首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The accurate evaluation and appropriate treatment of uncertainties is of primary importance in modern probabilistic seismic hazard assessment (PSHA). One of the objectives of the SIGMA project was to establish a framework to improve knowledge and data on two target regions characterized by low-to-moderate seismic activity. In this paper, for South-Eastern France, we present the final PSHA performed within the SIGMA project. A new earthquake catalogue for France covering instrumental and historical periods was used for the calculation of the magnitude-frequency distributions. The hazard model incorporates area sources, smoothed seismicity and a 3D faults model. A set of recently developed ground motion prediction equations (GMPEs) from global and regional data, evaluated as adequately representing the ground motion characteristics in the region, was used to calculate the hazard. The magnitude-frequency distributions, maximum magnitude, faults slip rate and style-of-faulting are considered as additional source of epistemic uncertainties. The hazard results for generic rock condition (Vs30 = 800 m/s) are displayed for 20 sites in terms of uniform hazard spectra at two return periods (475 years and 10,000 years). The contributions of the epistemic uncertainties in the ground motion characterizations and in the seismic source characterization to the total hazard uncertainties are analyzed. Finally, we compare the results with existing models developed at national scale in the framework of the first generation of models supporting the Eurocode 8 enforcement, (MEDD 2002 and AFPS06) and at the European scale (within the SHARE project), highlighting significant discrepancies at short return periods.  相似文献   

2.
A representation of seismic hazard is proposed for Italy based on the zone-free approach developed by Woo (BSSA 86(2):353–362, 1996a), which is based on a kernel estimation method governed by concepts of fractal geometry and self-organized seismicity, not requiring the definition of seismogenic zoning. The purpose is to assess the influence of seismogenic zoning on the results obtained for the probabilistic seismic hazard analysis (PSHA) of Italy using the standard Cornell’s method. The hazard has been estimated for outcropping rock site conditions in terms of maps and uniform hazard spectra for a selected site, with 10 % probability of exceedance in 50 years. Both spectral acceleration and spectral displacement have been considered as ground motion parameters. Differences in the results of PSHA between the two methods are compared and discussed. The analysis shows that, in areas such as Italy, characterized by a reliable earthquake catalog and in which faults are generally not easily identifiable, a zone-free approach can be considered a valuable tool to address epistemic uncertainty within a logic tree framework.  相似文献   

3.
Modern Earthquake Risk Assessment (ERA) methods usually require seismo-tectonic information for Probabilistic Seismic Hazard Assessment (PSHA) that may not be readily available in developing countries. To bypass this drawback, this paper presents a practical event-based PSHA method that uses instrumental seismicity, available historical seismicity, as well as limited information on geology and tectonic setting. Historical seismicity is integrated with instrumental seismicity to determine the long-term hazard. The tectonic setting is included by assigning seismic source zones associated with known major faults. Monte Carlo simulations are used to generate earthquake catalogues with randomized key hazard parameters. A case study region in Pakistan is selected to demonstrate the effectiveness of the method. The results indicate that the proposed method produces seismic hazard maps consistent with previous studies, thus being suitable for generating such maps in regions where limited data are available. The PSHA procedure is developed as an integral part of an ERA framework named EQRAM. The framework is also used to determine seismic risk in terms of annual losses for the study region.  相似文献   

4.
A new seismic hazard model for Cairo, the capital city of Egypt is developed herein based on comprehensive consideration of uncertainties in various components of the probabilistic seismic hazard analysis. The proposed seismic hazard model is developed from an updated catalogue of historical and instrumental seismicity, geodetic strain rates derived from GPS-based velocity-field of the crust, and the geologic slip rates of active faults. The seismic source model consists of area sources and active faults characterised to forecast the seismic productivity in the region. Ground motion prediction models are selected to describe the expected ground motion at the sites of interest. The model accounts for inherent epistemic uncertainties of statistical earthquake recurrence; maximum magnitude; ground motion prediction models, and their propagation toward the obtained results. The proposed model is applied to a site-specific hazard analysis for Kottamiya, Rehab City and Zahraa-Madinat-Nasr (hereinafter referred to as Zahraa) to the East of Cairo (Egypt). The site-specific analysis accounts for the site response, through the parameterization of the sites in terms of average 30-m shear-wave velocity (Vs30). The present seismic hazard model can be considered as a reference model for earthquake risk mitigation and proper resilience planning.  相似文献   

