首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
福岛核事故揭示了外部自然灾害引发严重核事故的可能性,为核工程界敲响了警钟。因此,对我国运行和在建核电厂址逐步开展了抗震裕度评价(SMA)或地震概率安全评价(SPSA)工作。本文针对地震危险性分析在核工程应用中存在的问题,从设计基准地震动的确定、核电厂地震概率安全评价、超设计基准地震动安全分析3个方面进行了研究。设计基准地震动确定方面,目前存在的主要问题是某些核设施厂址确定论方法和概率论方法评价结果的显著差异。本文以我国的一些核电厂址为例,分析了确定论和概率论方法评价结果的控制性因素,分析结果表明,反应谱的周期较小时,主要受距厂址较近的发震构造(地震构造区)、潜在震源区控制;随着反应谱周期的增大,距厂址较远的区域性发震构造、高震级潜在震源区的影响逐步增大。通过分解变量MRs对地震动年平均超越概率(HT4)的相对贡献,给出了变量的边际分布和联合分布,说明了变量的分布特征,指出了评价结果差异的主要影响因素为单位面积上高震级档地震年平均发生率和衰减关系的截断水平。根据核设施结构基于性能抗震设计方法的应用要求,以地震引起堆融的年平均概率为目标,推导了反应谱调整系数公式,根据推导结果和中美两国厂址地震危险性曲线变化趋势的对比分析,建立了适用于我国的核设施结构抗震设计反应谱调整系数的近似公式。核电厂地震概率安全评价中的主要问题是概率地震危险性分析中的不确定性处理和表达。论文分析了地震动预测模型截断水平对概率地震危险性分析结果的影响,讨论了厂址地震危险性分析结果的分布形式;验证了随机振动理论方法的适用性,采用随机振动理论方法研究了土层地震反应分析中土层剖面模型参数的不确定性对评价结果的影响;介绍了美国中东部地区概率地震危险性分析认知不确定性处理采用的逻辑树方法,实现了逻辑树模型中多方案的权重确定方法,讨论了该方法的适用范围。关于认知不确定性处理,针对逻辑树模型在实际工程应用中存在的逻辑问题。基于稳定大陆地区最大震级和高震级档地震年平均发生率的研究进展,随机生成完整的地震目录,从中进行小样本抽样,分析了6值和高震级档地震年平均发生率的分布范围,研究了逻辑树模型中相互关联节点分支间的组合问题。根据稳定大陆地区最大震级先验分布的研究成果,利用破坏性地震目录计算似然函数,采用Bayesian方法,初步估计了对我国内陆核电厂址有重要影响的长江中游地震带最大震级的分布。关于抗震裕度评价中的抗震裕度地震确定问题,分析了我国核电厂址的地震危险性背景和不同堆型的抗震设计特点,以某核电厂址为例,采用多种方法确定了抗震裕度地震。根据分析计算结果,按照抗震裕度评价的目的、厂址地震危险性特征、堆型的抗震设计特点,给出了适用的方法和抗震裕度地震谱型。  相似文献   

2.
指出了运用我国现行的考虑时空非均匀性的地震危险性分析计算方法对核电厂等设计精良的设施进行地震危险性分析时所存在的问题.介绍了累积绝对速度(CAV)的概念,并将其引入到我国现行的考虑时空非均匀性的地震危险性分析计算方法之中,用以排除厂址周围小震对核电厂地震危险性分析的影响,并选取实际工程场点进行了试算.试算结果表明,此方法能明显排除厂址周围小震对地震危险性分析结果的影响.  相似文献   

3.
福岛核事故后,地震作为初始事件引发核电厂严重事故的问题引起了广泛关注。在此背景下,中国核电厂相继开展了抗震裕度评价,但在评价中选用了不同的地震谱形。基于美国针对早期运行核电厂开展的抗震裕度评价方法和中国核电厂址的地震危险性背景分析,对比了中美两国核电厂抗震设计基准的差异,针对中国目前的情况,建议优先对采用二代加堆型的运行电厂进行抗震裕度评价。通过将RG1.60谱与归一化厂址特定SL-2级加速度反应谱进行对比分析,发现部分核电厂址反应谱谱形在高频部分超过了RG1.60谱,对于这类厂址,直接放大标准反应谱作为抗震裕度地震是不恰当的。对于采用二代加堆型的核电厂,选择了某个厂址特定SL-2级地震动与标准设计比较接近的核电厂址进行了分析,采用不同方法确定其抗震裕度地震,结果表明0.3g标定的NUREG0098中值谱在平台段和长周期部分明显低于相同PGA水平的一致概率谱和设定地震谱,三者都能被0.3g标定的RG1.60谱所包络。考虑到中国运行电厂的抗震设计特点,为了评价核电厂实际抗震能力相对于厂址的抗震安全裕度,可以采用一致概率谱或设定地震谱;为了评价二代加运行核电厂实际抗震能力相对设计基准地震动的抗震安全裕度,建议采用给定PGA标定的RG1.60谱。  相似文献   

