首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By exchanging angular momentum with the solid earth, tidal variations in ocean currents and sea level cause the rotation of the solid earth to change. Observations of earth rotation variations can therefore be used to evaluate ocean tide models. The rotational predictions of a spherical harmonic ocean tide model that is not constrained by any type of data are compared here to the predictions of numerical ocean tide models and to earth rotation observations from which atmospheric and non-tidal oceanic effects have been removed. The spherical harmonic ocean tide model is shown to account for the observed variations at the fortnightly tidal period in polar motion excitation but not in length-of-day. Overall, its long-period polar motion excitation predictions fit the observed tidal signals better than do the predictions of the numerical ocean tide models studied here. It may be possible to improve its agreement with length-of-day observations by tuning certain model parameters, as was done to obtain the close agreement reported here between the modeled and observed polar motion excitation; alternatively, the discrepancy in length-of-day may point to the need to revise current models of mantle anelasticity and/or models of the oceanic response to atmospheric pressure variations.  相似文献   

2.
The rapid polar motion for periods below 20 days is revisited in light of the most recent and accurate geodetic and geophysical data. Although its amplitude is smaller than 2 mas, it is excited mostly by powerful atmospheric processes, as large as the seasonal ones. The residual amplitude, representing about 20% of the total excitation, stems from the oceans. Rapid polar motion has an irregular nature that is well explained by the combined influence of the atmosphere and the oceans. An overall spectrum reveals cycles principally at 20, 13.6 (fortnightly tidal period) and 10 days (corresponding to the normal atmospheric mode Y31{\Psi_3^1}), but this is only an averaged feature hiding its strong variability over seasonal time scales. This explains why it is so delicate to determine an empirical model of the tidal effect on polar motion. The variability in both amplitude and phase of the 13.6-day term is probably caused by a lunar barometric effect, modulated by some sub-seasonal thermal processes. The irregularities of the prominent cycles of the short-term polar motion are well explained by the atmospheric and oceanic excitations. The oceanic variability reinforces the atmospheric one, as they were triggered by the same agent, maybe seasonal and inter-annual thermal variations.  相似文献   

3.
The six-hourly values of the atmospheric angular momentum (AAM) functions computed by the U.S. National Meteorological Center (NMC) were used to estimate the effects of the atmospheric tides on the Earth's rotation. Variations of the equatorial components 1 and 2 of the AAM have periods close to gravitational tidesP 1 andK 1.The amplitudes of the detected variations in 1 and 2 functions have been found to be much larger than the theoretical ones, the reason of this amplification remains unexplained. According to theoretical formulations, these waves can be expressed only as retrograde motions. Because of frame effects, there is a correspondance between diurnal retrograde polar motion and precession-nutations and the atmospheric effect on polar motion cannot be detected from observations.The second part of this paper deals the effects of atmospheric tides in Earth rotation. High-frequency UT1 variations have been derived from VLBI and GPS techniques during the SEARCH'92 campaign (Study ofEarth-AtmosphereRapidCHanges) (Dickey et al. 1994). They have been compared to values derived by Ray et al. (1994) from global ocean tide model. The results obtained in the present paper show the existence of variations of thermal origin with an amplitude of about 1µs in Universal Time UT1. The agreement between observed and theoretical values is better when the determined thermal atmospheric tides are taken into account.Oceanic tidal signal explains a large part (60% of the signal variance) of the diurnal and sub-diurnal variations. Our results show that only a small part of the residuals (5%) accounts for the atmospheric tidal effects. The residual signal remains unexplained; it might be due to mismodelization of oceanic or atmospheric tides or effect of other geophysical phenomena.  相似文献   

4.
采用FARRELL的负荷理论以及最新的TPXO6海潮模型和中国近海潮汐资料计算了海潮负荷对佘山台倾斜固体潮的影响,采用BAYTAP-G调和分析软件对佘山台倾斜固体潮观测进行了处理,获得不同潮波的潮汐参数。在此基础上进行海潮负荷改正。负荷改正后,东西分量的振幅因子和相位滞后与理论值较为接近,而南北分量的半日波振幅因子与理论值仍有较大的偏离。结果说明,佘山台倾斜东西分量主要受海潮负荷的影响,超过60%,甚至达到96%(O1);而南北分量受到的非潮汐的影响要比东西分量受到的影响大,如N2波甚至高达70%,但是这也可能是和海潮模型在近海的不精确有关。  相似文献   

