首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Timber constructions have been widely suggested to be seismically resistant based on post-disaster reconnaissance studies. This observation has, however, remained to a large extent anecdotal due to the lack of experimental work supporting it, especially for certain timber architectural forms, including traditional timber frame “h?m??” structures. To fill this gap, the authors carried out an extensive full-scale testing scheme using frames of various geometrical configurations, tested under reverse-cyclic lateral loading with/without infill (brick and adobe) or cladding (ba?dadi and ?amdolma) (Aktas et al. in Earthq Spectra 30(4):1711–1732, 2014a, b). The tests concluded that h?m?? frames had high energy dissipation capabilities due mostly to nailed connections. Infill/cladding significantly helped improve stiffness and lateral load strength of the frames, and timber type did not seem to make a remarkable impact on the overall behaviour. The current paper, on the other hand, uses test data to calculate capacity/demand ratios based on capacity spectrum method and Eurocode 8 to elaborate more on the performance of “h?m??” structures under seismic loading. The obtained results are discussed to draw important conclusions with regards to how frame geometry and infill/cladding techniques affect the overall performance.  相似文献   

2.
A vulnerability analysis of c.300 unreinforced Masonry churches in New Zealand is presented. The analysis uses a recently developed vulnerability index method (Cattari et al. in Proceedings of the New Zealand Society for Earthquake Engineering NZSEE 2015 conference, Rotorua, New Zealand, 2015a; b; SECED 2015 conference: earthquake risk and engineering towards a Resilient World, Cambridge; Goded et al. in Vulnerability analysis of unreinforced masonry churches (EQC 14/660)—final report, 2016; Lagomarsino et al. in Bull Earthq Eng, 2018), specifically designed for New Zealand churches, based on a widely tested approach for European historical buildings. It consists of a macroseismic approach where the seismic hazard is defined by the intensity and correlated to post seismic damage. The many differences in typologies of New Zealand and European churches, with very simple architectural designs and a majority of one nave churches in New Zealand, justified the need to develop a method specifically created for this country. A statistical analysis of the churches damaged during the 2010–2011 Canterbury earthquake sequence was previously carried out to develop the vulnerability index modifiers for New Zealand churches. This new method has been applied to generate seismic scenarios for each church, based on the most likely seismic event for 500 years return period, using the latest version of New Zealand’s National Seismic Hazard Model. Results show that highly vulnerable churches (e.g. stone churches and/or with a weak structural design) tend to produce higher expected damage even if the intensity level is lower than for less vulnerable churches in areas with slightly higher seismicity. The results of this paper provide a preliminary tool to identify buildings requiring in depth structural analyses. This paper is considered as a first step towards a vulnerability analysis of all the historical buildings in the country, in order to preserve New Zealand’s cultural and historical heritage.  相似文献   

3.
We summarize the main elements of a ground-motion model, as built in three-year effort within the Earthquake Model of the Middle East (EMME) project. Together with the earthquake source, the ground-motion models are used for a probabilistic seismic hazard assessment (PSHA) of a region covering eleven countries: Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Jordan, Lebanon, Pakistan, Syria and Turkey. Given the wide variety of ground-motion predictive models, selecting the appropriate ones for modeling the intrinsic epistemic uncertainty can be challenging. In this respect, we provide a strategy for ground-motion model selection based on data-driven testing and sensitivity analysis. Our testing procedure highlights the models of good performance in terms of both data-driven and non-data-driven testing criteria. The former aims at measuring the match between the ground-motion data and the prediction of each model, whereas the latter aims at identification of discrepancies between the models. The selected set of ground models were directly used in the sensitivity analyses that eventually led to decisions on the final logic tree structure. The strategy described in great details hereafter was successfully applied to shallow active crustal regions, and the final logic tree consists of four models (Akkar and Ça?nan in Bull Seismol Soc Am 100:2978–2995, 2010; Akkar et al. in Bull Earthquake Eng 12(1):359–387, 2014; Chiou and Youngs in Earthq Spectra 24:173–215, 2008; Zhao et al. in Bull Seismol Soc Am 96:898–913, 2006). For other tectonic provinces in the considered region (i.e., subduction), we adopted the predictive models selected within the 2013 Euro-Mediterranean Seismic Hazard Model (Woessner et al. in Bull Earthq Eng 13(12):3553–3596, 2015). Finally, we believe that the framework of selecting and building a regional ground-motion model represents a step forward in ground-motion modeling, particularly for large-scale PSHA models.  相似文献   