5.
地震危险性分析中的不确定性处理和表征,一直是核电厂厂址地震安全性评价中倍受关注的重要问题,尤其是日本福岛核事故后,无论是确定核电厂厂址的设计基准地震动,还是进行核电厂地震风险评价,都更加重视地震危险性分析中的不确定性.本文通过理论分析重点说明了衰减关系的不确定性,包括标准差和截断水平对核电厂地震安全性评价的影响,并在此基础上,通过算例和讨论说明了概率性方法截断水平的选取问题,探讨了现行确定性方法和概率性方法在截断水平选取上的差异.分析计算结果表明,在地震活动较弱的区域,概率性方法截断水平为3,确定性方法截断水平为0的现行做法是恰当的.但是,对于发震构造大震复发间隔较小的区域,为了使二者在超越概率方面协调,恰当提高确定性方法的截断水平更为合理.  相似文献   

6.
A unified probabilistic seismic hazard assessment (PSHA) for the Pyrenean region has been performed by an international team composed of experts from Spain and France during the Interreg IIIA ISARD project. It is motivated by incoherencies between the seismic hazard zonations of the design codes of France and Spain and by the need for input data to be used to define earthquake scenarios. A great effort was invested in the homogenisation of the input data. All existing seismic data are collected in a database and lead to a unified catalogue using a local magnitude scale. PSHA has been performed using logic trees combined with Monte Carlo simulations to account for both epistemic and aleatory uncertainties. As an alternative to hazard calculation based on seismic sources zone models, a zoneless method is also used to produce a hazard map less dependant on zone boundaries. Two seismogenic source models were defined to take into account the different interpretations existing among specialists. A new regional ground-motion prediction equation based on regional data has been proposed. It was used in combination with published ground-motion prediction equations derived using European and Mediterranean data. The application of this methodology leads to the definition of seismic hazard maps for 475- and 1,975-year return periods for spectral accelerations at periods of 0 (corresponding to peak ground acceleration), 0.1, 0.3, 0.6, 1 and 2 s. Median and percentiles 15% and 85% acceleration contour lines are represented. Finally, the seismic catalogue is used to produce a map of the maximum acceleration expected for comparison with the probabilistic hazard maps. The hazard maps are produced using a grid of 0.1°. The results obtained may be useful for civil protection and risk prevention purposes in France, Spain and Andorra.  相似文献   

7.
Seismic Hazard Assessment: Issues and Alternatives   总被引:3,自引:0,他引:3  
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used interchangeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been proclaimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications.  相似文献   

8.
新版地震区划图地震活动性模型与参数确定   总被引:11,自引:4,他引:7  
地震活动性模型和地震动预测模型是概率地震危险性分析的两个核心。在新版地震区划图中,依据板内地震活动空间不均匀性分布的特点,在概率地震危险性分析方法(CPSHA)中采用了由地震统计区、背景潜在震源区和构造潜在震源区构成的三级层次性潜在震源区模型,并构建了相应的地震活动性模型。本文在论述CPSHA方法及其地震活动性模型基本概念的基础上,重点介绍了新版地震区划图地震活动性模型的三级潜在震源区模型的构成、地震活动性假定和基本特点,同时,也对新版地震区划图地震活动性模型的重要参数确定思路、方法与结果进行了介绍。本文将为更好地认识与理解我国新版地震动参数区划图提供有益的参考。  相似文献   

9.
Paper describes the extensive work done in the SIGMA project, aimed at improving knowledge on data, methods and tools to better quantify uncertainties in seismic hazard assessment (SHA). The authors cooperated in the study of potential faults and geological structures, earthquake catalogues, selection of ground motion prediction equations, and methods for site effect evaluation suitable for SHA. All the contributions merged into a probabilistic seismic hazard study conducted for three representative sites of the Po Plain in Northern Italy. Po Plain is a low-to-moderate seismicity region, characterized by some critical features, such as blind faulting and deep alluvium sediments, and by scarcity of strong motion data; these sources of uncertainties in seismic hazard estimation are common to other low seismicity areas around the world. Within SIGMA, special care was devoted to: (a) the use of the single station sigma approach inside the probabilistic SHA, (b) the comparative use of generalized attenuation functions to evaluate the hazard contribution of composite fault systems, and (c) the study of the epistemic uncertainties at play when different modelling approaches to site effects are used.  相似文献   

