首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Probabilistic earthquake hazard analysis for Cairo,Egypt   总被引:1,自引:1,他引:0  
Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region’s political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input’s element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1°?×?0.1 ° spacing for all of Cairo’s districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone’s districts (e.g., El Nozha) and the lowest values at the northern and western zone’s districts (e.g., El Sharabiya and El Khalifa).  相似文献   

2.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   

3.
川滇地区是我国地震危险性较高的地区之一.本文基于对特大强震的风险性考虑,使用全球地震模型OpenQuake软件,建立了川滇地区地震危险性预测新模型.首先根据构造特征划分多个震源分区,并整理出这些震源分区内断层活动特征与滑动速率;基于震源分区和断层模型,使用GPS应变率转换成的锥形古登堡-里克特关系作为整个区域的地震积累率,并允许超过历史最大震级的特大地震的出现,结合活动断层滑动速率所积累的地震发生率,给出震源分区内断层地震源和背景地震源的地震发生率的比率分配关系;在活动断层分段上,保留了大型断裂或其主要部分,没有根据小的阶区来对断层进行详细分段,以便分配特大地震发生率;并使用地震率平滑方法分配背景地震发生率.最后在OpenQuake中加入地震动预测方程,计算出了川滇地区的PGA分布图,为区域地震危险性提供科学依据.  相似文献   

4.
Paper describes the extensive work done in the SIGMA project, aimed at improving knowledge on data, methods and tools to better quantify uncertainties in seismic hazard assessment (SHA). The authors cooperated in the study of potential faults and geological structures, earthquake catalogues, selection of ground motion prediction equations, and methods for site effect evaluation suitable for SHA. All the contributions merged into a probabilistic seismic hazard study conducted for three representative sites of the Po Plain in Northern Italy. Po Plain is a low-to-moderate seismicity region, characterized by some critical features, such as blind faulting and deep alluvium sediments, and by scarcity of strong motion data; these sources of uncertainties in seismic hazard estimation are common to other low seismicity areas around the world. Within SIGMA, special care was devoted to: (a) the use of the single station sigma approach inside the probabilistic SHA, (b) the comparative use of generalized attenuation functions to evaluate the hazard contribution of composite fault systems, and (c) the study of the epistemic uncertainties at play when different modelling approaches to site effects are used.  相似文献   

5.
This work intends to assess deterministic seismic hazard and risk analysis in terms of the maximum expected intensity map of the Egyptian Nile basin sector. Seismic source zone model of Egypt was delineated based on updated compatible earthquake catalog in 2015, focal mechanisms, and the common tectonic elements. Four effective seismic source zones were identified along the Nile basin. The observed macroseismic intensity data along the basin was used to develop intensity prediction equation defined in terms of moment magnitude. Expected maximum intensity map was proven based on the developed intensity prediction equation, identified effective seismic source zones, and maximum expected magnitude for each zone along the basin. The earthquake hazard and risk analysis was discussed and analyzed in view of the maximum expected moment magnitude and the maximum expected intensity values for each effective source zone. Moderate expected magnitudes are expected to put high risk at Cairo and Aswan regions. The results of this study could be a recommendation for the planners in charge to mitigate the seismic risk at these strategic zones of Egypt.  相似文献   

6.
Earthquake loss models are subject to many large uncertainties associated with the input parameters that define the seismicity, the ground motion, the exposure and the vulnerability characteristics of the building stock. In order to obtain useful results from a loss model, it is necessary to correctly identify and characterise these uncertainties, incorporate them into the calculations, and then interpret the results taking account of the influence of the uncertainties. An important element of the uncertainty will always be the aleatory variability in the ground-motion prediction. Options for handling this variability include following the traditional approach used in site-specific probabilistic seismic hazard assessment or embedding the variability within the vulnerability calculations at each location. The physical interpretation of both of these approaches, when applied to many sites throughout an urban area to assess the overall effects of single or multiple earthquake events, casts doubts on their validity. The only approach that is consistent with the real nature of ground-motion variability is to model the shaking component of the loss model by triggering large numbers of earthquake scenarios that sample the magnitude and spatial distributions of the seismicity, and also the distribution of ground motions for each event as defined by the aleatory variability.  相似文献   

