首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
This paper estimates fundamental translational period and damping ratio parameters and examines the changes in dynamic characteristics of a set of low-to-medium rise buildings in Lorca town (SE of Spain) affected by the May 11th, 2011 earthquake. These building parameters have been calculated analysing structural dynamic response from ambient vibration measurements recorded at top RC buildings pre- and post earthquake, using the Fast Fourier Transform and the Randomdec technique. The empirical expression relating period \((T)\) and number of floor \((N)\) here obtained analysing ambient noise recorded on 59 healthy buildings before the earthquake is \(T= (0.054\pm 0.002)\, N\) , very similar to others empirical period–height relationships obtained for RC structures in the European built environment but quite different from code provisions. Measurements performed in 34 damaged buildings show a period elongation after the quake according to \(T^{*} =(0.075\pm 0.002)\,N\) expression. Moreover, we found a rise of the fundamental period with the EMS’s grade of damage of buildings. In contrast to natural frequency, damping ratio \((\xi )\) do not shows a significant variation with earthquake damage degree and the product \(\xi \, T\) remains near constant.  相似文献   

2.
An earthquake with a magnitude of 5.7 $(\text{ M}_{\mathrm{L}})$ has struck Simav, Kutahya located in the western part of Turkey on May 19, 2011. The ground motion caused observable damage within 25 km radius from the epicenter. Although the earthquake is moderate, its effects on the structures are serious. This paper presents the observations on seismic damages of reinforced concrete (RC) and masonry structures. Common reasons of damage in RC buildings are: low quality of concrete, detailing mistakes of reinforcement, short column, pounding, overhangs and misconstructed gable and outer infill wall parts. Interesting cases related to these deficiencies are reported. Damages in the masonry buildings are due to lack of connection between orthogonal walls and unsuitable location and dimension of openings. The damages at structures are more noticeable at regions with unfavorable soil conditions like plain regions or foothills. However, on stiffer soils at hilly sides, the damages seem to be more limited and masonry structures are observed to be less affected compared to the RC ones. The damages in RC buildings found to be increasing with story number for light damage states. However, for heavier damage states, 4–5 story buildings are observed to be the most damaged.  相似文献   

3.
In this paper, ground motion during the Independence Day earthquake of August 15, 1950 (Mw 8.6, Ben-Menahem et al., 1974) in the northeastern part of India is estimated by seismological approaches. A hybrid simulation technique which combines the low frequency ground motion simulated from an analytical source mechanism model with the stochastically simulated high-frequency components is used for obtaining the acceleration time histories. A series of ground motion simulations are carried out to estimate the peak ground acceleration (PGA) and spectral accelerations at important cities and towns in the epicentral region. One sample PGA distribution in the epicentral region encompassing the epicenter is also obtained. It is found that PGA in the epicentral region has exceeded 1 g during this earthquake. The estimated PGA’s are validated to the extent possible using the MMI values. The simulated acceleration time histories can be used for the assessment of important engineering structures in northeastern India.  相似文献   

4.
5.
Fragility curves for risk-targeted seismic design maps   总被引:1,自引:0,他引:1  
Seismic design using maps based on “risk-targeting” would lead to an annual probability of attaining or exceeding a certain damage state that is uniform over an entire territory. These maps are based on convolving seismic hazard curves from a standard probabilistic analysis with the derivative of fragility curves expressing the chance for a code-designed structure to attain or exceed a certain damage state given a level of input motion, e.g. peak ground acceleration (PGA). There are few published fragility curves for structures respecting the Eurocodes (ECs, principally EC8 for seismic design) that can be used for the development of risk-targeted design maps for Europe. In this article a set of fragility curves for a regular three-storey reinforced-concrete building designed using EC2 and EC8 for medium ductility and increasing levels of design acceleration \((\hbox {a}_\mathrm{g})\) is developed. These curves show that structures designed using EC8 against PGAs up to about 1 m/s \(^{2}\) have similar fragilities to those that respect only EC2 (although this conclusion may not hold for irregular buildings, other geometries or materials). From these curves, the probability of yielding for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 0.14 ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 0.85 ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) whereas the probability of collapse for a structure subjected to a PGA equal to \(\hbox {a}_\mathrm{g}\) varies between 1.7 \(\times 10^{-7}\) ( \(\hbox {a}_\mathrm{g}=0.7\) m/s \(^{2})\) and 1.0 \(\times 10^{-5}\) ( \(\hbox {a}_\mathrm{g}=3\) m/s \(^{2})\) .  相似文献   