4.
Unreinforced masonry infill walls are widely used as non-structural partitions in RC frames. The effects of infills on the structural responses are often ignored in the design process since they are generally considered as expendable elements. However, recent studies have shown that not only shear damage can be inflicted to the columns braced by the infill walls, but also that the structural stability can be jeopardised by the fall-off of the infills. This paper presents the development of new detailing methods for the infill walls, which features slit panels, isolation gaps between the infills and columns, and anchorage of the infills. The proposed detailing methods were tested and verified experimentally using shake-table tests on five 1/3-scale infilled RC frame specimens with different combinations of the features stated above. The design and construction of the shake-table test specimens have taken into account the similitude requirements. The test results indicate that the proposed detailing method effectively reduced the undesirable interaction between column and infill walls. And the use of proper anchorage could prevent the fall off of infills from the bounding frame. Furthermore, the specimens with slit infill walls displayed better seismic performances, which could be attributed to the rocking behaviour of the sub-panels with increased aspect ratios.  相似文献   

5.
In the framework of the SIGMA project, a study was launched to develop a parametric earthquake catalog for the historical period, covering the metropolitan territory and calibrated in Mw. A set of candidate calibration events was selected corresponding to earthquakes felt over a part of the French metropolitan territory, which are fairly well documented both in terms of macroseismic intensity distributions (SisFrance BRGM-EDF-IRSN) and magnitude estimates. The detailed analysis of the macroseismic data led us to retain only 30 events out of 65 with Mw ranging from 3.6 to 5.8. In order to supplement the dataset with data from larger magnitude events, Italian earthquakes were also considered (11 events posterior to 1900 with Mw?≥?6.0 out of 15 in total), using both the DBMI11 macroseismic database (Locati et al. in Seismol Resour Lett 85(3):727–734, 2014) and the parametric information from the CPTI11 (Rovida et al. in CPTI11, la versione 2011 del Catalogo Parametrico dei Terremoti Italiani Istituto Nazionale di Geofisica et Vulcanologia, Milano, Bologna, 2011.  https://doi.org/10.6092/ingv.it-cpti11). To avoid introducing bias related to the differences in terms of intensity scales (MSK vs. MCS), only intensities smaller than or equal to VII were considered (Traversa et al. in On the use of cross-border macroseismic data to improve the estimation of past earthquakes seismological parameters, 2014). Mw and depth metadata were defined according to the Si-Hex catalogue (Cara et al. in Bull Soc Géol Fr 186:3–19, 2015.  https://doi.org/10.2113/qssqfbull.186.1.3), published information, and to the specific worked conducted within SIGMA related to early instrumental recordings (Benjumea et al. in Study of instrumented earthquakes that occurred during the first part of the 20th century (1905–1962), 2015). For the depth estimates, we also performed a macroseismic analysis to evaluate the range of plausible estimates and check the consistency of the solutions. Uncertainties on the metadata related to the calibration earthquakes were evaluated using the range of available alternative estimates. The intensity attenuation models were developed using a one-step maximum likelihood scheme. Several mathematical formulations and sub-datasets were considered to evaluate the robustness of the results (similarly to Baumont and Scotti in Accounting for data and modeling uncertainties in empirical macroseismic predictive equations (EMPEs). Towards “European” EMPEs based on SISFRANCE, DBMI, ECOS macroseismic database, 2008). In particular, as the region of interest may be characterized by significant laterally varying attenuation properties (Bakun and Scotti in Geophys J Int 164:596–610, 2006; Gasperini in Bull Seismol Soc Am 91:826–841, 2001), we introduced regional attenuation terms to account for this variability. Two zonation schemes were tested, one at the national scale (France/Italy), another at the regional scale based on the studies of Mayor et al. (Bull Earthq Eng, 2017.  https://doi.org/10.1007/s10518-017-0124-8) for France and Gasperini (2001) for Italy. Between and within event residuals were analyzed in detail to identify the best models, that is, the ones associated with the best misfit and most limited residual trends with intensity and distance. This analysis led us to select four sets of models for which no significant trend in the between- and within-event residuals is detected. These models are considered to be valid over a wide range of Mw covering?~?3.5–7.0.  相似文献   

