首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of New Zealand geology using a fore-arc model (Crook, 1980a) leads to the recognition of four arc terrains. The west facing Tuhua volcanic arc was active from the Late Proterozoic until the Middle or Late Cambrian. Post-subduction sediments, neritic in the east and flysch in the west, accumulated on the Tuhua accretionary prism from the Late Cambrian until the Early Devonian. Thermal equilibration, metamorphism, granitoid plutonism and penetrative deformation occurred in the Middle to Late Devonian. A small area of Permian platform cover has escaped later erosion. The east-facing Rangitata Terrain records subduction from Early Permian to late Early Cretaceous. Much of its accretionary prism consists of a submarine fan complex derived from Western Antarctica and carried sideways into the trench. The accretionary prism is thick and completely kratonized in southern New Zealand, but the thickness is more variable northwards. There the overlying Upper Cretaceous to Upper Oligocene post-subduction sequence comprises shelf sediments (implying an intermediate-thickness prism) or flysch followed by shelf sediments (implying a thin prism). During the accumulation of this sequence the Rangitata Terrain was a passive continental margin. The south-facing Jurassic-late Oligocene Northland Terrain collided with this passive margin in northern New Zealand at the end of the Oligocene, forming the Northland Allochthon. Subduction then flipped and the oldest part of the Kaikoura Terrain volcanic arc formed on the outer part of the Northland Terrain. Originally this terrain faced northeast and consumed the southwestern part of the South Fiji Basin crust, but during the Miocene the arc migrated clockwise to assume its present northeastern orientation. The fore-arc model employed here satisfactorily explains most first-order and many second-order features of New Zealand geology without requiring modification, thus attesting to the model's versatility and robustness. New Zealand provides a basis for elaborating some aspects of the model, particularly the transition from the syn- to post-subduction phases of fore-arc evolution. Combination of this study with a similar study of the southeastern Australian Paleozoic yields insights into the Phanerozoic evolution of the Australian: Pacific Plates' active margin.  相似文献   

2.
The present day Taupo-Hikurangi subduction system is a southward extension of the Tonga-Kermadec Arc system into a sediment-rich continental margin environment. It consists of a shallow structural trench (the Hikurangi Trough), a 150 km wide, imbricate thrust controlled accretionary borderland (the continental slope, shelf, and coastal hills of eastern North Island), a frontal ridge (the main “greywacke” ranges of North Island), and a volcanic arc and marginal basin (the Taupo Volcanic Zone).Structural elements become progressively more elevated and subduction more oblique towards the south. The whole NNE-trending system is truncated at a largely strike-slip, transform boundary that extends along the southwestern part of the Hikurangi Trough and the Hope fault of South Island to the main Alpine Fault.The volcanic arc is 200–270 km from the structural trench and comprises a NNE trending chain of andesite-dacite volcanoes extending along the eastern side of the Taupo Volcanic Zone. Most of the andesites are olivine-bearing and have been erupted within the last 50,000 years.It is suggested the Taupo-Hikurangi margin has evolved by rotation of accretionary elements, from an original NW-trending subduction system north of New Zealand. The older elements of the prism were associated with subduction of a re-entrant of the Pacific Plate (and perhaps the South Fiji Basin) in Mid Tertiary times. They subsequently became separated from their NW-trending volcanic arc by dextral strike-slip movement along curved faults east of the main “greywacke” ranges. During the Plio-Pleistocene, oblique subduction and accretion intensified as the Taupo-Hikurangi margin rotated into line with the NNE-trending Kermadec system and a marginal basin was developed along a similar trend to form the Taupo Volcanic Zone. Within the last 50,000 years olivine-bearing andesite volcanism has commenced along the eastern side of the Taupo Volcanic Zone.  相似文献   

3.
Gibbons 《地学学报》1998,10(6):337-342
Exceptionally voluminous arc-related rhyolitic eruptions from clusters of caldera complexes, as seen in Snowdonia, North Wales (mid-Caradoc), and North Island, New Zealand (late Neogene-Quaternary), are characteristically confined within transient, fault-controlled corridors in continental crust. New Zealand rhyolitic corridors (Coromandel, Central, Taupo) have developed in response to the spearheading of an oceanic arc into continental crust, combined with subduction rollback-induced extension during clockwise rotation pivoting around central North Island. Inherited high heat flow from earlier arc magmatism, intracrustal plastic deformation, and mantle-derived magma ponding and fractionation beneath a less dense, fracture-toughened crust, all contribute synergistically to crustal fusion and catastrophic volcanism. A similar scenario is suggested for the Snowdonia volcanic corridor where at least six major rhyolitic centres were restricted in space and time (Soudleyan-Woolstonian). After the climactic Snowdonian eruptions, arc magmatism was extinguished in Wales: a fate predicted for New Zealand rhyolitic volcanism as subduction rollback continues.  相似文献   