5.
This is a companion paper to earlier comparisons and study of operational polar motion series, published recently in the same journal. In this contribution, four operational, publicly available, length-of-day (LOD) time series have been compared to the atmospheric angular momentum (AAM) augmented with recent oceanic angular momentum (OAM) data during September 1997–July 2000, using several intervals ranging from 3 days to almost 3 years. Additionally, the LOD of the International GNSS Service (IGS) historical series and a new LOD combination (CMB) were also analyzed. All the six LOD series showed an overall correlation exceeding 0.99 for the complete interval of almost 3 years. Even for the shortest interval of only 3 days, the correlation was still higher than 0.60. The combined AAM + OAM series with inverted barometer corrections always gave the best correlation. The Rapid Service LOD of the International Earth Rotation and Reference Systems Service (IERS) compared the best at all intervals but the shortest one, where the CMB LOD was the best with a correlation of 0.73, followed by both IGS series with a correlation of about 0.71. Prior to all the correlation analyses, in addition to the removal of all the known (conventional) LOD tidal variations with periods ranging from 5.6 days to 18.6 years and lunar fortnightly and monthly oceanic tides, small corrections of lunar fortnightly and monthly tides, semi-annual, annual periodical signals, drift and scale had to be estimated with respect to the combined AAM + OAM series.  相似文献   

6.
The response of the Earth’s crust to the direct effect of lunisolar gravitational forcing is known as the body tide. The body tide is superimposed by surface-loading forces due to the pressure of the periodically varying ocean tide acting on the Earth, called ocean tide loading (OTL). Both body tide and OTL can be decomposed into components of the same frequency known as tidal parameters. However, OTL is more complicated than body tides because of the dynamic effects of the ocean. Estimating OTL requires a model of the ocean tides and knowledge of the elastic properties of the solid Earth. Thus, synthetic tide parameters (amplitude factors and phase leads) have been developed here on a world-wide grid for gravity and positional displacements. The body tide contributions were added to the oceanic contribution to provide the Earth tide response. The accuracy and reliability of the synthetic tidal parameters have been estimated by comparing observed gravity and vertical-displacement tide parameters with those interpolated from our synthetic model, which shows good agreement. Tests also indicate that the synthetic tide parameters provide realistic gravimetric and displacements for practical use in tidal prediction.  相似文献   

7.
A method of analyzing GRACE satellite-to-satellite ranging data is presented which accentuates signals from diurnal ocean tides and dampens signals from long-period non-tidal phenomena. We form a time series of differences between two independent monthly mean gravity solutions, one set computed from range-rate data along strictly ascending arcs and the other set computed from data along descending arcs. The solar and lunisolar diurnal tides having alias periods longer than a few months, such as K 1, P 1, and S 1, present noticeable variations in the monthly ascending and descending ‘difference’ solutions, while the climate-related signals are largely cancelled. By computing tidal arguments evaluated along the actual GRACE orbits, we decompose and estimate residual tidal signals with respect to our adopted prior model GOT4.7. The adjustment in the tidal height is small yet significant, yielding maximum amplitudes of 4 cm mostly under the Antarctic ice shelves and ~1 cm in general at spatial scales of several hundred kilometer. Moreover, the results suggest there are possible 1-cm errors in the tide model even over oceans well-covered by decades of radar altimetry missions. Independent validation of such small adjustments covering wide areas, however, is difficult, particularly with limited point measurements such as tide gauge.  相似文献   

8.
本文利用中山站弹簧重力仪记录的重力潮汐时间序列、验潮站数据、CATS2008区域和Eot11a全球海潮模型研究重力和海洋潮汐特征。结果表明,在周日频段,潮波O1的海潮振幅达到28 cm,4个主要潮波(Q1、O1、P1和K1)的全球模型与验潮站潮高差之和为4.2 cm,区域模型与验潮站潮高差之和为4.4 cm;在半日频段,潮波M2的海潮振幅达到20 cm,4个主要潮波(N2、M2、S2和K2)的潮高差之和分别为7.7 cm和5.1 cm,说明利用区域模型修正全球模型的重要性。经区域模型修正的全球海潮负荷改正后,重力主波K1、M2和S2的最终残差振幅分别下降了9.84%、56.14%和37.08%,说明区域海潮模型更能反映海洋潮汐的真实特征,用区域模型修正全球海潮模型的有效性得到验证。  相似文献   