6.
The objective of this study is to investigate the effect of masonry infills on the seismic performance of low‐rise reinforced concrete (RC) frames with non‐seismic detailing. For this purpose, a 2‐bay 3‐storey masonry‐infilled RC frame was selected and a 1 : 5 scale model was constructed according to the Korean practice of non‐seismic detailing and the similitude law. Then, a series of earthquake simulation tests and a pushover test were performed on this model. When the results of these tests are compared with those in the case of the bare frame, it can be recognized that the masonry infills contribute to the large increase in the stiffness and strength of the global structure whereas they also accompany the increase of earthquake inertia forces. The failure mode of the masonry‐infilled frame was that of shear failure due to the bed‐joint sliding of the masonry infills while that of the bare frame appeared to be the soft‐storey plastic mechanism at the first storey. However, it is judged that the masonry infills can be beneficial to the seismic performance of the structure since the amount of the increase in strength appears to be greater than that in the induced earthquake inertia forces while the deformation capacity of the global structure remains almost the same regardless of the presence of the masonry infills. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
The traditional construction of masonry infills adjacent to RC structural elements is still widely adopted in European countries, including seismically active regions. Given the repeated field observations from damaging earthquakes, pointing to unacceptably high levels of masonry infill damage, the present study is motivated by the need to improve further the European seismic design approach for new RC structures with masonry infills, in order to exclude the poor seismic behaviour probably caused by deficiencies in the verification procedure. Since the in-plane damage to non-structural panels is commonly controlled through the limitation of inter-storey drifts, the possibility to introduce more effective verification criteria, accounting for structural properties, infill layouts and masonry properties is explored. Therefore, starting from the assumption that analyses and verifications in the design of buildings are commonly accomplished neglecting the presence of infills, results of extensive nonlinear numerical analyses for different building configurations are examined. As a result, a simplified procedure for the prediction of expected inter-storey drifts for infilled structures, based on the corresponding demands of bare configurations, in function of a simple parameter accounting for structural properties and the presence of infills, is introduced. Possible implications of the proposed approach aimed at the improvement of the current design provisions are discussed.  相似文献   

8.
Effects of masonry infills on the seismic vulnerability of steel frames is studied through multi-scale numerical modelling. First, a micro-modelling approach is utilized to define a homogenized masonry material, calibrated on experimental tests, which is used for modelling the nonlinear response of a one-story, single span, masonry-infilled portal under horizontal loads. Based on results of the micro-model, the constitutive behavior of a diagonal strut macro-element equivalent to the infill panel is calibrated. Then, the diagonal strut is used to model infill panels in the macro-scale analysis of a multi-span multi-story infilled moment-resisting (MR) steel frame. The seismic vulnerability of the MR frame is evaluated through a nonlinear static procedure. Numerical analyses highlight that infills may radically modify the seismic response and the failure mechanism of the frame, hence the importance of the infill correct modelling.  相似文献   

9.
Numerous research studies have proved that numerical models aiming at an accurate evaluation of the seismic response of RC framed buildings cannot ignore the inelastic behaviour of infills and the interaction between infill and frame elements. To limit the high computational burden of refined non-linear finite element models, in the latest decades, many researchers have developed simplified infill models by means of single or multiple strut-elements. These models are low time-consuming and thus adequate for static and dynamic analyses of multi-storey structures. However, their simulation of the seismic response is sometimes unsatisfying, particularly in the presence of infill walls with regular or (particularly) irregular distributions of openings. This paper presents a new 2D plane macro-element, which provides a refined simulation of the non-linear cyclic response of infilled framed structures at the expense of a limited computational cost. The macro-element consists of an articulated quadrilateral panel, a single 1D diagonal link, and eight 2D links and is able to model the shear and flexural behaviour of the infill and the non-linear flexural/sliding interaction between infill and surrounding frame. The proposed macro-element has been implemented into the open source software OpenSees and used to simulate the response of single-storey, single-span RC infilled frame prototypes tested by other authors. The above prototypes are selected as made of different masonry units and characterised by full or open geometric configuration.  相似文献   