4.
在核电厂抗震设计过程中,结构的设计地震荷载首先是特定厂址地震安全性评价中给出的频域范围内的厂址包络设计谱,随后基于厂址多阻尼包络设计谱给出设计地震动时程,进而进行核电厂各抗震Ⅰ类厂房的结构响应分析.作为结构抗震分析,尤其是动力时程分析的输入数据,设计地震动时程对分析结果会有显著影响,因此设计地震动时程是否恰当直接影响核电厂的抗震分析.  相似文献   

5.
以郯庐地震带为研究实例,基于线性最小二乘法回归原理,采用多种组合方案统计得到多个b值与V4组合,选取最佳组合方案,确定郯庐地震带最优b值和V4值;同时使用概率地震危险性分析方法计算每个组合方案不同超越概率水平下的基岩水平峰值加速度,探讨了地震活动性参数b值和V4的不确定性对地震危险性分析结果的影响程度和规律。本研究方法和结论可供地震活动性分析和地震危险性评价研究时参考,对地震区划和工程场地地震安全性评价均有重要意义。  相似文献   

6.
我国核电厂厂址特定地震动特征分析   总被引:1,自引:0,他引:1  
本文介绍了我国核电厂地震安全性评价及抗震设计中涉及的法规、标准和导则中关于设计地震动参数确定的技术背景和要求.基于近些年来我国开展的核电厂厂址可行性研究阶段地震安全性评价工作的结果,分析了一些潜在厂址特定地震动反应谱特征及其与规范标准反应谱的差异,探讨了规范反应谱对我国核电厂工程的适用性问题.  相似文献   

7.
本文选取华北地震区作为研究区域,尝试利用空间光滑活动模型进行地震危险性评估.首先对研究区域进行划分网格,依据地震构造和地震空间分布特征建立地震构造模型,确定构造区特征参数(b值、M0、Mu、断层方位角及M-L关系等).采用考虑了地震构造背景的椭圆光滑过程的地震活动参数模型,计算各网格点的地震发生率.并利用网格源的地震危险性概率评价方法,由不同输入地震目录通过综合加权得到该区域50年超越概率10%的加速度峰值区划结果.该方法充分体现了地震活动的空间非均一性,尤其适用于发震构造不甚清晰的中强地震可能造成的地震危险性,避免了常规潜在震源区的划分.且评价方法简单快捷,为地震区划以及重大工程地震安全性评价工作提供了新的技术方法.  相似文献   

8.
为遵循和更好地理解概率安全分析技术在核安全领域的应用及相关法规政策,在核电厂工程场地地震安全性评价领域,基于地震地质事件的时空分布规律,讨论了概率论方法在地震安全性评价中的采样代表性、频率和时间序列分析的基本假设,提出核电厂地震安全性概率论评价方法存在值得进一步思考探讨之处,可能主要在于概率是相对固定值及其前提存在假设,可能的发展方向是结合地球动力学将概率当作一个变量处理。  相似文献   

9.
工程场地地震安全性评价工作及相关技术问题   总被引:11,自引:6,他引:5  
本文简单回顾了工程场地地震安全性评价工作的变迁与发展过程,探讨了几个关键的技术问题,分析了相关技术方法的发展与更新趋势。文中重点讨论了不同的地震影响量之间概率水平的一致性问题,同时对在设防水准的选取、地震危险性分析中的不确定性考虑、地震动衰减笑系的获取、地震动时程合成中的参数匹配、场地地震反应分析中的非线性处理、设计地震动确定等方面遇到的一些技术问题进行了分析,并且给出了对这些问题处理的一些看法和建议。  相似文献   

10.
目前,地震危险性分析主要有确定性和概率性方法,确定性方法主要是依据研究区内的地震构造和历史地震资料来确定最危险地震:概率方法是考虑场点若干年内超过某-地震动参数值的概率,提供具有概率含义的地震动参数.这两种方法都有其不足,为了更好的满足实际工程的抗震设防要求,设定地震方法被提出并得到应用.  相似文献   

11.
Seismic Hazard Assessment: Issues and Alternatives   总被引:3,自引:0,他引:3  
Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used interchangeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been proclaimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications.  相似文献   