6.
We tested attenuation relations obtained for different regions of the world to verify their suitability to predict strong-motion data recorded by Medellín and Aburrá Valley Accelerographic Networks. We used as comparison criteria, the average of the difference between the observed and the predicted data as a function of epicenter distance and its standard deviation. We also used the approach developed by Sherbaum et al. (Bull Seism Soc Am 94:2164–2185, 2004) that provides a method to evaluate the overall goodness-of-fit of ground-motion prediction equations. The predictive models selected use a generic focal depth. We found that this parameter has an important influence in the ground-motion predictions and must be taken into account as an independent variable. We also found important to characterize the local soil amplification to improve the attenuation relations. We found empirical relations for peak horizontal acceleration PGA and velocity PGV based on the Kamiyama and Yanagisawa (Soils Found 26:16–32, 1986) approach. $$\begin{aligned} \log _{10} (PGA)=0.5886M_L -1.0902\log _{10}(R)-0.0035H+C_{st}\pm 0.\text{29} \end{aligned}$$ $$\begin{aligned} \log _{10} (PGV)=0.7255M_L -1.8812\log _{10}(R)-0.0016H+C_{st}\pm 0.36 \end{aligned}$$ where PGA is measured in cm/s $^{2}$ and PGV in cm/s, $M_{L}$ is local magnitude in the range 2.8–6.5, $R$ is epicentral distance up to 290 km, $H$ is focal depth in km and $C_{st}$ is a coefficient that accounts for the site response due to soil conditions of each recording station. The introduction of focal depth and local site conditions as independent variables, minimize the residuals and the dispersion of the predicted data. We conclude that $H$ and $C_{st}$ are sensitive parameters, having a strong influence on the strong-motion predictions. Using the same functional form, we also propose an empirical relation for the root mean square acceleration a $_\mathrm{rms}$ : $$\begin{aligned} \log _{10} \left( {a_{rms} } \right)=0.4797M_L -1.1665\log _{10} (R)-0.00201H+C_{st}\pm 0.40 \end{aligned}$$ where a $_\mathrm{rms}$ is measured in cm/s $^{2}$ , from the S-wave arrival and using a window length equal to the rupture duration. The other variables are the same as those for PGA and PGV. The site correction coefficients $C_{st}$ found for PGA, PGV and a $_\mathrm{rms}$ show a similar trend indicating a good correlation with the soil conditions of the recording sites.  相似文献   

7.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

8.
Rapid magnitude estimate procedures represent a crucial part of proposed earthquake early warning systems. Most of these estimates are focused on the first part of the P-wave train, the earlier and less destructive part of the ground motion that follows an earthquake. Allen and Kanamori (Science 300:786–789, 2003) proposed to use the predominant period of the P-wave to determine the magnitude of a large earthquake at local distance and Olivieri et al. (Bull Seismol Soc Am 185:74–81, 2008) calibrated a specific relation for the Italian region. The Mw 6.3 earthquake hit Central Italy on April 6, 2009 and the largest aftershocks provide a useful dataset to validate the proposed relation and discuss the risks connected to the extrapolation of magnitude relations with a poor dataset of large earthquake waveforms. A large discrepancy between local magnitude (ML) estimated by means of $\tau_p^{{\rm max}}$ evaluation and standard ML (6.8 ± 1.5 vs. 5.9 ± 0.4) suggests using caution when ML vs. $\tau_p^{{\rm max}}$ calibrations do not include a relevant dataset of large earthquakes. Effects from large residuals could be mitigated or removed introducing selection rules on τ p function, by regionalizing the ML vs. $\tau_p^{{\rm max}}$ function in the presence of significant tectonic or geological heterogeneity, and using probabilistic and evolutionary methods.  相似文献   

9.
Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake’s location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin (M?=?8.2; ±0.2) and the 1885 Belovodsk (M?=?6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482–1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995–1010, 2005); the Sokolov (Earthquake Spectra 161: 679–694, 2002) approach for estimating intensity from Fourier amplitude spectra; and the Tyagunov et al. (Nat Hazard Earth Syst Sci 6:573–586, 2006) approach for risk computation. Innovatively, all these methods are jointly applied to assess in real time the seismic risk of a particular target site, namely the city of Bishkek. Finally, the site amplification and vulnerability datasets considered in the proposed methodology are taken from previous studies, i.e., Parolai et al. (Bull Seismol Soc Am, 2010) and Bindi et al. (Soil Dyn Earthq Eng, 2011), respectively.  相似文献   

