首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silva  Adriana V. R.  Gary  Dale E.  White  Stephen M.  Lin  R. P.  de Pater  Imke 《Solar physics》1997,175(1):157-173
We present here the first images of impulsive millimeter emission of a flare. The flare on 1994 August 18 was simultaneously observed at millimeter (86 GHz), microwave (1-18 GHz), and soft and hard X-ray wavelengths. Images of millimeter, soft and hard X-ray emission show the same compact ( 8) source. Both the impulsive and the gradual phases are studied in order to determine the emission mechanisms. During the impulsive phase, the radio spectrum was obtained by combining the millimeter with simultaneous microwave emission. Fitting the nonthermal radio spectra as gyrosynchrotron radiation from a homogeneous source model with constant magnetic field yields the physical properties of the flaring source, that is, total number of electrons, power-law index of the electron energy distribution, and the nonthermal source size. These results are compared to those obtained from the hard X-ray spectra. The energy distribution of the energetic electrons inferred from the hard X-ray and radio spectra is found to follow a double power-law with slope 6–8 below 50 keV and 3–4 above those energies. The temporal evolution of the electron energy spectrum and its implication for the acceleration mechanism are discussed. Comparison of millimeter and soft X-ray emissions during the gradual phase implies that the millimeter emission is free-free radiation from the same hot soft X-ray emitting plasma, and further suggests that the flare source contains multiple temperatures.  相似文献   

2.
Usually the gyrosynchrotron emission of microwave bursts from electron populations with a power-law (PL) energy distribution has been considered under the assumption that the spectral index of the distribution is constant over a wide range of energies. Meanwhile, there is strong evidence, in particular from hard X-ray and -ray, but also from cm/mm wavelength radio observations, that in many solar flare events the spectrum of the emitting electrons is characterized by a significant hardening at energies above 100–500 keV. We present some examples of calculated microwave burst spectra at cm/mm wavelengths taking into account the above evidence. It is shown that a break in the energy spectrum of the PL electrons can indeed result in a spectral hardening sometimes observed in microwave bursts at frequencies above 10–30 GHz.  相似文献   

3.
The RS CVn binary stellar system HR 1099 is a source of both X-ray and radio flares. We present here a model of the system in which the two types of flare are produced by the same population of mildly-relativistic ( 10) electrons, injected into a coronal loop. After reviewing possible radiation mechanisms we conclude that, given the probable conditions in the flaring region, the radio emission is gyrosynchrotron radiation and the X-ray emission is thermal bremsstrahlung. The thermal X-ray source must lie in the stellar chromosphere, but the apparent absence of plasma absorption at radio frequencies indicates that the radio source is located high in the coronal loop. Using the relationships given by Dulk and Marsh (1982) for the radio emission from a power-law electron energy spectrum,N() ( - 1), we conclude that 3 7, with 30% of the electron population trapped in the radio source. Some implications of these results for one particular version of the model are discussed.  相似文献   

4.
We have observed 10 solar bursts during the thermal phase using the Haystack radio telescope at 22 GHz. We show that these high frequency flux observations, when compared with soft X-ray band fluxes, give useful information about the temperature profile in the flare loops. The microwave and X-ray band fluxes provide determinations of the maximum loop temperature, the total emission measure, and the index of the differential emission measure (q(T)/T = cT–1). The special case of an isothermal loop ( = ) has been considered previously by Thomas et al. (1985), and we confirm their diagnostic calculations for the GOES X-ray bands, but find that the flare loops we observed departed significantly from the isothermal regime. Our results ( = 1–3.5) imply that, during the late phases of flares, condensation cooling ( 3.5) competes with radiative cooling ( 1.5). Further, our results appear to be in good agreement with previous deductions from XUV rocket spectra ( 2–3).  相似文献   

5.
We evaluate the relationship between the hard X-ray photon spectrum and the flux of iron K emission in a thick-target electron bombardment model. Results are presented for various power-law hard X-ray spectra. We then apply these results to two events observed with the Hard X-Ray Burst Spectrometer and the K channel of the X-Ray Polychromator Bent Crystal Spectrometer on the Solar Maximum Mission satellite. For one of the events, on 29 March, 1980, at 09:18 UT, the K flux predicted for a thick-target non-thermal process is significant compared to the background fluorescent component, and the data are indeed consistent with an enhancement of the predicted amount. For the other event, on 14 October, 1980 at 06:09 UT, the hard X-ray spectrum is so steep that no significant Ka flux is predicted for this process, and no enhancement is seen. We conclude that the agreement between the predicted K flux and the observed magnitude of the K enhancement above the fluorescent background at the time of the large hard X-ray bursts lends support to a thick-target non-thermal interpretation of impulsive hard X-ray emission in solar flares.  相似文献   