10.
In regions that undergo low deformation rates, as is the case for metropolitan France (i.e. the part of France in Europe), the use of historical seismicity, in addition to instrumental data, is necessary when dealing with seismic hazard assessment. This paper presents the strategy adopted to develop a parametric earthquake catalogue using moment magnitude Mw, as the reference magnitude scale to cover both instrumental and historical periods for metropolitan France. Work performed within the framework of the SiHex (SIsmicité de l’HEXagone) (Cara et al. Bull Soc Géol Fr 186:3–19, 2015. doi: 10.2113/qssqfbull.186.1.3) and SIGMA (SeIsmic Ground Motion Assessment; EDF-CEA-AREVA-ENEL) projects, respectively on instrumental and historical earthquakes, have been combined to produce the French seismic CATalogue, version 2017 (FCAT-17). The SiHex catalogue is composed of ~40,000 natural earthquakes, for which the hypocentral location and Mw magnitude are given. In the frame of the SIGMA research program, an integrated study has been realized on historical seismicity from intensity prediction equations (IPE) calibration in Mw detailed in Baumont et al. (submitted) companion paper to their application to earthquakes of the SISFRANCE macroseismic database (BRGM, EDF, IRSN), through a dedicated strategy developed by Traversa et al. (Bull Earthq Eng, 2017. doi: 10.1007/s10518-017-0178-7) companion paper, to compute their Mw magnitude and depth. Macroseismic data and epicentral location and intensity used both in IPE calibration and inversion process, are those of SISFRANCE without any revision. The inversion process allows the main macroseismic field specificities reported by SISFRANCE to be taken into account with an exploration tree approach. It also allows capturing the epistemic uncertainties associated with macroseismic data and to IPEs selection. For events that exhibit a poorly constrained macroseismic field (mainly old, cross border or off-shore earthquakes), joint inversion of Mw and depth is not possible, and depth needs to be fixed to calculate Mw. Regional a priori depths have been defined for this purpose based on analysis of earthquakes with a well constrained macroseismic field where joint inversion of Mw and depth is possible. As a result, 27% of SISFRANCE earthquake seismological parameters have been jointly inverted and for the other 73% Mw has been calculated assuming a priori depths. The FCAT-17 catalogue is composed of the SIGMA historical parametric catalogue (magnitude range between 3.5 up to 7.0), covering from AD463 to 1965, and of the SiHex instrumental one, extending from 1965 to 2009. Historical part of the catalogue results from an automatic inversion of SISFRANCE data. A quality index is estimated for each historical earthquake according to the way the events are processed. All magnitudes are given in Mw which makes this catalogue directly usable as an input for probabilistic or deterministic seismic hazard studies. Uncertainties on magnitudes and depths are provided for historical earthquakes following calculation scheme presented in Traversa et al. (2017). Uncertainties on magnitudes for instrumental events are from Cara et al. (J Seismol 21:551–565, 2017. doi: 10.1007/s10950-016-9617-1).  相似文献   

11.
We present methodology of calculating acceleration and corresponding earthquake ground motion characteristics at a site of interest assuming acceleration at a reference site for two basic configurations. In one configuration we assume that the reference ground motion is not affected by the local structure beneath the site of interest. In the other configuration we assume that the reference ground motion is affected by the local structure. Consequently, the two configurations differ from each other by the presence of the reference site within the computational model. For each of the two configurations we assume two wavefield excitations: a vertical plane-wave incidence and a point double-couple source. We illustrate the methodology on the example of the Grenoble valley. The extensive investigation of effects of local surface sedimentary structures based on the developed methodology is presented in the accompanying article by Moczo et al. (Bull Earthq Eng, 2018) in this volume.  相似文献   