10.
The analysis of seismic hazards relies on the statistical analysis of historical seismic data and the instrumental seismic catalog to obtain the regional earthquake recurrence interval and earthquake probability. The accuracy of analysis thus depends strongly on the completeness of the seismic data used. However, available seismic catalogs are too short or incomplete for the reliable analysis of the statistical characteristics of earthquakes. If a long-term synthetic seismic catalog can be generated using a physics-based numerical simulation, and the simulation results match the crustal deformation, seismicity, and other observations,then such a synthetic catalog helps us to further understand the characteristics of seismic activity and analyze the regional seismic hazard. In this paper, taking the northeastern Tibetan Plateau as a case study, we establish a three-dimensional visco-elastoplastic finite-element model to simulate earthquake cycles and the spatiotemporal evolution of earthquakes on the model fault system and obtain a seismic catalog on a time scale of tens of thousands of years. On the basis that the model satisfies the regional geodynamics of the northeastern Tibetan Plateau, we analyze seismicity on the northeastern Tibetan Plateau using the simulated synthetic earthquake catalog. The characteristics of earthquake recurrence at different locations and different magnitudes, and the long-term average probability of earthquake occurrence within the fault system on the northeastern Tibetan plateau are studied. The results are a reference for regional seismic hazard assessment and provide a basis for the physics-based numerical prediction of earthquakes.  相似文献   

11.
李昌珑  徐伟进  吴健  高孟潭 《地震学报》2015,37(6):1024-1036
本文介绍了特征地震的对数正态分布模型、 正态分布模型和布朗过程时间模型, 提出了使用地震破裂面源模型的特征地震含时间的概率地震危险性分析理论和方法. 通过具体算例对不同的特征地震模型进行了比较, 并对特征地震危险性分析方法进行了系统探索. 研究结果表明, 特征地震含时间模型在复发周期早期的地震危险性低于不含时间模型, 而在后期其地震危险性则高于不含时间模型. 特征地震复发周期的对数正态分布模型与布朗过程时间模型计算得出的地震危险性差别不大. 在未到期望复发时间时, 正态分布模型与前两种模型计算的地震危险性差别不大; 而接近期望复发时间及之后时段, 正态分布模型计算的地震危险性则迅速增大.   相似文献   

12.
Estimation of ground-motion amplitudes of different hazard levels is of paramount importance in planning of urban development of any metropolis. Such estimation can be computed through a probabilistic seismic hazard analysis (PSHA). This paper concentrates on the PSHA of an area located in Shiraz city, southern Iran. The area includes whole of Shiraz city (i.e., one of the largest and most populous cities of Iran) and its outskirts. Conventional and Monte Carlo simulation-based approaches are utilized to perform the PSHA of the studied area. Two areal seismic source models are delineated, and thence seismicity parameters of all zones associated with their corresponding uncertainties are computed. Uncertainties in ground-motion prediction are accounted for via three ground-motion prediction equations (GMPEs) within the logic tree framework. These GMPEs are applied to estimate bedrock ground shaking (Vs30?=?760 m/s) for several return periods (i.e., 75, 475, 975, and 2475 years). In general, the results of the two abovementioned PSHA approaches show relatively similar results. However, the Monte Carlo simulation-based approach overpredicts bedrock spectral accelerations at periods of 0.4–2.5 s compared to the conventional PSHA approach for return periods of 475, 975, and 2475 years.  相似文献   

13.
徐伟进  高孟潭 《地震学报》2012,34(4):526-536
根据华北地区的地震目录,建立了4个空间光滑的地震活动性模型,并以这些模型为空间分布函数,将华北地震区每个地震带的地震年发生率分配到空间格点中,计算这一地区的地震危险性.结果表明,采用仪器记录地震计算得到的地震活动性模型和地震危险性结果能够反映华北地区现今的地震活动水平和地震危险性水平,符合人们对现今华北地区地震危险性的认识;采用历史破坏性地震(Mge;4.7)计算的地震活动性模型和地震危险性结果,较好地反映了华北地区中强地震活动区的地震危险性水平;以地震应变计算地震活动率,并根据点椭圆模型和线椭圆模型计算得到的地震活动性模型,能够较好地反映大地震的活动水平和空间构造特征.将根据4个模型计算得到的50年超越概率10%峰值加速度(PGA)分布加权平均,得到综合的华北地区PGA分布,并将该PGA分布与根据《中国地震动参数区划图》中综合潜源方案计算得到的50年超越概率10%的PGA分布做了比较,发现二者无本质差别,均能反映华北地震区的地震危险性水平.当然,二者也具有一定的差异:前者计算得到的符合PGAge;100 cm/s2条件的区域面积明显要比后者的大,而符合PGAge;250 cm/s2条件的区域面积则比后者的要小. 这主要是由于潜在震源区类型和空间分布函数不同造成的.   相似文献   