6.
To compare mm-wave and X-ray diagnostics of solar flare plasma, five flares observed in 1980–1991 in Metsähovi at 22 and 37 GHz and with GOES, SMM, and GRO are studied. The first impulsive peak of the mm-wave bursts under investigation coincides in time with hard X-ray emission. The second gradual component in mm-wave emission coincides with the maximum of the soft X-ray emission measure. The bremsstrahlung mm-wave radiation from hot chromospheric plasma and gyrosynchrotron radiation driven by common population of superthermal electrons are calculated. It is shown that for mm-wave events with the first peak intensity 100 s.f.u., the thermal bremsstrahlung is more important than the gyrosynchrotron emission. The total energy of fast electrons deduced from the first peak of mm-wave bursts is one to two orders of magnitude less than that determined from the hard X-ray emission in the approximation of a thick-target nonthermal model. That can testify in favour of the hybrid thermal/nonthermal model proposed by Holman and Benka (1992). The emission measure and the energy of evaporated plasma using both mm-wave and soft X-ray data are also determined. For events investigated here the energy of evaporated chromospheric plasma is larger than the total energy of fast electron beams. We have concluded that, for evaporation, additional energy release in the chromosphere is needed. The possibility of such energy release in the framework of an advanced circuit model for solar flares is discussed.  相似文献   

7.
We analyze hard and soft X-ray, microwave and meter wave radio, interplanetary particle, and optical data for the complex energetic solar event of 22 July 1972. The flare responsible for the observed phenomena most likely occurred 20° beyond the NW limb of the Sun, corresponding to an occultation height of 45 000 km. A group of type III radio bursts at meter wavelengths appeared to mark the impulsive phase of the flare, but no impulsive hard X-ray or microwave burst was observed. These impulsive-phase phenomena were apparently occulted by the solar disk as was the soft X-ray source that invariably accompanies an H flare. Nevertheless essentially all of the characteristic phenomena associated with second-stage acceleration in flares - type II radio burst, gradual second stage hard X-ray burst, meter wave flare continuum (FC II), extended microwave continuum, energetic electrons and ions in the interplanetary medium - were observed. The spectrum of the escaping electrons observed near Earth was approximately the same as that of the solar population and extended to well above 1 MeV.Our analysis of the data leads to the following results: (1) All characteristics are consistent with a hard X-ray source density n i 108 cm–3 and magnetic field strength 10 G. (2) The second-stage acceleration was a physically distinct phenomenon which occurred for tens of minutes following the impulsive phase. (3) The acceleration occurred continuously throughout the event and was spatially widespread. (4) The accelerating agent was very likely the shock wave associated with the type II burst. (5) The emission mechanism for the meter-wave flare continuum source may have been plasma-wave conversion, rather than gyrosynchrotron emission.  相似文献   

8.
We study the spatial and spectral characteristics of the 3.5 to 30.0 keV emission in a solar flare of 9 May, 1980. We find that: (a) A classical thick target interpretation of the hard X-ray burst at energies E 10 keV implies that approximately all the electrons contained within the flare loop(s) have to be accelerated per second. (b) A thermal model interpretation does not fit the data, unless its characteristics are such that it does not represent an efficient alternative to the acceleration model. We thus conclude that: (c) Acceleration does take place during the early phase of the impulsive hard X-ray event, but substantial amount of the emission at low (<20 keV) energies is of thermal origin. (d) We show the evolution of the energy content in the flare volume, and find that the energy input requirements are such that 102 erg cm-3 s-1 have to be released within the flare structure(s), for a period of time comparable to that of the hard X-ray burst emission. We also point out that although the main flare component ( 90% of the soft X-ray emission) was confined to a compact magnetic kernel, there are evidences of interaction of this structure with a larger field structure connecting towards the leading portion of the active region, where secondary H brightenings were observed.  相似文献   

9.
We present the two-dimensional imaging observations of radio bursts in the frequency range 25–50 MHz made with the Clark Lake multifrequency radioheliograph during a coronal mass ejection event (CME) observed on 1984, June 27 by the SMM Coronagraph/Polarimeter and Mauna Loa K-coronameter. The event was spatially and temporally associated with precursors in the form of meter-decameter type III bursts, soft X-ray emission and a H flare spray. The observed type IV emission in association with the CME (and the H spray) could be interpreted as gyrosynchrotron emission from a plasmoid containing a magnetic field of 2.5 G and nonthermal electrons with a number density of 105 cm–3 and energy 350 keV.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

10.
Asymmetric magnetic field configurations in solar active regions hinder mildly relativistic electrons with magnetic moments suitable to produce microwave radiation from being trapped. Therefore the duration of stay of electrons in the microwave source region is much shorter (<0.2 s) than in the usually assumed trapping models. On this basis we construct a consistent model of hard X-ray correlated microwave bursts due to continuous injection of electrons into a pole field of an asymmetric magnetic loop (Figures 1 and 2). This resolves the discrepancy of the numbers of electrons needed to produce X-ray and radio emission.We compute gyrosynchrotron spectra with the assumption of conservation of the magnetic moment M in the microwave source. The consequence is an anticorrelation between the low frequency power index a of the microwave spectrum and the power index of the hard X-ray spectrum. In fact during the flare of May 18, 1972 increases with time while a is decreasing, so that +a= constant. Furthermore, it is shown that electrons with energies below 100 keV contribute significantly to the microwave radiation; they determine the low frequency spectrum completely.The model is able to explain the most often observed type C-spectra (Guidice and Castelli, 1975), but also flat spectra over one frequency decade.On leave from University of Berne, Institute of Applied Physics.  相似文献   