12.
We use 2D numerical analyses at ground motion stations from the NGA-West2 dataset to develop parameters to predict the effect of surface topography on response spectra. The simplistic numerical analyses use sinusoidal input motions, uniform soil profiles, elastic soil properties, and absorbing boundary conditions. We define several topographic parameters for stations using the natural logarithm of 2D amplifications in peak ground acceleration of a sinusoidal input motion in different orientations. The natural log of 2D amplifications when averaged over multiple orientations is found to have the most predictive power among the studied parameters. We also explore the relationship between the topographic parameters developed in this study, and the topographic parameters developed at the same sites in an earlier study (Rai et al. in Earthq Spectra, 2016b).  相似文献   

13.
On August 21st, 2017, an earthquake with duration magnitude Md?=?4.0 and epicentre in Casamicciola Terme hit Ischia island, in the South of Italy. This event caused two fatalities and dozens of injured people. Moreover, despite the low magnitude, the earthquake produced significant damages to masonry and reinforced concrete (RC) buildings, with some partial or complete collapse of structures, in a very limited area close to the epicentre, while even at small distance from the most damaged zone the earthquake was just felt by local people and tourists. In the days after the event, discussions concerning the destructive effects of such an earthquake arose in the scientific community—as also reported by local and national media. In this paper, the seismic history of Ischia island is recalled to show and explain the peculiarity of the August 21st earthquake, which is also described in terms of ground motion and response spectra characteristics. The results of the first surveys carried out in Casamicciola Terme are reported, together with appropriate pictures, to introduce and explain the observed damage state of masonry and RC buildings in the epicentral zone. Then, data from the 15th general census of the population and dwellings (ISTAT) is used to define vulnerability classes according to the classification of the European Macrosismic Scale (EMS-98) (Grünthal, 1998). Seismic damage scenarios are then evaluated combining macro-seismic intensity values obtained using an interpolation method starting from QUEST macro-seismic survey data (Azzaro et al., 2017 ) and fragility curves for A-to-D vulnerability classes and for five damage states, from DS0 (no damage) to DS5 (collapse) trough a Monte Carlo simulation technique. The distributions of Usable, Temporarily or Partially Unusable, and Unusable buildings, which are obtained by using relationships between damage and usability judgments obtained through post-earthquake damage data collected after past seismic events, result in very good accordance with those published in September 1st, 2017 by the Department of Civil Protection, regarding a dataset of about 600 buildings.  相似文献   

14.
On May 11, 2011 an earthquake of magnitude 5.1 ( \(M_{w}\) ) struck Murcia region causing nine casualties and damage to buildings and infrastructures. Even if the main characteristics of the event would classify it as a moderate earthquake, the maximum Peak Ground Acceleration (PGA) registered (equal to 0.37 g) exceeded significantly local code provisions in terms of hazard at the site. This high PGA was a result of directivity effects in the near source region. An overview of earthquake characteristics and damage observed is provided. Notwithstanding the lack of proper structural design characterizing building stock in the area, most of the losses were caused by non-structural damage. According to in field observations, it emerges that masonry infills provided additional, “not designed”, strength to reinforced concrete (RC) buildings. Observed damage data, collected after the earthquake, are shown and compared to the results of a simplified approach for nonstructural damage assessment of RC infilled structures (FAST vulnerability approach). The latter comparison provided a fair accordance between observed data and analytical results.  相似文献   

15.
When the stability of a sharply stratified shear flow is studied, the density profile is usually taken stepwise and a weak stratification between pycnoclines is neglected. As a consequence, in the instability domain of the flow two-sided neutral curves appear such that the waves corresponding to them are neutrally stable, whereas the neighboring waves on either side of the curve are unstable, in contrast with the classical result of Miles (J Fluid Mech 16:209–227, 1963) who proved that in stratified flows unstable oscillations can be only on one side of the neutral curve. In the paper, the contradiction is resolved and changes in the flow stability pattern under transition from a model stepwise to a continuous density profile are analyzed. On this basis, a simple self-consistent algorithm is proposed for studying the stability of sharply stratified shear flows with a continuous density variation and an arbitrary monotonic velocity profile without inflection points. Because our calculations and the algorithm are both based on the method of stability analysis (Churilov J Fluid Mech 539:25–55, 2005; ibid, 617, 301–326, 2008), which differs essentially from usually used, the paper starts with a brief review of the method and results obtained with it.  相似文献   