14.
任梦依  刘哲 《地震学报》2022,44(6):1035-1048
基于广义帕累托分布构建地震活动性模型,因其输入参数取值难以避免不确定性,导致依据该模型所得的地震危险性估计结果具有不确定性。鉴于此,本文选取青藏高原东北缘为研究区,提出了基于全域敏感性分析的地震危险性估计的不确定性分析流程和方法。首先,利用地震活动性广义帕累托模型,进行研究区地震危险性估计;然后,选取地震记录的起始时间和震级阈值作为地震活动性模型的输入参数,采用具有全域敏感性分析功能的E-FAST方法,对上述两个参数的不确定性以及两参数之间的相互作用对地震危险性估计不确定性的影响进行定量分析。结果表明:地震危险性估计结果(不同重现期的震级重现水平、震级上限及相应的置信区间)对两个输入参数中的震级阈值更为敏感;不同重现期的地震危险性估计结果对震级阈值的敏感程度不同;对不同的重现期而言,在影响地震危险性估计结果的不确定性上,两个输入参数之间存在非线性效应,且非线性效应程度不同。本文提出的不确定性分析流程和方法,可以推广应用于基于其它类型地震活动性模型的地震危险性估计不确定性分析。   相似文献   

15.
Epistemic uncertainty in ground motion prediction relations is recognized as an important factor to be considered in probabilistic seismic hazard analysis (PSHA), together with the aleatory variability that is incorporated directly into the hazard calculations through integration across the log-normal scatter in the ground motion relations. The epistemic uncertainty, which is revealed by the differences in median values of ground motion parameters obtained from relations derived for different regions, is accounted for by the inclusion of two or more ground motion prediction relations in a logic-tree formalism. The sensitivity of the hazard results to the relative weights assigned to the branches of the logic-tree, is explored through hazard analyses for two sites in Europe, in areas of high and moderate seismicity, respectively. The analyses reveal a strong influence of the ground motion models on the results of PSHA, particularly for low annual exceedance frequencies (long return periods) and higher confidence levels. The results also show, however, that as soon as four or more relations are included in the logic-tree, the relative weights, unless strongly biased towards one or two relations, do not significantly affect the hazard. The selection of appropriate prediction relations to include in the analysis, therefore, has a greater impact than the expert judgment applied in assigning relative weights to the branches of the logic-tree.  相似文献   

16.
Deterministic and probabilistic seismic hazard analyses should be complementary, in the sense that probabilistic analysis may be used to identify the controlling deterministic design‐level earthquake events, and more sophisticated models of these events may then be developed to account for uncertainties that could not have been included directly in the probabilistic analysis. De‐aggregation of the tentative uniform hazard spectra (UHS) in Hong Kong resulting from a probabilistic seismic hazard assessment (PSHA) indicates that strong and major distant earthquakes, rather than moderate local earthquakes, make the largest contribution to the seismic hazard level within the natural‐period range longer than 0.3 s. Ground‐motion simulations of controlling events located 90 and 340 km from Hong Kong, taking into account uncertainties in the rupture process, reveal that the tentative UHS resulting from the PSHA may have significantly underestimated the mid‐to‐long period components. This is attributed mainly to the adoption of double‐corner source‐spectrum models in the attenuation relationships employed in the PSHA. The results of the simulations indicate clearly that rupture directivity and rupture velocity can significantly affect the characteristics of ground motions, even from such distant earthquakes. The rupture‐directivity effects have profound implications in elongating the second corner period where the constant velocity intersects the constant displacement, thus increasing the associated displacement demand. However, demands for acceleration and velocity are found to be not sensitive to the presence of the directivity pulses. Ground pulses resulting from forward rupture directivity of distant earthquakes have longer predominant periods than the usual near‐fault directivity pulses. These long‐period pulses may have profound implications for metropolises, such as Hong Kong and others in Southeast Asia, having large concentration of high‐rise buildings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Earthquakes are generally clustered, both in time and space. Conventionally, each cluster is made of foreshocks, the mainshock, and aftershocks. Seismic damage can possibly accumulate because of the effects of multiple earthquakes in one cluster and/or because the structure is unrepaired between different clusters. Typically, the performance-based earthquake engineering (PBEE) framework neglects seismic damage accumulation. This is because (i) probabilistic seismic hazard analysis (PSHA) only refers to mainshocks and (ii) classical fragility curves represent the failure probability in one event, of given intensity, only. However, for life cycle assessment, it can be necessary to account for the build-up of seismic losses because of damage in multiple events. It has been already demonstrated that a Markovian model (i.e., a Markov chain), accounting for damage accumulation in multiple mainshocks, can be calibrated by maintaining PSHA from the classical PBEE framework and replacing structural fragility with a set of state-dependent fragility curves. In fact, the Markov chain also works when damage accumulates in multiple aftershocks from a single mainshock of known magnitude and location, if aftershock PSHA replaces classical PSHA. Herein, this model is extended further, developing a Markovian model that accounts, at the same time, for damage accumulation: (i) within any mainshock–aftershock seismic sequence and (ii) among multiple sequences. The model is illustrated through applications to a series of six-story reinforced concrete moment-resisting frame buildings designed for three sites with different seismic hazard levels in Italy. The time-variant reliability assessment results are compared with the classical PBEE approach and the accumulation model that only considers mainshocks, so as to address the relevance of aftershocks for life cycle assessment.  相似文献   

