首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
交错桁架多层钢结构推倒分析方法研究   总被引:1,自引:0,他引:1  
随着基于性能的抗震设计思想的发展,推倒分析开始成为罕遇地震下多、高层结构抗震设计的有力工具。本文以交错桁架多层钢结构为例,采用推倒分析对其在E l Centro波作用下的地震反应进行研究,分别采用位移系数法和能力谱法确定结构目标位移,同时进行结构在相同地震动下的弹塑性时程分析。研究表明,推倒分析能准确地评价交错桁架多层钢结构的抗震性能,采用位移系数法和能力谱法确定的结构顶点侧移均与弹塑性时程分析吻合较好,对层间位移及塑性铰分布的预测,能力谱法比位移系数法更为准确。  相似文献   

2.
This paper introduces and evaluates a methodology for the aftershock seismic assessment of buildings taking explicitly into account residual drift demands after the mainshock (i.e., postmainshock residual interstory drifts, RIDRo). The methodology is applied to a testbed four‐story steel moment‐resisting building designed with modern seismic design provisions when subjected to a set of near‐fault mainshock–aftershock seismic sequences that induce five levels of RIDRo. Once the postmainshock residual drift is induced to the building model, a postmainshock incremental dynamic analysis is performed under each aftershock to obtain its collapse capacity and its capacity associated to demolition (i.e., the capacity to reach or exceed a 2% residual drift). The effect of additional sources of stiffness and strength (i.e., interior gravity frames and slab contribution) and the polarity of the aftershocks are examined in this study. Results of this investigation show that the collapse potential under aftershocks strongly depends on the modeling approach (i.e., the aftershock collapse potential is modified when additional sources of lateral stiffness and strength are included in the analytical model). Furthermore, it is demonstrated that the aftershock capacity associated to demolition (i.e., the aftershock collapse capacity associated to a residual interstory drift that leads to an imminent demolition) is lower than that of the aftershock collapse capacity, which mean that this parameter should be a better measure of the building residual capacity against aftershocks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Earthquake codes have been revised and updated depending on the improvements in the representation of ground motions, soils and structures. These revisions have been more frequently seen in recent years. One of the key changes in earthquake codes has been performed on the design spectra. In this paper, the design spectra recommended by Turkish Earthquake Code and three other well known codes (Uniform Building Code, Eurocode 8, and International Building Code) are considered for comparison. The main purpose of this study is to investigate the differences caused by the use of different codes in the dynamic analysis and seismic verification of given types of buildings located at code defined different sites. The differences in expressions and some important points for elastic and inelastic spectra defined by the codes are briefly illustrated in tables and figures. Periods, base shears, lateral displacements and interstory drifts for the analyzed buildings located at code defined ground type are comparatively presented.  相似文献   

4.
Post‐tensioned (PT) self‐centering moment‐resisting frames (MRFs) have recently been developed as an alternative to welded moment frames. The first generation of these systems incorporated yielding energy dissipation mechanisms, whereas more recently, PT self‐centering friction damped (SCFR) moment‐resistant connections have been proposed and experimentally validated. Although all of these systems exhibited good stiffness, strength and ductility properties and stable dissipation of energy under cyclic loading, questions concerning their ultimate response still remained and a complete design methodology to allow engineers to conceive structures using these systems was also needed. In this paper, the mechanics of SCFR frames are first described and a comprehensive design procedure that accounts for the frame behavior and the nonlinear dynamics of self‐centering frames is then elaborated. A strategy for the response of these systems at ultimate deformation stages is then proposed and detailing requirements on the beams in order to achieve this response are outlined. The proposed procedure aims to achieve designs where the interstory drifts for SCFR frames are similar to those of special steel welded moment‐resisting frames (WMRFs). Furthermore, this procedure is adapted from current seismic design practices and can be extended to any other PT self‐centering steel frame system. A six‐story building incorporating WMRFs was designed and a similar building incorporating SCFR frames were re‐designed by the proposed seismic design procedure. Time‐history analyses showed that the maximum interstory drifts and maximum floor accelerations of the SCFR frame were similar to those of the WMRF but that almost zero residual drifts were observed for the SCFR frame. The results obtained from the analyses confirmed the validity of the proposed seismic design procedure, since the peak drift values were similar to those prescribed by the seismic design codes and the SCFR frames achieved the intended performance level under both design and maximum considerable levels of seismic loading. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Beam-column or beam-wall connections are an important problem in high-rise buildings. In this study, based on the analysis of an example structure, an analytical model for design of the semi-rigid connections between steel beams and RC walls in high-rise hybrid buildings is proposed. Also, the mechanical characteristics of these connections subjected to lowreversed cyclic loading are investigated through comparison of experimental results from three semi-rigid connections and two rigid connections. Moreover, some latent problems for design of these connections as well as the corresponding solutions are discussed. The results from the experiments and analyses indicate that semi-rigid connections exhibit satisfactory capacity and seismic performance, and the proposed design can be used in practice.  相似文献   