12.
We present the basis for a method for estimating the return period of large and medium earthquakes that is independent of current deterministic and probabilistic approaches. The two standard techniques of seismic hazard assessment??probabilistic seismic hazard assessment (PSHA) and deterministic seismic hazard assessment (DSHA)??suffer from limited knowledge of seismic prehistory. A further weakness of PSHA is its requirement of homogeneous seismic activity within a seismic zone. Moreover, PSHA and DSHA were developed for seismically active areas and, thus, cannot reliably be used in areas of medium and low activity. In this paper we propose the combined use of geodetic strain rate data and the seismic moment data set determined for past seismic events. This combination represents a new and independent approach to estimation of future seismic activity. Using a modified version of Kostrov??s (Phys Solid Earth 1:23?C40, 1974) equation and the catalogue of seismic moments, the minimum return period of the strongest earthquakes of a source area is estimated.  相似文献   

13.
14.
Modern earthquake ground motion hazard mapping in California began following the 1971 San Fernando earthquake in the Los Angeles metropolitan area of southern California. Earthquake hazard assessment followed a traditional approach, later called Deterministic Seismic Hazard Analysis (DSHA) in order to distinguish it from the newer Probabilistic Seismic Hazard Analysis (PSHA). In DSHA, seismic hazard in the event of the Maximum Credible Earthquake (MCE) magnitude from each of the known seismogenic faults within and near the state are assessed. The likely occurrence of the MCE has been assumed qualitatively by using late Quaternary and younger faults that are presumed to be seismogenic, but not when or within what time intervals MCE may occur. MCE is the largest or upper-bound potential earthquake in moment magnitude, and it supersedes and automatically considers all other possible earthquakes on that fault. That moment magnitude is used for estimating ground motions by applying it to empirical attenuation relationships, and for calculating ground motions as in neo-DSHA (Zuccolo et al., 2008). The first deterministic California earthquake hazard map was published in 1974 by the California Division of Mines and Geology (CDMG) which has been called the California Geological Survey (CGS) since 2002, using the best available fault information and ground motion attenuation relationships at that time. The California Department of Transportation (Caltrans) later assumed responsibility for printing the refined and updated peak acceleration contour maps which were heavily utilized by geologists, seismologists, and engineers for many years. Some engineers involved in the siting process of large important projects, for example, dams and nuclear power plants, continued to challenge the map(s). The second edition map was completed in 1985 incorporating more faults, improving MCE??s estimation method, and using new ground motion attenuation relationships from the latest published results at that time. CDMG eventually published the second edition map in 1992 following the Governor??s Board of Inquiry on the 1989 Loma Prieta earthquake and at the demand of Caltrans. The third edition map was published by Caltrans in 1996 utilizing GIS technology to manage data that includes a simplified three-dimension geometry of faults and to facilitate efficient corrections and revisions of data and the map. The spatial relationship of fault hazards with highways, bridges or any other attribute can be efficiently managed and analyzed now in GIS at Caltrans. There has been great confidence in using DSHA in bridge engineering and other applications in California, and it can be confidently applied in any other earthquake-prone region. Earthquake hazards defined by DSHA are: (1) transparent and stable with robust MCE moment magnitudes; (2) flexible in their application to design considerations; (3) can easily incorporate advances in ground motion simulations; and (4) economical. DSHA and neo-DSHA have the same approach and applicability. The accuracy of DSHA has proven to be quite reasonable for practical applications within engineering design and always done with professional judgment. In the final analysis, DSHA is a reality-check for public safety and PSHA results. Although PSHA has been acclaimed as a better approach for seismic hazard assessment, it is DSHA, not PSHA, that has actually been used in seismic hazard assessment for building and bridge engineering, particularly in California.  相似文献   

15.
管道抗震设计规范有关地震作用的综述   总被引:2,自引:0,他引:2  
本文通过介绍中国、日本、美国、英国、挪威的相关管道抗震规范,阐述了目前管道应变设计和性能设计的理念、方法以及对地震作用输入的要求。通过比较各国管道抗震设计规范,保证震后管道维持其服务功能的抗震设计理念已经得到了全世界范围的认可。现在的管道设计正向性能设计的方向发展,并提出了两级抗震设防的方法。其中,第二级以管道不发生泄漏为抗震设防目标,对管道的地震安全性评价工作提出了更高的要求,管道设计需要的地震动和地面永久变形参数也越来越多。在目前管道工程的地震安全性评价工作中,存在概率方法和确定性方法这两种方法并举的局面。针对管道的抗液化和滑坡设计,地面永久位移可以利用分解的地震安全性评价概率方法得到。针对管道的抗断设计,断层未来位错量的估计方法现在仍以确定性方法为主,概率方法因为断层位错量沿着破裂带的分布较为复杂仍有待进一步研究。  相似文献   