4.
In eastern North Island New Zealand, oblique subduction of the Pacific Plate beneath the Australian Plate is associated with strain partitioning. Dextral along-strike component of displacement occurred first at Early Miocene major faults within the eastern fore-arc domain. These faults were active from Early Miocene to Pliocene times. Since Pliocene times, most of the movement occurs at western faults such as the Wellington Fault. The latter joins the back-arc domain to the north. The jump of wrench faulting is related to the oblique opening of the back-arc domain. Both phenomena are impeded southwards by the Hikurangi oceanic plateau entering the subduction zone. To cite this article: J. Delteil et al., C. R. Geoscience 335 (2003).  相似文献   

5.
The extent and geometry of the obliquely subduced oceanic Pacific Plate beneath North Island, New Zealand, for five million year intervals through the mid-Miocene to Quaternary, are presented in a series of maps and cross-sections. These show that the subducted plate progressively increased its extent from NE to SW beneath the North Island, and in the more northern regions where it was first emplaced, concomitantly increased its dip from 10° to 50°.The changing extent and geometry of the subducted slab has been established from the age pattern of orogenic andesites and from the geochemical K2O-h parameter of depth of magma generation. The radiometric dates show a migration of the volcanic front back towards the trench at an average rate of 20 km/My. The trenchward migration is explained by a model of increasing slab dip which is corroborated by the K2O data calibrated against the presently active arc (Taupo Volcanic Zone). With the exception of northern Coromandel Peninsula, the andesitic magmas were generated at 85–100 km depth. The interpretation of the dates adopted here indicates that the subducted slab originated at the NE-SW trending Kermadec-Hikurangi Trench, and implies a different and much simpler evolution of the Australia-Pacific plate boundary in the vicinity of North Island than other recent models.Subduction geometry has been found elsewhere to be a principal influence upon the state of stress and deformational style in an over-riding plate. The possibility is explored that the timing, nature and pattern of the Neogene to Quaternary Kaikoura Orogeny in North Island is due to this influence. Apart from the effect of oblique subduction in eastern North Island, there is an accord between the onset of deformation and the emplacement sequence of the shallow slab beneath North Island, and between the change in subduction geometry and a progressive north to south change in northern North Island from compression to extension.  相似文献   

6.
西太平洋边缘构造特征及其演化   总被引:1,自引:1,他引:0       下载免费PDF全文
李学杰  王哲  姚永坚  高红芳  李波 《中国地质》2017,44(6):1102-1114
西太平洋边缘构造带是地球上规模最大最复杂的板块边界,以台湾和马鲁古海为界,自北往南大致可以分为3段。北段是典型的沟-弧-盆体系,千岛海盆、日本海盆及冲绳海槽均为典型的弧后扩张盆地。中段菲律宾岛弧构造带为双向俯冲带,构造复杂,新生代经历大的位移和重组,使得欧亚大陆边缘的南海、苏禄海和苏拉威西海成因存在很大的争议。南段新几内亚—所罗门构造带是太平洋板块、印度—澳大利亚及欧亚板块共同作用的结果,既有不同阶段的俯冲、碰撞,也有大规模的走滑与弧后的扩张,其间既有新扩张的海盆,又有正在俯冲消亡的海盆。台湾岛处于枢纽部位,欧亚板块在此被撕裂,南部欧亚大陆边缘南海洋壳沿马尼拉海沟俯冲于菲律宾岛弧之下,而北部菲律宾海洋壳沿琉球海沟俯冲欧亚大陆之下。马鲁古海是西太平洋板块边界又一转折点,马鲁古海板块往东下插于哈马黑拉之下,往西下插于桑义赫弧,形成反U形双向俯冲汇聚带,其洋壳板块已基本全部消失,致使哈马黑拉弧与桑义赫弧形成弧-弧碰撞。  相似文献   