10.
This paper describes the observations made by a reconnaissance team following the 22nd February 2011, Mw 6.3, Christchurch, New Zealand earthquake (GNS Science, 2011). The team comprised of members of the UK based Earthquake Engineering Field Investigation Team who spent 5 days collecting observations on damage resulting from the earthquake. Although the magnitude of this earthquake was not particularly high (Mw 6.3), the shallow focus and close proximity resulted in locally very high ground motions, widespread damage and 182 fatalities. The earthquake is also particularly notable for the widespread liquefaction it caused, landslides and rockfalls in the hills south of Christchurch, and the significant damage suffered by unreinforced masonry and historic structures. Over wide areas of central Christchurch, recorded accelerations were in excess of those required by the current New Zealand seismic loadings standard (NZS1170.5:2004: Standards New Zealand 2004) and therefore the earthquake presented a valuable opportunity to assess performance of modern buildings under code-level ground acceleration.  相似文献   

11.
Performance of masonry buildings during the Emilia 2012 earthquake   总被引:2,自引:2,他引:0  
The earthquake sequence started on May \(20\) th 2012 in Emilia (Italy) affected a region where masonry constructions represent a large part of the existing building stock and the construction of new modern masonry buildings is a common practice. The paper is focused on the performance of common architectural configurations, typical for residential or business use. The large majority of old masonry buildings is made of fired clay bricks. The seismic performance of these buildings is particularly interesting since major past earthquakes in Italy affected areas with mainly stone masonry structures. Apart from examples showing systematic or peculiar structural deficiencies governing the vulnerability of several buildings, the overall seismic performance of these structures to repeated shaking, with PGA as large as 0.25–0.3 g was rather good, despite the major part of them were only conceived for carrying vertical loads. In fact, seismic design is mandatory in the area only since 2003. Modern low-rise masonry buildings erected after this date and incorporating seismic design and proper detailing resulted in most cases practically undamaged. The examples reported in the paper allow an evaluation of the superior performance of seismically designed modern masonry buildings in comparison to older ones.  相似文献   

12.
The Load/Unload Response Ratio (LURR) method is a proposed technique to predict earthquakes that was first put forward by Yin (1987). LURR is based on the idea that when an area enters the damage regime, the rate of seismic activity during loading of the tidal cycle increases relative to the rate of seismic activity during unloading in the months to one year preceding a large earthquake. Since earth tides generally contribute the largest temporal variations in crustal stress, it seems plausible that earth tides would trigger earthquakes in areas that are close to failure (e.g., Vidale et al., 1998). However, the vast majority of studies have shown that earth tides do not trigger earthquakes (e.g., Vidale et al., 1998; Heaton, 1982; Rydelek et al., 1992). In this study, we conduct an independent test of the LURR method, since there would be important scientific and social implications if it were proven to be a robust method of earthquake prediction. Smith and Sammis (2004) undertook a similar study and found no evidence that there was predictive significance to the LURR method. We have repeated calculations of LURR for the Northridge earthquake in California, following both the parameters of X.C. Yin (personal communication) and the somewhat different ones of Smith and Sammis (2004). Though we have followed both sets of parameters closely, we have been unable to reproduce either set of results. Our examinations have shown that the LURR method is very sensitive to certain parameters. Thus it seems likely that the discrepancies between our results and those of previous studies are due to unaccounted for differences in the calculation parameters. A general agreement was made at the 2004 ACES Workshop in China between research groups studying LURR to work cooperatively to resolve the differences in methods and results, and thus permit more definitive conclusions on the potential usefulness of the LURR method in earthquake prediction.  相似文献   