6.
Following several damaging earthquakes in China,research has been devoted to find the causes of the collapse of reinforced concrete(RC) building sand studying the vulnerability of existing buildings.The Chinese Code for Seismic Design of Buildings(CCSDB) has evolved over time,however,there is still reported earthquake induced damage of newly designed RC buildings.Thus,to investigate modern Chinese seismic design code,three low-,mid-and high-rise RC frames were designed according to the 2010 CCSDB and the corresponding vulnerability curves were derived by computing a probabilistic seismic demand model(PSDM).The PSDM was computed by carrying out nonlinear time history analysis using thirty ground motions obtained from the Pacific Earthquake Engineering Research Center.Finally,the PSDM was used to generate fragility curves for immediate occupancy,significant damage,and collapse prevention damage levels.Results of the vulnerability assessment indicate that the seismic demands on the three different frames designed according to the 2010 CCSDB meet the seismic requirements and are almost in the same safety level.  相似文献   

7.
钢筋混凝土框架结构造价与失效概率之间的近似关系研究   总被引:6,自引:1,他引:5  
本文以层间位移角作为结构性能参数,分析了钢筋混凝土框架结构层间变形能力,以及在水平地震作用下层间位移反应。考虑钢筋混凝土框架结构材料强度和几何尺寸以及地震作用的不确定性,得出了在设计基准期内结构的失效概率。同时分析了不同设计参数下结构的最小造价,在此基础上,确定了结构最小造价和失效概率之间的近似关系。目的是为采用“投资—效益“准则确定该类型结构目标性能水平提供分析依据,从而为采用基于性能抗震设计理念制定建筑结构抗震设计规范提供基础研究。本文中,结构失效概率指结构最终极限状态的失效概率。  相似文献   

8.
通过对某小区小高层住宅2种结构方案的综合讨论,分析了小高层住宅的合理结构型式,提出了设计建议可供工程设计参考。异型柱框架-剪力墙结构框架柱布置灵活、隐蔽性好,但其柱截面不规则、计算理论不成熟、抗震能力较差、构造措施不理想、而且建筑自振周期长,侧向位移大,难以用于较高的高层住宅和抗震烈度较高的地区;大开洞剪力墙结构受力明确、计算理论成熟,又有较为精确的计算程序,而且墙厚可以在规范允许的范围内减薄,从而进一步降低了工程造价。通过2种方案比较,认为大开洞剪力墙体系与异型柱框剪结构相比,配筋总量基本接近,但其侧移较小,具有较好的延性,可应用于小高层住宅和地震烈度较高地区并可取得显著经济效益。  相似文献   