16.
Uncertainty Analysis and Expert Judgment in Seismic Hazard Analysis   总被引:1,自引:0,他引:1  
The large uncertainty associated with the prediction of future earthquakes is usually regarded as the main reason for increased hazard estimates which have resulted from some recent large scale probabilistic seismic hazard analysis studies (e.g. the PEGASOS study in Switzerland and the Yucca Mountain study in the USA). It is frequently overlooked that such increased hazard estimates are characteristic for a single specific method of probabilistic seismic hazard analysis (PSHA): the traditional (Cornell?CMcGuire) PSHA method which has found its highest level of sophistication in the SSHAC probability method. Based on a review of the SSHAC probability model and its application in the PEGASOS project, it is shown that the surprising results of recent PSHA studies can be explained to a large extent by the uncertainty model used in traditional PSHA, which deviates from the state of the art in mathematics and risk analysis. This uncertainty model, the Ang?CTang uncertainty model, mixes concepts of decision theory with probabilistic hazard assessment methods leading to an overestimation of uncertainty in comparison to empirical evidence. Although expert knowledge can be a valuable source of scientific information, its incorporation into the SSHAC probability method does not resolve the issue of inflating uncertainties in PSHA results. Other, more data driven, PSHA approaches in use in some European countries are less vulnerable to this effect. The most valuable alternative to traditional PSHA is the direct probabilistic scenario-based approach, which is closely linked with emerging neo-deterministic methods based on waveform modelling.  相似文献   

17.
地震危险性概率分析(PSHA)是目前最广泛应用于地震灾害与风险性评估的方法。然而它在计算中却存在着一个错误:把强地面运动衰减关系(一个函数)的条件超越概率等同于强地面运动误差(一个变量)的超越概率。这个错误导致了运用强地面运动误差(空间分布特征)去外推强地面运动的发生(时间分布特征)或称之为遍历性假设,同时也造成了对PSHA理解和应用上的困难。本文推导出新的灾害计算方法(称之为KY-PSHA)来纠正这种错误。  相似文献   

18.
Modern earthquake loss models make use of earthquake catalogs relevant to the seismic hazard assessment upon seismicity and seismotectonic analysis. The main objective of this paper is to investigate a recently compiled catalog (National Institute of Meteorology or INM catalog: 412-2011) and to generate seismic hazard maps through classical probabilistic seismic hazard assessment (PSHA) and smoothed-gridded seismicity models for Tunisia. It is now established with the local earthquake bulletin that the recent seismicity of Tunisia is sparse and moderate. Therefore, efforts must be undertaken to elaborate a robust hazard analysis for risk assessment and seismic design purposes. These recommendations follow the recently published reports by the World Bank that describe the seismic risk in Tunis City as being beyond a tolerable level with an MSK intensity level of VII. Some attempts were made during the past two decades to assess the seismic hazard for Tunisia and they have mostly failed to properly investigate the historical and instrumental seismicity catalog. This limitation also exists for the key aspect of epistemic and random uncertainties impact on the final seismic hazard assessment. This study also investigates new ground motion prediction equations suitable for use in Tunisia. The methodology applied herein uses, for the first time in PSHA of Tunisia, seismicity parameters integrated in logic tree framework to capture epistemic uncertainties through three different seismic source models. It also makes use of the recently released version of OpenQuake engine; an open-source tool for seismic hazard and risk assessment developed in the framework of the Global Earthquake Model.  相似文献   

19.
Deterministic and probabilistic seismic hazard analyses should be complementary, in the sense that probabilistic analysis may be used to identify the controlling deterministic design‐level earthquake events, and more sophisticated models of these events may then be developed to account for uncertainties that could not have been included directly in the probabilistic analysis. De‐aggregation of the tentative uniform hazard spectra (UHS) in Hong Kong resulting from a probabilistic seismic hazard assessment (PSHA) indicates that strong and major distant earthquakes, rather than moderate local earthquakes, make the largest contribution to the seismic hazard level within the natural‐period range longer than 0.3 s. Ground‐motion simulations of controlling events located 90 and 340 km from Hong Kong, taking into account uncertainties in the rupture process, reveal that the tentative UHS resulting from the PSHA may have significantly underestimated the mid‐to‐long period components. This is attributed mainly to the adoption of double‐corner source‐spectrum models in the attenuation relationships employed in the PSHA. The results of the simulations indicate clearly that rupture directivity and rupture velocity can significantly affect the characteristics of ground motions, even from such distant earthquakes. The rupture‐directivity effects have profound implications in elongating the second corner period where the constant velocity intersects the constant displacement, thus increasing the associated displacement demand. However, demands for acceleration and velocity are found to be not sensitive to the presence of the directivity pulses. Ground pulses resulting from forward rupture directivity of distant earthquakes have longer predominant periods than the usual near‐fault directivity pulses. These long‐period pulses may have profound implications for metropolises, such as Hong Kong and others in Southeast Asia, having large concentration of high‐rise buildings. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号