13.
The city of Lorca (Spain) was hit on May 11th, 2011, by two consecutive earthquakes of magnitudes 4.6 and 5.2 M \(_\mathrm{w}\) , causing casualties and important damage in buildings. Many of the damaged structures were reinforced concrete frames with wide beams. This study quantifies the expected level of damage on this structural type in the case of the Lorca earthquake by means of a seismic index \(I_{v}\) that compares the energy input by the earthquake with the energy absorption/dissipation capacity of the structure. The prototype frames investigated represent structures designed in two time periods (1994–2002 and 2003–2008), in which the applicable codes were different. The influence of the masonry infill walls and the proneness of the frames to concentrate damage in a given story were further investigated through nonlinear dynamic response analyses. It is found that (1) the seismic index method predicts levels of damage that range from moderate/severe to complete collapse; this prediction is consistent with the observed damage; (2) the presence of masonry infill walls makes the structure very prone to damage concentration and reduces the overall seismic capacity of the building; and (3) a proper hierarchy of strength between beams and columns that guarantees the formation of a strong column-weak beam mechanism (as prescribed by seismic codes), as well as the adoption of counter-measures to avoid the negative interaction between non-structural infill walls and the main frame, would have reduced the level of damage from \(I_{v}\) \(\,=\,\) 1 (collapse) to about \(I_{v}\) \(\,=\,\) 0.5 (moderate/severe damage).  相似文献   

14.
At present, the seismic vulnerability assessment of reinforced concrete (RC) buildings is made considering fixed base conditions; moreover, the mechanical properties of the building remain intact in time. In this study we investigate whether these two fundamental hypotheses are sound as aging and soil-structure interaction (SSI) effects might play a crucial role in the seismic fragility analysis of RC structures. Among the various aging processes, we consider the chloride-induced corrosion based on probabilistic modeling of corrosion initiation time and corrosion rate. Different corrosion aspects are considered in the analysis including the loss of reinforcement cross-sectional area, the degradation of concrete cover and the reduction of steel ultimate deformation. SSI is modeled by applying the direct one-step approach, which accounts simultaneously for inertial and kinematic interactions. Two-dimensional incremental dynamic analysis is performed to assess the seismic performance of the initial uncorroded ( \(\hbox {t}=0\) years) and corroded ( \(\hbox {t}=50\) years) RC moment resisting frame structures, having been designed with different seismic code levels. The time-dependent fragility functions are derived in terms of the spectral acceleration at the fundamental mode of the structure \(\hbox {S}_{\mathrm{a}}(\hbox {T}_{1}\) , 5 %) and the outcropping peak ground acceleration for the immediate occupancy and collapse prevention limit states. Results show an overall increase in seismic vulnerability over time due to corrosion highlighting the important influence of deterioration due to aging effects on the structural behavior. Moreover, the consideration of SSI and site effects may significantly alter the expected structural performance leading to higher vulnerability values.  相似文献   

15.
In a companion article Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4, 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) present a new ground-motion prediction equation (GMPE) for estimating 5 %-damped horizontal pseudo-acceleration spectral (PSA) ordinates for shallow active crustal regions in Europe and the Middle East. This study provides a supplementary viscous damping model to modify 5 %-damped horizontal spectral ordinates of Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) for damping ratios ranging from 1 to 50 %. The paper also presents another damping model for scaling 5 %-damped vertical spectral ordinates that can be estimated from the vertical-to-horizontal (V/H) spectral ratio GMPE that is also developed within the context of this study. For consistency in engineering applications, the horizontal and vertical damping models cover the same damping ratios as noted above. The article concludes by introducing period-dependent correlation coefficients to compute horizontal and vertical conditional mean spectra (Baker in J Struct Eng 137:322–331, 2011). The applicability range of the presented models is the same as of the horizontal GMPE proposed by Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b): as for spectral periods $0.01 \hbox { s}\le \,\hbox {T}\le \,4\hbox { s}$ as well as PGA and PGV for V/H model; and in terms of seismological estimator parameters $4\le \hbox {M}_\mathrm{w} \le 8, \hbox { R} \le 200 \hbox { km}, 150\hbox { m/s}\le \hbox { V}_\mathrm{S30}\le $ 1,200 m/s, for reverse, normal and strike-slip faults. The source-to-site distance measures that can be used in the computations are epicentral $(\hbox {R}_\mathrm{epi})$ , hypocentral $(\hbox {R}_\mathrm{hyp})$ and Joyner–Boore $(\hbox {R}_\mathrm{JB})$ distances. The implementation of the proposed GMPEs will facilitate site-specific adjustments of the spectral amplitudes predicted from probabilistic seismic hazard assessment in Europe and the Middle East region. They can also help expressing the site-specific design ground motion in several formats. The consistency of the proposed models together with the Akkar et al. (Bull Earthq Eng, doi:10.1007/s10518-013-9461-4 2013a; Bull Earthq Eng, doi:10.1007/s10518-013-9508-6, 2013b) GMPE may be advantageous for future modifications in the ground-motion definition in Eurocode 8 (CEN in Eurocode 8, Design of structures for earthquake resistance—part 1: general rules, seismic actions and rules for buildings. European Standard NF EN 1998-1, Brussels, 2004).  相似文献   