16.
The main goal of this article is to decluster Iranian plateau seismic catalog by the epidemic-type aftershock sequence (ETAS) model and compare the results with some older methods. For this purpose, Iranian plateau bounded in 24°–42°N and 43°–66°E is subdivided into three major tectonic zones: (1) North of Iran (2) Zagros (3) East of Iran. The extracted earthquake catalog had a total of 6034 earthquakes (Mw?>?4) in the time span 1983–2017. The ETAS model is an accepted stochastic approach for seismic evaluation and declustering earthquake catalogs. However, this model has not yet been used to decluster the seismic catalog of Iran. Until now, traditional methods like the Gardner and Knopoff space–time window method and the Reasenberg link-based method have been used in most studies for declustering Iran earthquake catalog. Finally, the results of declustering by the ETAS model are compared with result of Gardner and Knopoff (Bull Seismol Soc Am 64(5):1363–1367, 1974), Uhrhammer (Earthq Notes 57(1):21, 1986), Gruenthal (pers. comm.) and Reasenberg (Geophys Res 90:5479–5495, 1985) declustering methods. The overall conclusion is difficult, but the results confirm the high ability of the ETAS model for declustering Iranian earthquake catalog. Use of the ETAS model is still in its early steps in Iranian seismological researches, and more parametric studies are needed.  相似文献   

17.
The new Database of Italy’s Seismogenic Sources (Basili et al. 2008) identifies areas with a degree of homogeneity in earthquake generation mechanism judged sufficiently high. Nevertheless, their seismic sequences show rather long and regular interoccurrence times mixed with irregularly distributed short interoccurrence times. Accordingly, the following question could naturally arise: do sequences consist of nearly periodic events perturbed by a kind of noise; are they Poissonian; or short interoccurrence times predominate like in a cluster model? The relative reliability of these hypotheses is at present a matter of discussion (Faenza et al., Geophys J Int 155:521–531, 2003; Corral, Proc Geoph 12:89–100, 2005, Tectonophysics 424:177–193, 2006). In our regions, a statistical validation is not feasible because of the paucity of data. Moreover, the classical tests do not clearly suggest which one among different proposed models must be favoured. In this paper, we adopt a model of interoccurrence times able to interpret the three different hypotheses, ranging from exponential to Weibull distributions, in a scenario of increasing degree of predictability. In order to judge which one of these hypotheses is favoured, we adopt, instead of the classical tests, a more selective indicator measuring the error in respect to the chosen panorama of possible truths. The earthquake prediction is here simply defined and calculated through the conditional probability of occurrence depending on the elapsed time t0 since the last earthquake. Short-term and medium-term predictions are performed for all the Italian seismic zones on the basis of datasets built in the context of the National Projects INGV-DPC 2004–2006, in the frame of which this research was developed. The mathematical model of interoccurrence times (mixture of exponential and Weibull distributions) is justified in its analytical structure. A dimensionless procedure is used in order to reduce the number of parameters and to make comparisons easier. Three different procedures are taken into consideration for the estimation of the parameter values; in most of the cases, they give comparable results. The degree of credibility of the proposed methods is evaluated. Their robustness as well as their sensitivity are discussed. The comparison of the probability of occurrence of a Maw >5.3 event in the next 5 and 30 years from January 1, 2003, conditional to the time elapsed since the last event, shows that the relative ranking of impending rupture in 5 years is roughly maintained in a 30-year perspective with higher probabilities and large fluctuations between sources belonging to the same macro region.  相似文献   