7.
Probabilistic seismic hazard assessment for Thailand   总被引:3,自引:1,他引:2  
A set of probabilistic seismic hazard maps for Thailand has been derived using procedures developed for the latest US National Seismic Hazard Maps. In contrast to earlier hazard maps for this region, which are mostly computed using seismic source zone delineations, the presented maps are based on the combination of smoothed gridded seismicity, crustal-fault, and subduction source models. Thailand’s composite earthquake catalogue is revisited and expanded, covering a study area limited by 0°–30°N Latitude and 88°–110°E Longitude and the instrumental period from 1912 to 2007. The long-term slip rates and estimates of earthquake size from paleoseismological studies are incorporated through a crustal fault source model. Furthermore, the subduction source model is used to model the megathrust Sunda subduction zones, with variable characteristics along the strike of the faults. Epistemic uncertainty is taken into consideration by the logic tree framework incorporating basic quantities, such as different source modelling, maximum cut-off magnitudes and ground motion prediction equations. The ground motion hazard map is presented over a 10 km grid in terms of peak ground acceleration and spectral acceleration at 0.2, 1.0, and 2.0 undamped natural periods and a 5% critical damping ratio for 10 and 2% probabilities of exceedance in 50 years. The presented maps give expected ground motions that are based on more extensive data sources than applied in the development of previous maps. The main findings are that northern and western Thailand are subjected to the highest hazard. The largest contributors to short- and long-period ground motion hazard in the Bangkok region are from the nearby active faults and Sunda subduction zones, respectively.  相似文献   

8.
Fukushima nuclear accident caused widespread concern of earthquake initiated severe accident. Under this background, China nuclear utilities carried out research and application of seismic margin assessment(SMA)approach to evaluate the seismic margin of the existing nuclear power plants(NPP)by different spectra shape of seismic margin earthquake(SME). By reviewing the method used to determine SME of operational NPP in central and eastern United States(CEUS), this paper analyzed the seismic hazard characteristic of China NPP sites, contrasted the design basis ground motion between NPP in CEUS and China, and suggested giving priority to evaluating the seismic margin of operational NPP that adopted the improved second generation technology for the urgency and importance of assessment on the actual seismic capacity of NPP. Comparing RG1.60 spectrum to normalized site-specific SL-2 level acceleration spectra, we found that some normalized spectra overtook the RG1.60's in high frequency range, so it is not always adequate to scale RG1.60 spectrum to evaluate the seismic margin for sites of the improved second generation NPP. We selected a sample site whose site-specific SL-2 level ground motion is close to the standard design of improved second generation NPP(0.2g scaled RG1.60 spectrum)to determine the seismic margin earthquake by probabilistic seismic hazard analysis method of the sample site. Compared to the given PGA(0.3g)scaled scenario earthquake ground motions and the uniform hazard response spectrum(UHRS), whose PGA is 0.3g to PGA(0.3g)scaled standard spectra(median NUREG/CR0098 spectrum and RG1.60 spectrum), the results demonstrated that uniform hazard response spectrum and scaled scenario earthquake ground motions are both significantly higher than the PGA scaled median NUREG/CR0098 spectrum, and all the three spectra are enveloped by PGA scaled RG1.60 spectrum. Then, this paper suggests adopting the uniform hazard response spectrum or scenario earthquake ground motions to evaluate the seismic margin of improved second generation NPP beyond site SL-2 ground motion; and to evaluate the seismic margin of improved second generation NPP beyond standard design, we recommend to use PGA scaled RG1.60 spectrum.  相似文献   

9.
The calculation of design spectra for building sites threatened by seismic ground motion is approached by considering the maximum responses of linearly elastic oscillators as indicators of ground motion intensity. Attenuation functions describing the distribution of response as a function of earthquake magnitude and distance are derived using 68 components of recorded ground motion as data. With a seismic hazard analysis for several hypothetical building sites, the distributions of maximum oscillator responses to earthquakes of random magnitude and location are calculated, and spectra are drawn to indicate the maximum responses associated with specified probability levels. These spectra are compared to design spectra calculated from published methods of amplifying peak ground motion parameters. The latter spectra are found to be inconsistent in terms of risk for building sites very close and very far from faults. A ground motion parameter defined to be proportional to the maximum response of a 1 Hz, 2 per cent damped linearly elastic oscillator is investigated; this parameter, in conjunction with peak ground acceleration, is found to lead to risk-consistent design spectra. Through these two parameters, a design earthquake magnitude and design hypocentral distance are defined, for a specified building site and risk level. The use of these parameters in the seismic hazard mapping of a region is illustrated.  相似文献   

10.
This paper presents an integrated approach for evaluating seismic hazard and establishing ground motion at a site. In this approach, we combine the advantage of probabilistic and deterministic seismic hazard analyses and generate synthetic ground motion by considering the characteristics of seismic source, path attenuation, and local soil condition. Furthermore, uncertainties in seismic and soil parameters are taken into account. The proposed approach can be used to establish site-specific ground motion for engineering applications.  相似文献   