16.
Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by Hashida and Shimazaki (J Phys Earth. 32, 299–316, 1984) and has been used and modified by Joshi (Curr Sci. 90, 581–585, 2006; Nat Hazards. 43, 129–146, 2007) and Joshi et al. (J. Seismol. 14, 247–272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.  相似文献   

17.
The 23 October 2011 Van (Mw 7.1) earthquake that occurred in Eastern Turkey resulted in heavy damage particularly in the city of Van and town of Ercis. This paper presents ground motion simulations of Van earthquake by using stochastic finite fault method (EXSIM, Motazedian and Atkinson in Bull Seismol Soc Am 95:995–1010, 2005; Boore in Bull Seismol Soc Am 99:3202–3216, 2009) that provides a simple and effective tool to generate high frequency strong motion. The input parameters related to source, path, and site effects are calibrated on the basis of minimizing the error functions between simulations and observations both in time and frequency domain. Validated model parameters are used to produce synthetics in regional extent with the aim of understanding the level and distribution of the ground shaking particularly in the near fault region where no recordings are available within the 40 km of the epicenter. This paper evaluates the effect of two different slip models on ground motion intensity measures over the area of interest and addresses the variability in the near fault region associated with the source effect. The synthetics are compared with the corresponding estimations of ground motion prediction equations by Boore and Atkinson (Earthq Spectra 24:99–138, 2008), Akkar and Bommer (Seismol Res Lett 81:195–206, 2010) and Akkar and Cagnan (Bull Seismol Soc Am 100:2978–2995, 2010). Our results indicate that despite the limitation of the method for incorporating the directivity effect and inadequate representation of the soil conditions at the individual stations, a satisfactory match between synthetics and observations are obtained both in time and frequency domain. Spatial distributions of the synthetics in regional level also show reasonable correlation with ground motion prediction equations and damage observations.  相似文献   

18.
The evolution laws of LURR (Loading–Unloading Response Ratio) before strong earthquakes, especially the peak point of LURR, are described in this paper. The results of four methods (experimental, numerical simulation, seismic data analysis and with damage mechanics analysis) lead to a consistent conclusion—the evolution laws of LURR before strong earthquakes are that, at the early stage of the seismic cycle, LURR will fluctuate around 1 and in the late stage, it rises swiftly and to its peak point. At some time after this peak point, a catastrophic event or events occur. These do not occur at the peak point, but lag behind. The lag time which is denoted by T 2 depends on the magnitude M of the upcoming earthquake among other factors. In order to consider the influence of geophysical parameters in a specific region such as $ \dot{\gamma }, $ E a and J (t), where $ \dot{\gamma } $ is the shear strain rate of tectonic loading in situ, E a is the sum of radiated energy of all earthquake occurring in a specific region measured during a long time duration (110 years in this paper) divided by the area of the region and the time duration, and J (t) is a parameter denoting the LURR anomaly area weighted with Y (the value of LURR) and represents the expanse and degree of the seismogenic zone. The dimensional analysis method has been used to reveal the relation between M, T 2 and other parameters in situ for more reliable earthquake prediction.  相似文献   

19.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   

20.
This paper describes a new method for the evaluation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ of uncoupled torsional to lateral frequencies in real multi-storey buildings. The above-mentioned parameters greatly affect the lateral-to-torsional coupling of the response of asymmetric systems and thus are of paramount importance in the assessment of the in-plan irregularity of buildings. The proposed method, which is a generalization of that suggested by Calderoni et al. (Earthq Spectra 18(2):219–231, 2002), allows the calculation of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ from the structural response to arbitrary distributions of forces and torsional couples. The effectiveness of the method is validated on some regularly and non-regularly asymmetric buildings characterised by different in-plan irregularity. The analyses demonstrate that the results of the method are rigorous in the case of regularly asymmetric systems and only slightly depend upon the heightwise distribution of the forces in the case of non-regularly asymmetric systems. Finally, the values of the static eccentricity $e_{s}$ and the ratio $\Omega _{\uptheta } $ resulting from the proposed method are compared to those obtained by means of the procedure suggested by Makarios and Anastassiadis in (Struct Des Tall Spec Build 7(1):33–55, 1998a; Struct Des Tall Spec Build 7(1):57–71, 1998b) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号