9.
Different values have been assigned to the ratio of the defl ection amplifi cation factor(Cd) to the response modifi cation factor(R) for a specifi ed force-resisting system in the seismic design provisions while the same application is defi ned for it. An analytical study of the seismic responses of several reinforced concrete frames subjected to a suite of earthquake records performed in this research indicate that the stories’ overstrength and stiffness distribution along the structural height can affect local defl ections more than global ones. Therefore, the Cd/R ratio is calculated based on the ratio of both maximum inelastic to maximum elastic displacements and interstory drifts. Due to damage concentration in some specifi c stories, the defl ection amplifi cation factor calculated based on inelastic interstory drifts was larger than that of the inelastic displacements. Consequently, a minimum value of 1.0 is recommended for the Cd/R ratio in order to estimate maximum inelastic drifts. The ratio of inelastic to elastic displacement was generally found to increase slightly along the structural height for the studied RC models. In addition, it was detected that the story damage indices of the studied RC frames decrease when the inverted value of inelastic interstory drift ratios are increased through a(negative) power form.  相似文献   

10.
Using a single mass monosymmetric model, this paper examines the additional seismic inelastic deformations and displacement caused by structural asymmetry of the model. Stiffness eccentricity and resistance eccentricity are used as measures of asymmetry in the elastic and inelastic range respectively. Seven ways of specifying strength distribution among resisting elements are considered, including code provisions from Canada, Mexico, New Zealand and the United States. These specifications are related t o the model resistance eccentricity. It is shown that when torsional shears are included in the strength design of the elements, the structure in general will have small resistance eccentricity, even if it has large stiffness eccentricity in the elastic range. For structures which are designed with allowance for torsional shears, the ductility demands on the elements are similar to those when the structure is symmetrical. However, the edge displacements can be up to three times that if the system is symmetrical. This finding has significant implications in evaluating adequate separation between buildings to avoid the pounding problem during earthquakes.  相似文献   

11.
A new efficient method is developed for the analysis of pile-group effects on the seismic stiffness and strength design of buildings with pile foundations. An efficient continuum model consisting of a dynamic Winkler-type soil element and a pile is used to express the dynamic behavior of the structure-pile-soil system with only a small numerical error. The pile-group effect is taken into account through the influence coefficients among piles which are defined for interstory drifts and pile-head bending moments. It is shown that, while the pile-group effect reduces the interstory drift of buildings in general, it may increase the bending moment of piles at the head. This means that the treatment without the pile-group effect results in the conservative design for super-structures and requires a revised member design for piles.  相似文献   

12.
This study compares seismic losses considering initial construction costs and direct-repair costs for New Zealand steel moment-resisting frame buildings with friction connections and those with extended bolted-end-plate connections. A total of 12 buildings have been designed and analysed considering both connection types, two building heights (4-storey and 12-storey), and three locations around New Zealand (Auckland, Christchurch, and Wellington). It was found that buildings with friction connections required design to a higher design ductility, yet are generally stiffer due to larger beams being required to satisfy higher connection overstrength requirements. This resulted in the frames with friction connections experiencing lower interstorey drifts on most floors but similar peak total floor accelerations, and subsequently incurring lower drift-related seismic repair losses. Frames with friction connections tended to have lower expected net-present-costs within 50 years of the building being in service for shorter buildings and/or if located in regions of high seismicity. None of the frames with friction connections in Auckland showed any benefits due to the low seismicity of the region.  相似文献   