11.
Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.  相似文献   

12.
On 12 October 1992, an earthquake, magnitude mb = 5.9 and M s = 5.2, hit the City of Cairo, Egypt. It was this century's largest earthquake in northern Egypt with related destruction in the City of Cairo, the Nile Valley and the Nile Delta areas. Our source parameter determinations show that the 1992 earthquake had a normal faulting mechanism, seismic moment M o = 5.2 × 1017 Nm, centroid depth of 23 km and a source time function duration of 3 seconds. The mechanism is compared with those corresponding to two other events that occurred in the northern Red Sea. The similarity between the mechanisms as well as the spatial distribution of the geological faults around Cairo suggest seismic activity along the extension of the stress field of the Red Sea rift system to the area around the City of Cairo. This situation affects the level of seismic hazard in the Cairo area. The 1992 earthquake belongs to an unusual class of relatively small, M w > 6.0, yet destructive earthquakes. The damage caused by these events is usually attributed to their shallow focal depth, 5 km, and to amplification of seismic waves in the local soil beneath the damaged structures. However, the Cairo earthquake deviates from other events of this class since the focal depth was determined to be 23 km. We calculated synthetic accelerograms for the 1992 earthquake with the loose sediments observed in the Nile Valley, and show that this enhanced the amplitude of the acceleration by a factor of two. However, the determined accelerations, about 0.5 m s-2, cannot alone explain the relatively large amount of damaged structures. Hence, a major cause to the destruction is likely the poor state of construction of the Cairo buildings.  相似文献   

13.
Modern earthquake loss models make use of earthquake catalogs relevant to the seismic hazard assessment upon seismicity and seismotectonic analysis. The main objective of this paper is to investigate a recently compiled catalog (National Institute of Meteorology or INM catalog: 412-2011) and to generate seismic hazard maps through classical probabilistic seismic hazard assessment (PSHA) and smoothed-gridded seismicity models for Tunisia. It is now established with the local earthquake bulletin that the recent seismicity of Tunisia is sparse and moderate. Therefore, efforts must be undertaken to elaborate a robust hazard analysis for risk assessment and seismic design purposes. These recommendations follow the recently published reports by the World Bank that describe the seismic risk in Tunis City as being beyond a tolerable level with an MSK intensity level of VII. Some attempts were made during the past two decades to assess the seismic hazard for Tunisia and they have mostly failed to properly investigate the historical and instrumental seismicity catalog. This limitation also exists for the key aspect of epistemic and random uncertainties impact on the final seismic hazard assessment. This study also investigates new ground motion prediction equations suitable for use in Tunisia. The methodology applied herein uses, for the first time in PSHA of Tunisia, seismicity parameters integrated in logic tree framework to capture epistemic uncertainties through three different seismic source models. It also makes use of the recently released version of OpenQuake engine; an open-source tool for seismic hazard and risk assessment developed in the framework of the Global Earthquake Model.  相似文献   

14.
The collaborative project Earthquake Model of the Middle East (EMME, 2010–2015) brought together scientists and engineers from the leading research institutions in the region and delivered state-of-the-art seismic hazard assessment covering Afghanistan, Armenia, Azerbaijan, Cyprus, Georgia, Iran, Iraq, Jordan, Lebanon, Palestine, Pakistan, Syria and Turkey. Their efforts have been materialized in the first homogenized seismic hazard model comprising earthquake catalogues, mapped active faults, strong motions databank, ground motion models and the estimated ground motion values for various intensity measure types and relevant return periods (e.g. 475–5000 years). The reference seismic hazard map of the Middle East, depicts the mean values of peak ground acceleration with a 10% chance of exceedance in 50 years, corresponding to a mean return period of 475 years. A full resolution poster is provided with this contribution.  相似文献   

15.
The stochastic method for finite faults is applied to simulate the ground motion of the 12 October 1992, m b = 5.9, Dahshour earthquake. The method includes discritization of the fault plane into certain number of subfaults, and a ω-squared spectrum is assigned to each of them. Contributions from all subfaults are then empirically attenuated to the observation sites, where they are summed to produce the synthetic acceleration time-history. The method is first tested against its ability of reproducing the recording at Kottamya station. The calibrated model is then applied to calculate the synthetics at a large number of grid points covering the area around the fault plane. Simulated peak values are subsequently used to produce the synthetic peak horizontal acceleration map for the area. We compare the peak horizontal acceleration with the attenuation laws proposed for Egypt as well as the macroseismic intensity map of the 1992 Dahshour earthquake. The peak horizontal acceleration contours estimated using the calibrated model are mostly consistent with the observed intensity values and evidences of strong ground motions. Our results encourage the application of the approach as a supplementary tool for site-specific strong ground motion prediction.  相似文献   