7.
Evidence of Cenozoic magmatism is found along the length of New Guinea. However, the petrogenetic and tectonic setting for this magmatism is poorly understood. This study presents new field, petrographic, U–Pb zircon, and geochemical data from NW New Guinea. These data have been used to identify six units of Cenozoic igneous rocks which record episodes of magmatism during the Oligocene, Miocene, and Pliocene. These episodes occurred in response to the ongoing interaction between the Australian and Philippine Sea plates. During the Eocene, the Australian Plate began to obliquely subduct beneath the Philippine Sea Plate forming the Philippine–Caroline Arc. Magmatism in this arc is recorded in the Dore, Mandi, and Arfak volcanics of NW New Guinea where calc-alkaline and tholeiitic rocks formed within subduction-related fore-arc and extension-related back-arc settings from 32 to 27 Ma. Collision along this plate boundary in the Oligocene–Miocene jammed the subduction zone and caused a reversal in subduction polarity from north-dipping to south-dipping. Following this, subduction of the Philippine Sea Plate beneath the Australian Plate produced magmatism throughout western New Guinea. In NW New Guinea this is recorded by the middle Miocene (18–12 Ma) Moon Volcanics, which include an early period of high-K to shoshonitic igneous activity. These earlier magmatic rocks are associated with the subduction zone polarity reversal and an initially steeply dipping slab. The magmatic products later changed to more calc-alkaline compositions and were emplaced as volcanic rocks in the fore-arc section of a primitive continental arc. Finally, following terminal arc–continent collision in the late Miocene–Pliocene, mantle derived magmas (including the Berangan Andesite) migrated up large strike-slip faults becoming crustally contaminated prior to their eruption during the Plio–Pleistocene. This study of the Cenozoic magmatic history of NW New Guinea provides new data and insights into the tectonic evolution of the northern margin of the Australian Plate.  相似文献   

8.
The intra-oceanic Kermadec arc system extends ~1300 km between New Zealand and Fiji and comprises at least 30 arc front volcanoes, the Havre Trough back-arc and the remnant Colville and Kermadec Ridges. To date, most research has focussed on the Kermadec arc front volcanoes leaving the Colville and Kermadec Ridges virtually unexplored. Here, we present seven 40Ar/39Ar ages together with a comprehensive major and trace element and Sr-, Nd-, and Pb-isotope dataset from the Colville and Kermadec Ridges to better understand the evolution, petrogenesis and splitting of the former proto-Kermadec (Vitiaz) Arc to form these two remnant arc ridges. Our 40Ar/39Ar ages range from ~7.5–2.6 Ma, which suggests that arc volcanism at the Colville Ridge occurred continuously and longer than previously thought. Recovered Colville and Kermadec Ridge lavas range from mafic picro-basalts (MgO = ~8 wt%) to dacites. The lavas have arc-type normalised incompatible element patterns and Sr and Pb isotopic compositions intermediate between Pacific MORB and subducted lithosphere (including sediments, altered oceanic crust and serpentinised uppermost mantle). Geochemically diverse lavas, including ocean island basalt-like and potassic lavas with high Ce/Yb, Th/Zr, intermediate 206Pb/204Pb and low 143Nd/144Nd ratios were recovered from the Oligocene South Fiji Basin (and Eocene Three Kings Ridge) located west of the Colville Ridge. If largely trench-perpendicular mantle flow was operating during the Miocene, this geochemical heterogeneity was likely preserved in the Colville and Kermadec sub arc mantle. Between 4.41 ± 0.35 and 3.40 ± 0.24 Ma some Kermadec Ridge lavas record a shift from Colville Ridge- to Kermadec arc front-like, suggesting the proto-Kermadec (Vitiaz-) arc split post 4.41 ± 0.35 Ma. The Colville and Kermadec Ridge data therefore place new constraints on the regional tectonic evolution and highlight the complex interplay between pre-existing mantle heterogeneities and material fluxes from the subducting Pacific Plate. The new data allow us to present a holistic (yet simplified) picture of the tectonic evolution of the late Vitiaz Arc and northern Zealandia since the Miocene and how this tectonism influences volcanic activity along the Kermadec arc at the present.  相似文献   

9.
A Cordilleran model for the evolution of Avalonia   总被引:2,自引:0,他引:2  
Striking similarities between the late Mesoproterozoic–Early Paleozoic record of Avalonia and the Late Paleozoic–Cenozoic history of western North America suggest that the North American Cordillera provides a modern analogue for the evolution of Avalonia and other peri-Gondwanan terranes during the late Precambrian. Thus: (1) The evolution of primitive Avalonian arcs (proto-Avalonia) at 1.2–1.0 Ga coincides with the amalgamation of Rodinia, just as the evolution of primitive Cordilleran arcs in Panthalassa coincided with the Late Paleozoic amalgamation of Pangea. (2) The development of mature oceanic arcs at 750–650 Ma (early Avalonian magmatism), their accretion to Gondwana at ca. 650 Ma, and continental margin arc development at 635–570 Ma (main Avalonian magmatism) followed the breakup of Rodinia at ca. 755 Ma in the same way that the accretion of mature Cordilleran arcs to western North America and the development of the main phase of Cordilleran arc magmatism followed the Early Mesozoic breakup of Pangea. (3) In the absence of evidence for continental collision, the diachronous termination of subduction and its transition to an intracontinental wrench regime at 590–540 Ma is interpreted to record ridge–trench collision in the same way that North America's collision with the East Pacific Rise in the Oligocene led to the diachronous initiation of a transform margin. (4) The separation of Avalonia from Gondwana in the Early Ordovician resembles that brought about in Baja California by the Pliocene propagation of the East Pacific Rise into the continental margin. (5) The Late Ordovician–Early Silurian sinistral accretion of Avalonia to eastern Laurentia emulates the Cenozoic dispersal of Cordilleran terranes and may mimic the paths of future terranes transferred to the Pacific plate.This close similarity in tectonothermal histories suggests that a geodynamic coupling like that linking the evolution of the Cordillera with the assembly and breakup of Pangea, may have existed between Avalonia and the late Precambrian supercontinent Rodinia. Hence, the North American Cordillera is considered to provide an actualistic model for the evolution of Avalonia and other peri-Gondwanan terranes, the histories of which afford a proxy record of supercontinent assembly and breakup in the late Precambrian.  相似文献   