13.
In the analysis and design of unbraced steel frames various models are employed to represent the behaviour of beam-to-column connections. In one such model, termed here as ‘Simple Construction’, pinned connections are assumed when resisting gravity loads, whereas the same connections are assumed to be moment-resistant rigid connections when resisting lateral loads due to an earthquake or wind. Such connections are designed for moments due to lateral loads only; thus, they are not only flexible but may yield when the gravity and lateral loads act concurrently. This paper establishes the seismic performance of two (one 5-storey and the other 10-storey) unbraced steel building frames designed based on the ‘Simple Construction’ technique and on limit state principles. The first part of the paper describes briefly the design of such frames and compares their static responses with the corresponding responses of frames designed based on the ‘Continuous Construction’ assumption. Using realistic moment-rotation behaviour for flexible beam-to-column connections and realistic member behaviour, the non-linear dynamic responses of such frames for the 1940 El Centro record and 2 times the 1952 Taft record have been established using step-by-step time-history analyses. Floor lateral displacement envelopes, storey shear envelopes and cumulative inelastic rotations of beams, columns and connections are presented. The results indicate that the ‘Simple Construction’ frames experience larger lateral deflections while attracting lesser storey shears. During a major earthquake, the columns and connections of the ‘Simple Construction’ frames experience yielding, whereas in ‘Continuous Construction’ frames the beams and columns experience yielding. The cyclic plastic rotations in the connections and in the columns associated with ‘Simple Construction’ frames are found to be considerably higher.  相似文献   

14.
A multi‐level seismic vulnerability assessment of reinforced concrete moment frame buildings located in moderate seismic zones (0.25g) is performed on a set of ductile versions of low‐ to mid‐rise two‐dimensional moment frames. The study is illustrated through application to comparative trial designs of two (4‐ and 8‐story) buildings adopting both space‐ and perimeter‐framed approaches. All frames are dimensioned as per the emerging version of the seismic design code in Egypt. These new seismic provisions are in line with current European norms for seismic design of buildings. Code‐compliant designs (CCD), as well as a proposed modified code design relaxing design drift demands for the investigated buildings, are examined to test their effectiveness and reliability. Applying nonlinear inelastic incremental dynamic analyses, fragility curves (FC) for the frames are developed corresponding to various code‐specified performance levels. Code preset lower and upper bounds on design acceleration and drift, respectively, are also addressed along with their implications, if imposed, on the frames seismic performance and vulnerability. Annual spectral acceleration hazard curves for the case study frames are also generated. Estimates for mean annual frequency (MAF) of exceeding various performance levels are then computed through an integration process of the data resulting from the FC with the site hazard curves. The study demonstrates that the proposed design procedure relaxing design drift demands delivers more economic building designs relative to CCDs, yet without risking the global safety of the structure. The relaxed design technique suggested herein, even though scoring higher, as expected by intuition, MAF of exceeding various code‐limiting performance levels expressed in terms of interstory drift ratios, still guarantees a reasonably acceptable actual margin against violating code limits for such levels. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
Recent earthquakes have confirmed the role played by infills in the seismic response of reinforced concrete buildings. The control and limitation of damage to such nonstructural elements is a key issue in performance‐based earthquake engineering. The present work is focused on modeling and analysis of damage to infill panels, and, in particular, it is aimed towards linear analysis procedures for assessing the damage limitation limit state of infilled reinforced concrete frames. First, code provisions on infill modeling and acceptance criteria at the damage limitation limit state are reviewed. Literature contributions on damage to unreinforced masonry infill panels and corresponding displacement capacity are reported and discussed. Two procedures are then proposed aiming at a twofold goal: (i) the determination of ‘equivalent’ interstory drift ratio limits for a bare frame model and (ii) the estimation of the stiffness of equivalent struts representing infill walls in a linear model. These two quantities are determined such that a linear model ensures a reliable estimation of seismic capacity at the damage limitation limit state, providing the same intensity level as that obtained from nonlinear analyses carried out on structural models with infills. Finally, the proposed procedures are applied to four‐story and eight‐story case study‐infilled frames, designed for seismic loads according to current technical codes. The results of these application examples are presented and discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Performance-based earthquake engineering requires accurate estimation of structural response associated with different damage states because of strong ground motion. In recent work (Meza-Fajardo and Papageorgiou, 2018, EESD), we demonstrated that a significant contribution to the response of elastic soil-structure systems for high-rise buildings is attributed to base rocking associated with Rayleigh waves. The present paper presents results of a study investigating the effects of Rayleigh waves on the response of soil-structure systems with nonlinear behavior at the level of the superstructure. By introducing a rigid-elastic rotational spring at the base of the building, we take into account the stiffness reduction due to damage to the lateral load-resisting system at its root, and with it, increased displacement demands. Considering different levels of ductility and post-yield stiffness, we investigate the impact of rocking because of Rayleigh waves on maximum and residual interstory drift ratios. Our results indicate that rocking due to surface waves should be an important consideration for design and evaluation of tall buildings, as inelastic action elongates their effective natural period, and consequently, they are more prone to be damaged by resonance and excitation of extended duration because of Rayleigh waves.  相似文献   