16.
Over the years, several local and regional seismic hazard studies have been conducted for the estimation of the seismic hazard in Turkey using different statistical processing tools for instrumental and historical earthquake data and modeling the geologic and tectonic characteristics of the region. Recently developed techniques, increased knowledge and improved databases brought the necessity to review the national active fault database and the compiled earthquake catalogue for the development of a national earthquake hazard map. A national earthquake strategy and action plan were conceived and accordingly with the collaboration of the several institutions and expert researchers, the Revision of Turkish Seismic Hazard Map Project (UDAP-Ç-13-06) was initiated, and finalized at the end of 2014. The scope of the project was confined to the revision of current national seismic hazard map, using the state of the art technologies and knowledge of the active fault, earthquake database, and ground motion prediction equations. The following two seismic source zonation models are developed for the probabilistic earthquake hazard analysis: (1) Area source model, (2) Fault and spatial smoothing seismic source model (FSBCK). In this study, we focus on the development and the characterization of the Fault Source model, the background spatially smoothed seismicity model and intrinsic uncertainty on the earthquake occurrence-rates-estimation. Finally, PSHA results obtained from the fault and spatial smoothed seismic source model are presented for 43, 72, 475 and 2475 years return periods (corresponding to 69, 50, 10, and 2% probability of exceedance in 50 years) for PGA and 5% damped spectral accelerations at 0.2 and 1.0 s.  相似文献   

17.
近断层地震动场的预测不仅可以为抗震结构设计提供更加丰富的地震动输入,也可以作为土地合理规划的参考依据。在一些地震活动相对较弱的地区,地震往往发生在两个早第四纪断裂相交的位置处。因此对于这种相交早第四纪断裂区的近断层地震动场预测具有实际的意义。本文以枣庄市新城区为例,预测了在设定地震发生时,相交早第四纪断裂近断层地震动场的分布情况。先分别计算了近断层区低频和高频的地震动,然后将低频和高频成分合成宽频带的地震动场。在计算低频地震动场时,建立了枣庄市新城区地下三维传播介质模型和震源模型。计算的过程是模拟震源发生破裂产生地震波后,地震波在地下介质中的传播过程。使用了三维显式有限元、快速拉格朗日有限元法等数值计算方法以及并行计算技术来提高计算的速度。由于地震动的频率成分是连续的,因此对于高频地震动使用了随机震动理论来进行合成。本文研究的预测结果具备断层附近地震动的一些最基本的特征,符合当前对断层附近地震动的基本认识。  相似文献   

18.
The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of \(v_{S30}\) = 800 m/s, are calculated for three hazard levels (10, 5 and 2% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02–3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized.  相似文献   

19.
The results of seismic hazard disaggregation can be used to assign relative weights to a given ground motion record based on its corresponding magnitude, distance and deviation from the ground motion prediction model (epsilon) in order to make probability-based seismic assessments using non-linear dynamic analysis. In this paper, the implications of using the weighted ground motion records are investigated in terms of the mean annual frequency of exceedance of the critical component-based demand to capacity ratio in an existing reinforced concrete structure using both the peak ground acceleration and the first-mode spectral acceleration as intensity measures. It is demonstrated how site-specific seismic hazard disaggregation can be used in order to obtain the conditional probability distribution for a relevant ground motion characteristic given the chosen intensity measure. Distinguished by the amount of structural analysis required, two alternative non-linear dynamic analysis procedures, namely the cloud and the stripes method are implemented. The weighted cloud and the weighted stripes methods are then introduced as analysis procedures which modify the structural response to the selected ground motion records by employing the information provided from the seismic hazard analysis. It is demonstrated that the resulting annual frequencies based on weighted records are comparable to those obtained by using vector-valued intensity measures, while requiring less computational effort.  相似文献   

20.
Seismic hazard analysis requires the estimation of the probabilities that earthquakes will take place within a region of interest, and the expected level of ground motion which will be received at a site during the nextt years. The earthquake magnitude has been used as a basic parameter, because it is available, under the assumption that the earthquake occurrence is a compound Poisson process with exponential or multinomial distribution of magnitude.For improving the hazard prediction, we used the seismic moment as a basic parameter to estimate the mean rate, , of occurrence of earthquakes in a function of seismic moment rate and slip rate released in a seismogenic region.As an illustration of the model, the seismic hazard analysis at different sites in and around the Gulf of Corinth, central Greece, is presented on the basis of the earthquake magnitude and the seismic moment. Comparison of the results shows that determination of the mean rate of earthquake occurrence, using the conventional Gutenberg-Richter recurrence model, underestimates the seismic hazard at a site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号