10.
The East Coast Fold Belt (ECFB) of the North Island, New Zealand, is the continuation of the Tonga-Kermadec arc-trench system. Structurally its tectonic front to the east defines the Indian-Pacific plate boundary. This, however, is not continuous with the Kermadec Trench. Large-scale fragmentation of the ECFB into segments of greatly varying width, strike and structure may be caused by a strongly segmented subducting plate, individual segments of which strike in different directions and have different dips and rates of subduction. Towards the southwest, regional change of strike with respect to plate motion has resulted in the formation of a broad shear zone marked by a strongly subsiding trough filled with rapidly deposited, largely undeformed sediments in front of the ECFB. This foredeep (Hikurangi Trough), which thus occupies the gap between ECFB (Indian plate) and the continental Chatham Rise (Pacific plate) is gradually being involved in the overall deformation, due to continuing motion of the Pacific plate to the southwest, in a slightly oblique sense along the shear zone. As a result, the Hikurangi Trough is shifting with time to the east-northeast. From a tectonic, structural and morphological point of view, it is unrelated to the Kermadec Trench which terminates in the region of East Cape.The structure of the ECFB is characterized mainly by extension normal to the plate boundary, with regional tilting and down-faulting of the continental margin. Effects of compression are observed only locally, and are often due to diapiric uplifts caused by widespread, undercompacted shale. Such diapirs form elongate structural highs which in many cases have supplied sediments into adjacent basins on their landward side. Overall the continental slope and margin are underlain by land-derived sediments which exhibit in-place deformation. Locally they extend as undeformed sediment aprons beyond the tectonicfront. There is no compelling evidence of a subduction complex of imbricate thrust slices. It is concluded that the tectonic evolution is not controlled by accretion but rather by subsidence and tectonic erosion along the continental margin. The conditions are complicated, however, because of the discrete change from an oceanic arc-trench subduction system to an intercontinental shear zone.  相似文献   

11.
In contrast to the normal ‘Wilson cycle’ sequence of subduction leading to continental collision and associated mountain building, the evolution of the New Zealand plate boundary in the Neogene reflects the converse—initially a period of continental convergence that is followed by the emplacement of subduction. Plate reconstructions allow us to place limits on the location and timing of the continental convergence and subduction zones and the migration of the transition between the two plate boundary regimes. Relative plate motions and reconstructions since the Early to Mid-Miocene require significant continental convergence in advance of the emplacement of the southward migrating Hikurangi subduction—a sequence of tectonism seen in the present plate boundary geography of Hikurangi subduction beneath North Island and convergence in the Southern Alps along the Alpine Fault. In contrast to a transition from subduction to continental convergence where the leading edge of the upper plate is relatively thin and deformable, the transition from a continental convergent regime, with its associated crustal and lithospheric thickening, to subduction of oceanic lithosphere requires substantial thinning (removal) of upper plate continental lithosphere to make room for the slab. The simple structure of the Wadati–Benioff zone seen in the present-day geometry of the subducting Pacific plate beneath North Island indicates that this lithospheric adjustment occurs quickly. Associated with this rapid lithospheric thinning is the development of a series of ephemeral basins, younging to the south, that straddle the migrating slab edge. Based on this association between localized vertical tectonics and slab emplacement, the tectonic history of these basins records the effects of lithospheric delamination driven by the southward migrating leading edge of the subducting Pacific slab. Although the New Zealand plate boundary is often described as simply two subduction zones linked by the transpressive Alpine Fault, in actuality the present is merely a snapshot view of an ongoing and complex evolution from convergence to subduction.  相似文献   