9.
We present results from the generation of 10-year-long continuous time series of the Earth’s polar motion at 15-min temporal resolution using Global Positioning System ground data. From our results, we infer an overall noise level in our high-rate polar motion time series of 60 \(\upmu \hbox {as}\) (RMS). However, a spectral decomposition of our estimates indicates a noise floor of 4 \(\upmu \hbox {as}\) at periods shorter than 2 days, which enables recovery of diurnal and semidiurnal tidally induced polar motion. We deliberately place no constraints on retrograde diurnal polar motion despite its inherent ambiguity with long-period nutation. With this approach, we are able to resolve damped manifestations of the effects of the diurnal ocean tides on retrograde polar motion. As such, our approach is at least capable of discriminating between a historical background nutation model that excludes the effects of the diurnal ocean tides and modern models that include those effects. To assess the quality of our polar motion solution outside of the retrograde diurnal frequency band, we focus on its capability to recover tidally driven and non-tidal variations manifesting at the ultra-rapid (intra-daily) and rapid (characterized by periods ranging from 2 to 20 days) periods. We find that our best estimates of diurnal and semidiurnal tidally induced polar motion result from an approach that adopts, at the observation level, a reasonable background model of these effects. We also demonstrate that our high-rate polar motion estimates yield similar results to daily-resolved polar motion estimates, and therefore do not compromise the ability to resolve polar motion at periods of 2–20 days.  相似文献   

10.
A number of statistic Global Positioning System (GPS) measurement campaigns have been made on a floating Antarctic ice shelf, the Amery Ice Shelf, as part of ongoing glaciological studies designed to investigate the ice shelf dynamics, grounding zone definition, and ice shelf strain. Such studies ar fundamental to improving out knowledge of the Antarctic ice-sheet mass balance and dynamical models of ice sheet/ocean interaction. This article describes two techniques used to process the statistic GPS data. One approach uses a segmented version of the classical static methodology, and the other approach adopts a new sequential processing technique. Both approaches yield similar results for the station coordinates and demonstrate the potential of GPS for extracting the tidal signal on the ice shelves and giving information on the dynamical motion of the ice sheet. To verify our results for the vertical component, we compare the ice shelf GPS tidal signal with a tidal model derived from tide gauge measurements at nearby Beaver Lake. Comparison of the GPS results with the tide model give good agreement in amplitude at the few cm level (GPS results always larger) but clearly shows evidence of phase propagation of the ocean tidal wave under the ice shelf. Improving the resolution of the tides over the ice shelves will be of tremendous benefit for future satellite missions, such as Ice, Cloud and Land Elevation Satellite (ICESAT), and the integrated use of GPS and satellite data will be fundamental for any on-going Antarctic ice sheet mass balance studies. ? 2000 John Wiley & Sons, Inc.  相似文献   

11.
Changes in the annual variation of the Earths polar motion are found to be largely caused by the variation of the atmospheric angular momentum (AAM). Recent simulation results of oceanic general circulation models further suggest global oceanic effects on the annual polar motion in addition to the atmosphere. In comparison with previous model studies of global oceanic effects, this research particularly singles out a large-scale ocean anomaly and investigates its effect on the annual polar motion, determined from satellite observations of the movement of the Western Pacific Warm Pool (WPWP). Although the scale of the warm pool is much smaller than that of the solid Earth, analysis of the non-atmospheric polar motion excitation has shown that the WPWP contributes non-negligibly to the annual polar motion. The analysis consists of over 30 years of WPWP data (1970–2000) and shows values of polar motion excitation for the x-component of (2.5 mas, –79°) and for the y-component of (0.6 mas, 173°). Comparison of this result with the total geodetic non-atmospheric polar motion excitation of (10.3 mas, 59°) for the x-component and (10.6 mas, 62°) for the y-component shows the significance of the WPWP. Changes in the Earths polar motion have attracted significant attention, not only because it is an important geodetic issue, but also because it has significant value as a global measure of variations within the hydrosphere, atmosphere, cryosphere, and solid Earth, and hence global changes.Tel: 86–21–64386191 Fax: 86–21–64384618Acknowledgments. The authors are grateful to Dr. R. Gross (JPL) and two anonymous reviewers for providing invaluable comments. They also thank Dr. J.L. Chen (CSR) for helpful discussions. Y. Zhou, D. Zheng and X. Liao were supported by the National Natural Science Foundation of China (10273018, 10133010) and Key Project of Chinese Academy of Sciences (KJCX2-SW-T1). X-H. Yan was supported by the National Aeronautics and Space Administration (NASA) through Grant NAG5–12745, and by the National Science Foundation (NSF) through the Presidential Faculty Fellow award to X-H. Yan (OCE-9453499). W.T. Liu was supported by the NASA Physical Oceanography Program.  相似文献   

