr–Nd isotopes; trace element  相似文献   
3.
The Ueno Basalts of central Japan comprise a monogenetic volcaniccone complex that was active between 2·76 and 1·34Ma. Basalts were erupted at more than 14 centers scattered overa region 40 km in diameter. Alkali basalt was erupted first,followed by sub-alkaline basalt. Quasi-concentric expansionof eruption centers coinciding with uplift and with decreasingalkalinity of the lavas suggests that Ueno magmatism originatedfrom a mantle diapir as it mushroomed at the base of the lithosphere.Depleted asthenospheric mantle (alkali basalt), enriched lithosphericmantle (sub-alkaline basalt), and crustal components are identifiedas chemical end-members in the petrogenesis of the Ueno Basalts.Incompatible trace element abundances indicate that the Uenoalkali basalts are typical within-plate basalts, whereas thesub-alkaline basalts show strong affinities with normal arclavas. Sr–Nd–Pb isotopic compositions indicate thatthe mantle source of the alkali basalts was more depleted thanthat of the sub-alkaline basalts. About 7% melting of asthenosphericmantle in the garnet-lherzolite stability field produced theprimitive alkali basalts and 12% melting of spinel lherzolitewithin the subcontinental lithosphere produced the primitivesub-alkaline basalts. Isotopic compositions and fluid mobile/immobileelement ratios broadly covary with SiO2 contents in the sub-alkalinesuite, and increasing silica content is associated with strongerEMII (Enriched Mantle II) isotope affinities and fluid mobileelement abundances. A progressive AFC (assimilation–fractionalcrystallization) model assuming assimilation of a low-K silicicmelt reproduces the chemical variations observed in the sub-alkalinesuite. Melting of a flattening mantle diapir at the base ofthe lithosphere is the dominant cause of Ueno magmatism, accompaniedby the assimilation of older arc crust. KEY WORDS: arc basalt; crustal assimilation; mantle heterogeneity; Ueno Basalts  相似文献   
4.
Quaternary lavas from the NE Japan arc show geochemical evidenceof mixing between mantle-derived basalts and crustal melts atthe magmatic front, whereas significant crustal signals arenot detected in the rear-arc lavas. The along-arc chemical variationsin lavas from the magmatic front are attributable almost entirelyto geochemical variations in the crustal melts that were mixedwith a common mantle-derived basalt. The mantle-derived basaltshave slightly enriched Sr–Pb and depleted Nd isotopiccompositions relative to the rear-arc lavas, but the variationis less pronounced if crustal contributions are eliminated.Therefore, the source mantle compositions and slab-derived fluxesare relatively uniform, both across and along the arc. Despitethis, incompatible element concentrations are significantlyhigher in the rear-arc basalts. We examine an open-system, fluid-fluxedmelting model, assuming that depleted mid-ocean ridge basalt(MORB)-source mantle melted by the addition of fluids derivedfrom subducted oceanic crust (MORB) and sediment (SED) hybridsat mixing proportions of 7% and 3% SED in the frontal- and rear-arcsources, respectively. The results reproduce the chemical variationsfound across the NE Japan arc with the conditions: 0·2%fluid flux with degree of melting F = 3% at 2 GPa in the garnetperidotite field for the rear arc, and 0·7% fluid fluxwith F = 20% at 1 GPa in the spinel peridotite field beneaththe magmatic front. The chemical process operating in the mantlewedge requires: (1) various SED–MORB hybrid slab fluidsources; (2) variable amounts of fluid; (3) a common depletedmantle source; (4) different melting parameters to explain across-arcchemical variations. KEY WORDS: arc magma; crustal melt; depleted mantle; NE Japan; Quaternary; slab fluid  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号