12.
13.
台湾造山带是中新世晚期以来相邻菲律宾海板块往北西方向移动,导致北吕宋岛弧系统及弧前增生楔与欧亚大陆边缘斜碰撞形成的。目前该造山带仍在活动,虽然规模很小,但形成了多数大型碰撞造山带中的所有构造单元,是研究年轻造山系统的理想野外实验室,为理解西太平洋弧-陆碰撞过程和边缘海演化提供了一个独特的窗口。本文总结了二十一世纪以来对台湾造山带的诸多研究进展,讨论了其构造单元划分及演化过程。我们将台湾造山带重新划分为6个构造单元,由西至东分依次为:(1)西部前陆盆地;(2)中央山脉褶皱逆冲带;(3)太鲁阁带;(4)玉里-利吉蛇绿混杂岩带;(5)纵谷磨拉石盆地;(6)海岸山脉岛弧系统。其中,西部前陆盆地为6.5Ma以来伴随台湾造山带的隆升剥蚀形成沉积盆地。中央山脉褶皱逆冲带为新生代(57~5.3Ma)欧亚大陆东缘伸展盆地沉积物由于弧-陆碰撞受褶皱、逆冲及变质作用改造形成的。太鲁阁带是造山带中的古老陆块,主要记录中生代古太平洋俯冲在欧亚大陆活动边缘形成的岩浆、沉积和变质岩作用。玉里-利吉蛇绿混杂岩带和海岸山脉岛弧系统分别为中新世中期(~18Ma)以来南中国海板块向菲律宾海板块之下俯冲形成的岛弧和弧前增生楔,其中玉里混杂岩中有典型低温高压变质作用记录,变质年龄为11~9Ma;岛弧火山作用的主要时限为9.2~4.2Ma。纵谷磨拉石盆地记录1.1Ma以来的山间盆地沉积。台湾造山带的构造演化可划分为4个阶段:(a)古太平洋板块俯冲与欧亚大陆边缘增生阶段(200~60Ma);(b)欧亚大陆东缘伸展和南中国海扩张阶段(60~18Ma);(c)南中国海俯冲阶段(18~4Ma);(d)弧-陆碰撞阶段(<6Ma)。台湾弧-陆碰撞造山带是一个特殊案例,其弧-陆碰撞并不伴随着弧-陆之间的洋盆消亡,而是由于北吕宋岛弧及弧前增生楔伴随菲律宾海板块运动向西北方走滑,仰冲到欧亚大陆边缘,形成现今的台湾造山带。  相似文献   

14.
How was Taiwan created?   总被引:4,自引:0,他引:4  
Since the beginning of formation of proto-Taiwan during late Miocene (9 Ma), the subducting Philippine (PH) Sea plate moved continuously through time in the N307° direction at a 5.6 cm/year velocity with respect to Eurasia (EU), tearing the Eurasian plate. Strain states within the EU crust are different on each side of the western PH Sea plate boundary (extensional in the Okinawa Trough and northeastern Taiwan versus contractional for the rest of Taiwan Island). The B feature corresponds to the boundary between the continental and oceanic parts of the subducting Eurasian plate and lies in the prolongation of the ocean–continent boundary of the northern South China Sea. Strain rates in the Philippines to northern Taiwan accretionary prism are similar on each side of B (contractional), though with different strain directions, perhaps in relation with the change of nature of the EU slab across B. Consequently, in the process of Taiwan mountain building, the deformation style was probably not changing continuously from the Manila to the Ryukyu subduction zones. The Luzon intra-oceanic arc only formed south of B, above the subducting Eurasian oceanic lithosphere. North of B, the Luzon arc collided with EU simultaneously with the eastward subduction of a portion of EU continental lithosphere beneath the Luzon arc. In its northern portion, the lower part of the Luzon arc was subducting beneath Eurasia while the upper part accreted against the Ryukyu forearc. Among the consequences of such a simple geodynamic model: (i) The notion of continuum from subduction to collision might be questioned. (ii) Traces of the Miocene volcanic arc were never found in the southwestern Ryukyu arc. We suggest that the portion of EU continental lithosphere, which has subducted beneath the Coastal Range, might include the Miocene Ryukyu arc volcanoes formed west of 126°E longitude and which are missing today. (iii) The 150-km-wide oceanic domain located south of B between the Luzon arc and the Manila trench, above the subducting oceanic EU plate (South China Sea) was progressively incorporated into the EU plate north of B.  相似文献   

15.
The Solomon Sea region is an area of intense tectonic activity characterized by structural complexity, a high level of seismicity and volcanism, and rapid evolution of plate boundaries. There is little accretion in the eastern New Britain Trench. Accretion gradually increases westward with thick accretion in the western New Britain Trench and in the Trobriand Subduction System. The thick accretion in the western part of the New Britain Trench may be a result of collision from the north of Finisterre-Huon block with New Guinea mainland. The present boundary of the collision is along the Ram-Markham fault. Deformation structures and present day seismicity suggest that the northern block is under compression.