18.
Vertical loads such as gravity may have an important influence on the seismic response of buildings. In this paper, the continuous shear-beam model is extended to study the seismic demand of shear buildings with consideration of the gravity load effect under near-field ground motions. An analytical solution of the free motion equation of as gravity shear beam model is provided in terms of a Bessel series. A method for computing interstory drift spectra is proposed. The interstory drift spectra for two near-field records with distinct pulses are presented to illustrate the effects of gravity and the damping ratio. The interstory drift spectra are also used to analyze the spectral characteristics of near fault ground motion during the 2008 Wenchuan earthquake. The effects of the gravity load ratio, damping ratio and higher modes are investigated and discussed.  相似文献   

19.
Shake table tests are performed on temporary internal partitions for office buildings. Four different specimens are tested. A steel frame is designed to exhibit relative displacements which typically occur at a given story of ordinary buildings. Four different partition walls are tested simultaneously for each specimen typology. This allows investigating the influence of an innovative device on the seismic performance of the tested components. The innovative device avoids the unhooking of the panels from the supporting studs. Several shake table tests are performed subjecting the specimens to interstory drift ratios up to 1.57%. Both the hysteretic curves and the natural frequency trend highlight that the partitions do not contribute to the lateral stiffness of the test setup. The damping ratio increases after the partition walls are installed within the test frame, causing a beneficial effect in the dynamic response. Minor damage state occurs for interstory drift ratio (IDR) in the range 0.41–0.65% in standard specimens, whereas moderate and major damage states are attained for IDR in the range 0.51–0.95%. Significant increase of collapse IDR is recorded with the introduction of the innovative device, up to IDR larger than 1.45%. It can be therefore concluded that a simple innovative device is defined, which significantly improves the seismic performance of the tested specimen. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The primary purpose of this research is to improve the seismic response of a complex asymmetric tall structure using viscoelastic(VE) dampers. Asymmetric structures have detrimental effects on the seismic performance because such structures create abrupt changes in the stiffness or strength that may lead to undesirable stress concentrations at weak locations. Structural control devices are one of the effective ways to reduce seismic impacts, particularly in asymmetric structures. For passive vibration control of structures, VE dampers are considered among the most preferred devices for energy dissipation. Therefore, in this research, VE dampers are implemented at strategic locations in a realistic case study structure to increase the level of distributed damping without occupying significant architectural space and reducing earthquake vibrations in terms of story displacements(drifts) and other design forces. It has been concluded that the seismic response of the considered structure retrofitted with supplemental VE dampers corresponded well in controlling the displacement demands. Moreover, it has been demonstrated that seismic response in terms of interstory drifts was effectively mitigated with supplemental damping when added up to a certain level. Exceeding the supplemental damping from this level did not contribute to additional mitigation of the seismic response of the considered structure. In addition, it was found that the supplemental damping increased the total acceleration of the considered structure at all floor levels, which indicates that for irregular tall structures of this type, VE dampers were only a good retrofitting measure for earthquake induced interstory deformations and their use may not be suitable for acceleration sensitive structures. Overall, the research findings demonstrate how seismic hazards to these types of structures can be reduced by introducing additional damping into the structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号