12.
南极中山站重力潮汐观测的海潮负荷效应   总被引:1,自引:0,他引:1  
综合分析了LaCoste-Romberg(LCR)ET21高精度弹簧重力仪1998年12月26日至2000年1月9日在南极中山站的重力潮汐观测资料,采用目前普遍使用的Schwiderski、Csr3.0和Fes96.2全球海潮模型研究中山站重力潮汐观测的海潮负荷改正问题。结果表明在南极地区,目前的海潮模型存在较大的不确定性,还不足以精密确定该区域的海潮负荷改正。经海潮改正后,重力潮汐观测结果与潮汐理论值之间还存在比较大的差异,观测的周日(01)和半日(M2)潮波重力振幅因子与相应的理论值之间的平均偏差分别为3.8%和7.8%。南极地区附近海域海水的变化半导致该地区海潮负荷响应非常明显的季节性系统变化。  相似文献   

13.
Changes in the oceanic current system and in the oceanic mass distribution alter, together with other processes, the state of the Earth’s rotation. This state is characterized by the length of day (LOD) and the tilt of the pole-to-pole axis. The aim of our study was to derive the respective governing physical mechanisms in the ocean. Therefore, Earth rotation observations were assimilated into a global circulation model of the ocean. Although assimilation is a well-established tool in climate science, the assimilation of Earth rotation observations into a global ocean model was done here for the first time. Prior to the assimilation, the Earth rotation observations were projected onto the angular momentum of the ocean. Non-oceanic contributions were removed. The result of the subsequent assimilation procedure is a time varying ocean model state that reproduces the projected Earth rotation observations well. This solution was studied to understand the oceanic generation of Earth rotation deviations and to identify governing physical mechanisms. This paper focuses on LOD anomalies although polar motion was assimilated simultaneously. Our results indicate that changes in the oceanic LOD excitation are mostly attributed to changes in total ocean mass. Changes in the spatial distribution of ocean mass turned out to have a minor contribution to the LOD deviations. The same applies to changes in the current system.  相似文献   

14.
Short-term forecast of the polar motion is considered by introducing a prediction model for the excitation function that drives the polar motion dynamics. The excitation function model consists of a slowly varying trend, periodic modes with annual and several sub-annual frequencies (down to the 13.6-day fortnightly tidal period), and a transient decay function with a time constant of 1.5 days. Each periodic mode is stochastically specified using a second-order auto-regression process, allowing its frequency, phase, and amplitude to vary in time within a statistical tolerance. The model is used to time-extrapolate the excitation function series, which is then used to generate a polar motion forecast dynamically. The skills of this forecast method are evaluated by comparison to the C-04 polar motion series. Over the lead-time horizon of four months, the proposed method has performed equally well to some of the state-of-art polar motion prediction methods, none of which specifically features forecasting of the excitation function. The annual mode in the 2 component is energetically the most dominant periodicity. The modes with longer periods, annual and semi-annual in particular, are found to contribute more significantly to forecast accuracy than those with shorter periods.  相似文献   

15.
利用T/P测高数据反演了中国近海及西北太平洋海域的潮汐参数,构造了CSR3.0、FES95.2和T/P反演的海潮模型改正下的海面高时间序列,通过海面高变化曲线及功率谱的比较确定了利用测高数据发现的海平面季节内变化主要是潮汐模型误差的贡献.  相似文献   

16.
This study is based on 25 long time-series of tidal gravity observations recorded with superconducting gravimeters at 20 stations belonging to the Global Geodynamic Project (GGP). We investigate the diurnal waves around the liquid core resonance, i.e., K 1, ψ1 and φ1, to determine the free core nutation (FCN) period, and compare these experimental results with models of the Earth response to the tidal forces. For this purpose, it is necessary to compute corrected amplitude factors and phase differences by subtracting the ocean tide loading (OTL) effect. To determine this loading effect for each wave, it was thus necessary to interpolate the contribution of the smaller oceanic constituents from the four well determined diurnal waves, i.e., Q 1, O 1, P 1, K 1. It was done for 11 different ocean tide models: SCW80, CSR3.0, CSR4.0, FES95.2, FES99, FES02, TPXO2, ORI96, AG95, NAO99 and GOT00. The numerical results show that no model is decisively better than the others and that a mean tidal loading vector gives the most stable solution for a study of the liquid core resonance. We compared solutions based on the mean of the 11 ocean models to subsets of six models used in a previous study and five more recent ones. The calibration errors put a limit on the accuracy of our global results at the level of ± 0.1%, although the tidal factors of O 1 and K 1 are determined with an internal precision of close to 0.05%. The results for O 1 more closely fit the DDW99 non-hydrostatic anelastic model than the elastic one. However, the observed tidal factors of K 1 and ψ1 correspond to a shift of the observed resonance with respect to this model. The MAT01 model better fits this resonance shape. From our tidal gravity data set, we computed the FCN eigenperiod. Our best estimation is 429.7 sidereal days (SD), with a 95% confidence interval of (427.3, 432.1).  相似文献   