Accretion has occurred in the sediment filled trenches in the Solomon Sea. The scale of the accretionary wedge depends on the amount of trench-fill sediment available. It is unlikely that there is no sediment supply to the eastern part of the New Britain Trench where no accretion is observed and subduction erosion may be occurring. There are two possible mechanisms for subduction erosion of sediment; either a rapid rate of subduction relative to the supply of sediment inhibiting sediment accumulation in the trench; or horizontal tensional force superimposed on both the forearc and backarc regions of the arc. Seafloor spreading in both the Manus and Woodlark basins is fan-like with nearby poles in the western margins of the basins. This may be a reflection of a horizontally compressional field in the western part and a tensional field in the eastern part of the Solomon Sea. Therefore it is possible to conclude that the consumption of sediment in the eastern New Britain Trench is related to the horizontal tensional field superimposed on both the forearc and backarc regions of the subduction system.

Imbricated thrust and overthrust faults in the western New Britain Trench and Trobriand Trough are not linear over long distance, but form wavy patterns in blocks with unit distance of approximately 10 km.  相似文献   


16.
The age of the major geological units in Japan ranges from Cambrian to Quaternary. Precambrian basement is, however, expected, as the provenance of by detrital clasts of conglomerate, detrital zircons of metamorphic and sedimentary rocks, and as metamorphic rocks intruded by 500 Ma granites. Although rocks of Paleozoic age are not widely distributed, rocks and formations of late Mesozoic to Cenozoic can be found easily throughout Japan. Rocks of Jurassic age occur mainly in the Jurassic accretionary complexes, which comprise the backbone of the Japanese archipelago. The western part of Japan is composed mainly of Cretaceous to Paleogene felsic volcanic and plutonic rocks and accretionary complexes. The eastern part of the country is covered extensively by Neogene sedimentary and volcanic rocks. During the Quaternary, volcanoes erupted in various parts of Japan, and alluvial plains were formed along the coastlines of the Japanese Islands. These geological units are divided by age and origin: i.e. Paleozoic continental margin; Paleozoic island arc; Paleozoic accretionary complexes; Mesozoic to Paleogene accretionary complexes and Cenozoic island arcs. These are further subdivided into the following tectonic units, e.g. Hida; Oki; Unazuki; Hida Gaien; Higo; Hitachi; Kurosegawa; South Kitakami; Nagato-Renge; Nedamo; Akiyoshi; Ultra-Tamba; Suo; Maizuru; Mino-Tamba; Chichibu; Chizu; Ryoke; Sanbagawa and Shimanto belts.The geological history of Japan commenced with the breakup of the Rodinia super continent, at about 750 Ma. At about 500 Ma, the Paleo-Pacific oceanic plate began to be subducted beneath the continental margin of the South China Block. Since then, Proto-Japan has been located on the convergent margin of East Asia for about 500 Ma. In this tectonic setting, the most significant tectonic events recorded in the geology of Japan are subduction–accretion, paired metamorphism, arc volcanism, back-arc spreading and arc–arc collision. The major accretionary complexes in the Japanese Islands are of Permian, Jurassic and Cretaceous–Paleogene age. These accretionary complexes became altered locally to low-temperature and high-pressure metamorphic, or high-temperature and low-pressure metamorphic rocks. Medium-pressure metamorphic rocks are limited to the Unazuki and Higo belts. Major plutonism occurred in Paleozoic, Mesozoic and Cenozoic time. Early Paleozoic Cambrian igneous activity is recorded as granites in the South Kitakami Belt. Late Paleozoic igneous activity is recognized in the Hida Belt. During Cretaceous to Paleogene time, extensive igneous activity occurred in Japan. The youngest granite in Japan is the Takidani Granite intruded at about 1–2 Ma. During Cenozoic time, the most important geologic events are back-arc opening and arc–arc collision. The major back-arc basins are the Sea of Japan and the Shikoku and Chishima basins. Arc–arc collision occurred between the Honshu and Izu-Bonin arcs, and the Honshu and Chishima arcs.  相似文献   