18.
A seismic source model is presented for use in probabilistic seismic hazard analyses to be conducted for sites within the Buller–NW Nelson region of New Zealand. The application of common probabilistic seismic hazard analysis (PSHA) methodology for sites in this region has been complicated by the long-held suspicion that the observed rates of seismic activity are high and not representative of long-term earthquake activity. However, recent analyses of geological, seismicity and geodetic data indicate that the extent of this anomaly may have been overestimated and that current rates of seismic activity within this region are likely to continue into the foreseeable future. Probable bounds for the most appropriate long-term rates of seismic activity are estimated after considering all available sources of constraint. These include geodetic analyses, plate-motion modelling, finite element modelling, structural geological considerations, paleoseismic information, tree-ring analyses, precarious rock information, observed seismicity and fundamental mechanics. A suite of fault sources is identified, and the observed seismicity is partitioned between these sources and a background source using Bayesian inference, and then analysed to obtain a magnitude–frequency distribution for each seismic source. The annual moment release rate for the region, resulting from the identified and characterised sources, is shown to be consistent with available constraints. Consequently, it is demonstrated that the observed seismicity in the Buller–NW Nelson region can be used to model future earthquake occurrence within the region and that standard PSHA may therefore be implemented within the region.  相似文献   

19.
The basic seismic load parameters for the upcoming national design regulation for DIN EN 1998-1/NA result from the reassessment of the seismic hazard supported by the German Institution for Civil Engineering (DIBt). This 2016 version of the national seismic hazard assessment for Germany is based on a comprehensive involvement of all accessible uncertainties in models and parameters and includes the provision of a rational framework for integrating ranges of epistemic uncertainties and aleatory variabilities in a comprehensive and transparent way. The developed seismic hazard model incorporates significant improvements over previous versions. It is based on updated and extended databases, it includes robust methods to evolve sets of models representing epistemic uncertainties, and a selection of the latest generation of ground motion prediction equations. The new earthquake model is presented here, which consists of a logic tree with 4040 end branches and essential innovations employed for a realistic approach. The output specifications were designed according to the user oriented needs as suggested by two review teams supervising the entire project. Seismic load parameters, for rock conditions of \(v_{S30}\) = 800 m/s, are calculated for three hazard levels (10, 5 and 2% probability of occurrence or exceedance within 50 years) and delivered in the form of uniform hazard spectra, within the spectral period range 0.02–3 s, and seismic hazard maps for peak ground acceleration, spectral response accelerations and for macroseismic intensities. Results are supplied as the mean, the median and the 84th percentile. A broad analysis of resulting uncertainties of calculated seismic load parameters is included. The stability of the hazard maps with respect to previous versions and the cross-border comparison is emphasized.  相似文献   

20.
川滇地区是我国地震危险性较高的地区之一.本文基于对特大强震的风险性考虑,使用全球地震模型OpenQuake软件,建立了川滇地区地震危险性预测新模型.首先根据构造特征划分多个震源分区,并整理出这些震源分区内断层活动特征与滑动速率;基于震源分区和断层模型,使用GPS应变率转换成的锥形古登堡-里克特关系作为整个区域的地震积累率,并允许超过历史最大震级的特大地震的出现,结合活动断层滑动速率所积累的地震发生率,给出震源分区内断层地震源和背景地震源的地震发生率的比率分配关系;在活动断层分段上,保留了大型断裂或其主要部分,没有根据小的阶区来对断层进行详细分段,以便分配特大地震发生率;并使用地震率平滑方法分配背景地震发生率.最后在OpenQuake中加入地震动预测方程,计算出了川滇地区的PGA分布图,为区域地震危险性提供科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号