17.
Gravity observations from superconducting gravimeters are used to observe loading effects from shallow-water tides on the Japanese east and west coasts. Non-linear third-diurnal and higher-frequency shallow-water tides are identified in the tide-gauge observations from these coastal areas. The most energetic constituents in the tide gauge observations are also seen in the gravity observations due to their loading effects on the deformation of the Earth. Even though the shallow-water tides at the Japanese east coast have an amplitude of only a few millimetres, they are still able to generate a loading signal at gravity sites located several hundred kilometres inland. In particular, the S3, S4 and S5 solar tides occur in both gravity and tide gauge observations. It is indicated that in other shelf regions with large shallow water tides, the shallow water loading signals account for a significant signal, which should be taken into account.Acknowledgement The authors would like to thank the Hydrographic and Oceanographic Department (Japan Coast Guard), Japan Meteorological Agency and Hokkaido Development Agency for access to the tide-gauge data. Also, the Global Geodynamic Project Information System and Data Center (GGP-ISDC) is acknowledged for providing the gravity data.  相似文献   

18.
 Autocovariance prediction has been applied to attempt to improve polar motion and UT1-UTC predictions. The predicted polar motion is the sum of the least-squares extrapolation model based on the Chandler circle, annual and semiannual ellipses, and a bias fit to the past 3 years of observations and the autocovariance prediction of these extrapolation residuals computed after subtraction of this model from pole coordinate data. This prediction method has been applied also to the UT1-UTC data, from which all known predictable effects were removed, but the prediction error has not been reduced with respect to the error of the current prediction model. However, the results show the possibility of decreasing polar motion prediction errors by about 50 for different prediction lengths from 50 to 200 days with respect to the errors of the current prediction model. Because of irregular variations in polar motion and UT1-UTC, the accuracy of the autocovariance prediction does depend on the epoch of the prediction. To explain irregular variations in x, y pole coordinate data, time-variable spectra of the equatorial components of the effective atmospheric angular momentum, determined by the National Center for Environmental Prediction, were computed. These time-variable spectra maxima for oscillations with periods of 100–140 days, which occurred in 1985, 1988, and 1990 could be responsible for excitation of the irregular short-period variations in pole coordinate data. Additionally, time-variable coherence between geodetic and atmospheric excitation function was computed, and the coherence maxima coincide also with the greatest irregular variations in polar motion extrapolation residuals. Received: 22 October 1996 / Accepted: 16 September 1997  相似文献   

19.
We investigate daily and sub-daily non-tidal oceanic and atmospheric loading (NTOAL) in the Australian region and put an upper bound on potential site motion examining the effects of tropical cyclone Yasi that crossed the Australian coast in January/February 2011. The dynamic nature of the ocean is important, particularly for northern Australia where the long-term scatter due to daily and sub-daily oceanic changes increases by 20–55 % compared to that estimated using the inverted barometer (IB) assumption. Correcting the daily Global Positioning System (GPS) time series for NTOAL employing either a dynamic ocean model or the IB assumption leads to a reduction of up to 52 % in the weighted scatter of daily coordinate estimates. Differences between the approaches are obscured by seasonal variations in the GPS precision along the northern coast. Two compensating signals during the cyclone require modelling at high spatial and temporal resolution: uplift induced by the atmospheric depression, and subsidence induced by storm surge. The latter dominates ( \(>\) 135 %) the combined net effect that reaches a maximum of 14 mm, and 10 mm near the closest GPS site TOW2. Here, 96 % of the displacement is reached within 15 h due to the rapid transit of cyclones and the quasi-linear nature of the coastline. Consequently, estimating sub-daily NTOAL is necessary to properly account for such a signal that can be 3.5 times larger than its daily-averaged value. We were unable to detect the deformation signal in 2-hourly GPS processing and show that seasonal noise in the Austral summer dominates and precludes GPS detection of the cyclone-related subsidence.  相似文献   

20.
This research aims to study the influences of the atmospheric and oceanic excitations on polar motion.Power spectrum density analyses show that the efficiencies of the atmospheric and oceanic excitations differ not only at different frequencies but also in the retrograde and prograde components,but the sum of atmospheric and oceanic excitations shows the best agreement with the observed excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号