17.
Magnetic anomaly and seismological data define segments of active seafloor spreading and associated magnetic lineations trending ENE in the Woodlark Basin. The total opening rate has been approximately 6 cm/yr for the last 1 m.y. Spreading rates diminish by over 10% from east to west along the Woodlark spreading system implying a pole of current opening 15°–20° to the west. Commencement of seafloor spreading in the basin has apparently been time-transgressive, beginning prior to 3.5 m.y. in the east, and at successively later times to the west. Earthquake focal mechanisms and geological evidence suggest that the land areas bounding the western end of the Woodlark Basin are undergoing tensional deformation. We believe that eventually the Woodlark Basin plate boundary will propagate westward through the d'Entrecasteaux Islands into the Papuan peninsula. Hitherto unreported shallow seismicity associated with the northern margin of the NE-trending section of the Woodlark Rise probably reflects partial decoupling of the Woodlark and Solomon basins, possibly due to mechanical difficulties in subducting the young Woodlark lithosphere.Analysis of the relative motions between the Solomon, Indo-Australian, and Pacific plates shows that the Woodlark spreading system has been subducted at high rates (> 10 cm/yr) beneath the Solomon Islands during the opening of the Woodlark Basin. Several tectonic and geological features limited to the region of interaction of the Woodlark Basin with the Solomon Trench and arc may be symptomatic of ridge subduction. These features include high heat flow in the Solomon Trench, which shoals to 4 km; low levels of seismicity and only shallow hypocenters; and voluminous eruptions of high olivine basalts and basaltic andesites extremely close to the trench axis. This close association in space and time of an unusual volcanic suite with ridge subduction implies a strong dependence of the petrogenesis on the tectonic regime.A combination of this study of the Woodlark Basin and the previous study of the Bismarck Basin (Taylor, 1979) provides a reconstruction of the positions of the continents, ocean basins, and island chains in northern Melanesia for mid-Pliocene time. In accepting the existence of a Solomon plate, we can explain the trench-like structure off the Trobriand margin of New Guinea, the occurrence of Late Cenozoic calc-alkaline volcanism along the Papuan peninsula, and the presence of intermediate depth seismicity beneath the north Papuan peninsula. The rapid changes in relative motions along or across the New Ireland-Solomons chain over the past 3.5 m.y. may explain the spatial and temporal changes in igneous activity observed on these islands.  相似文献   

18.
In this contribution I presents definitions of mineral systems, followed by a proposed classification of mineral deposits. The concept of mineral systems has been tackled by various authors within the framework of genetic models with the aim of improving the targeting of new deposits in green field areas. A mineral system has to be considered taking into account, by and large, space-time patterns or trends of mineralisation at the regional scale, their tectonic controls and related metallogenic belts. This leads to a suggested classification of mineral systems, together with a summary of previous ideas on what is, without doubt, a kind of “mine field”, because if a classification is based on genetic processes, these can be extremely complex due to the fact that ore genesis usually involves a number of interactive processes. The classification presented is based on magmatic, magmatic-hydrothermal, sedimentary-hydrothermal, non-magmatic, and mechanical-residual processes.An overview of plate tectonics (convergent and divergent margins) is discussed next. Convergent plate margins are characterised by a tectonic plate subducting beneath a lower density plate. Convergent plate margins have landward of a deep trench, a subduction–accretion complex, a magmatic arc and a foreland thrust belt. An important feature is the subduction angle: a steep angle of descent, is exemplified by the Mariana, or Tonga–Kermadec subduction systems, conducive to porphyry-high-sulphidation epithermal systems, whereas in an intra-arc rift systems with spreading centres is conducive to the generation of massive sulphide deposits of kuroko affinity. A shallower subduction zone is the domain of large porphyry Cu–Mo and epithermal deposits. The implications of this difference in terms of metallogenesis are extremely important. Continent–continent, arc–continent, arc–arc, amalgamation of drifting microcontinents, and oceanic collision events are considered to be a major factor in uplift, the inception of fold-and-thrust belts and high P metamorphism. Examples are the Alpine–Himalayan orogenic belt formed by the closure of the Tethys oceanic basins and the great Central Asian Orogenic Belt (CAOB), a giant accretionary collage of island arcs and continental fragments. The closing of oceanic basins, and the accretion of allochthonous terranes, result in the emplacement of ophiolites by the obduction process. Divergent plates include mid-ocean ridges, passive margins and various forms of continental rifting. At mid-ocean spreading centres, magma chambers are just below the spreading centre. Once the oceanic crust moves away from the ridge it is either consumed in a subduction zone, or it may be accreted to continental margins, or island arcs. Spreading centres also form in back arc marginal basins. Transform settings include transtensional with a component of tension due to oblique divergence, transform or strike–slip sensu stricto and transpressive with a component of compression due to oblique convergence. Strike–slip faults that form during extensional processes lead to the formation of pull-apart basins.Mineral systems that form at convergent margins, the topic of this special issue, are succinctly introduced in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, as follows: principal geological features of selected mineral systems at convergent plate margins and back-arcs (Table 1); their recognition criteria (Table 2); principal geological features of selected ore deposits of back-arc basins and post-subduction rifting (Table 3) and of subduction-related magmatic arcs (Table 4), their respective recognition criteria (Table 5); accretionary and collisional tectonics and associated mineral systems (Table 6); principal geological features and associated mineral systems of transform faults (Table 7).  相似文献   