18.
Nowadays, most of the site classifications schemes are based on the predominant period of the site as determined from the average horizontal to vertical spectral ratios of seismic motion or microtremor. However, the difficulty lies in the identification of the predominant period in particular if the observed average response spectral ratio does not present a clear peak but rather a broadband amplification or multiple peaks. In this work, based on the Eurocode-8 (2004) site classification, and assuming bounded random fields for both shear and compression waves-velocities, damping coefficient, natural period and depth of soil profile, one propose a new site-classification approach, based on “target” simulated average \( H/V \) spectral ratios, defined for each soil class. Taking advantage of the relationship of Kawase et al. (Bull Seismol Soc Am 101:2001–2014, 2011), which link the \( H/V \) spectral ratio to the horizontal (\( HTF \)) over the vertical (\( VTF \)) transfer functions, statistics of \( H/V \) spectral ratio via deterministic visco-elastic seismic analysis using the wave propagation theory are computed for the 4 soil classes. The obtained results show that \( H/V \) and \( HTF \) have amplitudes and shapes remarkably different among the four soil classes and exhibit fundamental peaks in the period ranges remarkably similar. Moreover, the “target” simulated average \( H/V \) spectral ratios for the 4 soil classes are in good agreement with the experimental ones obtained by Zhao et al. (Bull Seismol Soc Am 96:914–925, 2006) from the abundant and reliable Japanese strong motions database Kik-net, Ghasemi et al. (Soil Dyn Earthq Eng 29:121–132, 2009) from the Iranian strong motion data, and Di Alessandro et al. (Bull Sesismol Soc Am 106:2, 2011.  https://doi.org/10.1785/0120110084) from the Italian strong motion data. In addition to the 4 EC-8 standard soil classes (A, B, C and D), the superposition of the 4 target \( H/V \) reveals 3 new boundary site classes; AB, BC and CD, for overlapping \( V_{s,30} \) ranges when the predominant peak is not clearly consistent with any of the 4 proposed classes. Finally, one proposes a site classification index based on the ratio between the cross-correlation and the mean quadratic error between the in situ \( H/V \) spectral ratio and the “target” one. In order to test the reliability of the proposed approach, data from 139 sites were used, 132 collected from the Kik-net network database from Japan and 7 from Algeria. The site classification success rate per site class are around 93, 82, 89 and 100% for rock, hard soil, medium soil and soft soil, respectively. Zhao et al. (2006) found an average success for the 4 classes of soil close to 60%, similar to what one found in the present study (63%) without considering the new soil classes, but much smaller if one considers them (86%). In the absence of \( V_{s,30} \) data, the proposed approach can be an alternative to site classification.  相似文献   

19.
Aimed at investigating the effect of openings on the in‐plane behaviour of masonry infills in reinforced concrete frames, a parametric study is presented based on model calibration via experimental tests. Two types of openings are investigated: central window openings and different combinations of door and window openings based on the typologies of southern European countries. First, a finite element model of the structure is made using the DIANA software program. Then, after calibration with experimental results, a parametric analysis is carried out to investigate the effect of the presence and location of the different types of openings on the in‐plane behaviour of the infilled frame. Finally, different equations for predicting the initial stiffness and lateral strength of infilled frames with any types of openings were obtained. An α factor related to the geometry of the piers between openings is proposed to take into account the location of the openings in the developed equations. Subsequently, the masonry infill panel is replaced by a diagonal strut. An empirical equation is also proposed for the width of an equivalent strut to replace a masonry infill panel with openings in such a way that they possess the same initial stiffness. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The vulnerability of infilled frames represents a critical issue in many regions with high seismicity around the world where infills are typically made of heavy masonry as they are used for thermal control of the buildings because of their thermal inertia. In this context, the use of earthen masonry infills can give a superior performance because of their ability to regulate thermal‐hygrometric performance of the building and sustainability of its life‐cycle. This paper presents a numerical study on the seismic behaviour of infill walls made of earthen masonry and partitioned with horizontal wooden planks that allow the relative sliding of the partitions. The combination of the deformability of earthen masonry and the sliding mechanism occurring along the wooden planks gives a high ductility capacity to the in‐plane response of the infill and, at the same time, significantly reduces its stiffness and strength, as compared with traditional solid infills made of fired clay units. As a result, the detrimental interaction with the frame and the damage in the infill when subjected to in‐plane loading can be minimized. The numerical model is validated with results from an experimental study and is used to perform a parametric analysis to examine the influence of variations in the geometry and mechanical properties of the infill walls, as well as the configuration of the sliding joints. Based on the findings of this study, design guidelines for practical applications are provided, together with simple formulation for evaluating their performance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号