19.
The southern Andes plate boundary zone records a protracted history of bulk transpressional deformation during the Cenozoic, which has been causally related to either oblique subduction or ridge collision. However, few structural and chronological studies of regional deformation are available to support one hypothesis or the other. We address along- and across-strike variations in the nature and timing of plate boundary deformation to better understand the Cenozoic tectonics of the southern Andes.Two east–west structural transects were mapped at Puyuhuapi and Aysén, immediately north of the Nazca–South America–Antarctica triple junction. At Puyuhuapi (44°S), north–south striking, high-angle contractional and strike-slip ductile shear zones developed from plutons coexist with moderately dipping dextral-oblique shear zones in the wallrocks. In Aysén (45–46°), top to the southwest, oblique thrusting predominates to the west of the Cenozoic magmatic arc, whereas dextral strike-slip shear zones develop within it.New 40Ar–39Ar data from mylonites and undeformed rocks from the two transects suggest that dextral strike-slip, oblique-slip and contractional deformation occurred at nearly the same time but within different structural domains along and across the orogen. Similar ages were obtained on both high strain pelitic schists with dextral strike-slip kinematics (4.4±0.3 Ma, laser on muscovite–biotite aggregates, Aysén transect, 45°S) and on mylonitic plutonic rocks with contractional deformation (3.8±0.2 to 4.2±0.2 Ma, fine-grained, recrystallized biotite, Puyuhuapi transect). Oblique-slip, dextral reverse kinematics of uncertain age is documented at the Canal Costa shear zone (45°S) and at the Queulat shear zone at 44°S. Published dates for the undeformed protholiths suggest both shear zones are likely Late Miocene or Pliocene, coeval with contractional and strike-slip shear zones farther north. Coeval strike-slip, oblique-slip and contractional deformation on ductile shear zones of the southern Andes suggest different degrees of along- and across-strike deformation partitioning of bulk transpressional deformation.The long-term dextral transpressional regime appears to be driven by oblique subduction. The short-term deformation is in turn controlled by ridge collision from 6 Ma to present day. This is indicated by most deformation ages and by a southward increase in the contractional component of deformation. Oblique-slip to contractional shear zones at both western and eastern margins of the Miocene belt of the Patagonian batholith define a large-scale pop-up structure by which deeper levels of the crust have been differentially exhumed since the Pliocene at a rate in excess of 1.7 mm/year.  相似文献   

20.
Subduction zones with deep seismicity are believed to be associated with the descending branches of convective flows in the mantle and are subordinated to them. Therefore, the position of subduction zones can be considered as relatively fixed with respect to the steady-state system of convective flows. The lithospheric plate overhanging a subduction zone (as a rule of continental type) may:
1. (1) either move away from the subduction zone; or
2. (2) move onto it. In the first case extensional conditions originate behind the subduction zone and the new oceanic crust of back-arc basins forms. In the second case active Andean-type continental margins with thickening of the crust and lithosphere are observed.
Behind the majority of volcanic island-arcs, along the boundary with marginal-sea basins, independent shallow seismicity belts can be traced. They are parallel to the main seismicity belts coinciding with the Benioff zones. The seismicity belts frame island-arc microplates. Island-arc microplates are assumed to be a frame of reference to calculate relative movements of the consuming and overhanging plates. Using slip vector azimuths for shallow seismicity belts in the frontal parts of the Kurile, Japan, Izu-Bonin, Mariana and Tonga—Kermadec arcs, the position of the pole of rotation of the Pacific plate with respect to the western Pacific island-arc microplates was computed. Its coordinates are 66.1°N, 119.2°W. From the global closure of plate movements it has been determined that for the past 10 m.y. the Eurasian and Indian plates have been moving away from the Western Pacific island-arc system, both rotating clockwise, around poles at 31.1°N, 164.2°W and 1.3°S, 157.5°W, respectively. This provides for the opening of the back-arc basins. At the same time South America is moving onto the subduction zone at the rate of 4 cm/yr. Some “hot spots”, such as Hawaiian, Tibesti, and those of the South Atlantic, are moving relative to the island-arc system at a very low rate, viz. 0.5–0.7 cm/yr. Presumably, the western Pacific subduction zone and “hot spots” form a single frame of reference which can generally be used for the analysis of absolute motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号