11.
A study has been made of the variation in hard (E 10 keV) X-radiation, H and microwave emission during the impulsive phase of solar flares. Analysis shows that the rise-time in the 20–30-keV X-ray spike depends on the electron hardness, i.e., t rise exp (0.87 ). The impulsive phase is also marked by an abrupt, very intense increase in H emission in one or more knots of the flare. Properties of these H kernels include: (1) a luminosity several times greater than the surrounding flare, (2) an intensity rise starting about 20–30 s before, peaking about 20–25 s after, and lasting about twice as long as the hard spike, (3) an effective diameter of 3000–6000 km for class 1 flares, representing less than 1/8-1/2 of the main flare, (4) a location lower in the chromosphere than the remaining flare, (5) essentially no expansion prior to the hard spike, (6) a position within 6000 km of the boundary separating polarities, usually forming on both sides of the neutral line near both feet of the same tube of force, (7) a shape often resembling isogauss contours of the photospheric field indicated on magnetograms and (8) total radiated energy less than l/50 that of the hard electrons. Correspondingly, impulsive microwave events are characterized by: (1) the detection of a burst at 8800 MHz for every X-ray spike ifthe number of electrons above 100 keV is greater than 1033, (2) great similarity in burst structure with 20–32 keV X-rays but only at f > 5000 MHz, (3) typical low frequency burst cutoff between 1400–3800 MHz, and (4) maximum emission at f > 7500 MHz. Finally the H, X-ray and microwave data are combined to present a picture of the impulsive phase consistent with the above observations.  相似文献   

12.
An impulsive flare October 24, 1969 produced two bursts with virtually identical time profiles of 8800 MHz emission and X-rays above 48 keV. The two spikes of hard X-rays correspond in time to the times of sharp brightening and expansion in the H flare. The first burst was not observed at frequencies below 3000 MHz. This cut off is ascribed to plasma cutoff above the low-lying flare.A model of the flare based on H observations at Big Bear shows that the density of electrons with energy above 10 keV is 5 × 107 if the field density is 1011. The observed radio flux would be produced by this electron distribution with the observed field of 200 G. The H emission accompanying the hard electron acceleration is presumed due to excitation of the field atoms by the hard electrons.  相似文献   

13.
Jan Kuijpers 《Solar physics》1989,121(1-2):163-185
An overview is given of the observations of stellar radio flares, defined as radio emission which is both variable in time and created by explosive releases of magnetic energy. The main sources of such flares are late-type Main-Sequence stars, classic close binaries, X-ray binaries, and pre-Main-Sequence stars.We summarize the interpretations of these observations in terms of the various incoherent and coherent emission mechanisms. The possible importance of a coherent emission process in electrostatic double layers is pointed out.We briefly indicate the diagnostic importance of radio emission for the flare process in classic and compact stars. In particular we discuss the possible production of radio flares from interactions between an accretion disk and the magnetic field of the central object.  相似文献   

14.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

15.
The H observations of a limb flare, which were associated with exceptional gamma-ray and hard X-ray emission, are presented and discussed. The good spatial and temporal resolution of the H data allow us to investigate the detailed structure of the elevated flare loops and the intensity variations of the loops, footpoints and surrounding chromosphere during each phase of the flare event. A delay time of 12 s was found between at least one of the hard X-ray (28–485 keV) peaks and corresponding H intensity maximum at a loop footpoint. A comparison is made between this event and another well-observed limb flare with many similar characteristics to seek evidence for the large difference in their levels of energy release.  相似文献   

16.
Radio-silent -ray flares are solar flares that lack any significant emission in the (non-thermal) radio wave band during their impulsive hard X-ray and -ray emission phases. Flares with extremely suppressed long-wavelength spectra have previously been reported by White et al. (1992) and have been discussed in different context by Hudson and Ryan (1995). A striking example of a radio-silent flare was observed by SMM during the onset of the 6 March 1989 energetic -ray flare. We argue that the absence of radio emission at wavelengths longer than microwave wavelengths is an indication of the compactness of the flare rather than that the flare did not exhibit non-thermal properties. Probably the flare site was restricted to altitudes above the photosphere in a newly emerging loop configuration lower than the equivalent altitude corresponding to an emission frequency of 1.4 GHz. This implies the presence of a dense and highly magnetized closed field configuration confining the electron component which causes the impulsive -ray continuum. Reconnection in such a configuration did not lead to open magnetic fields and streamer formation. Acceleration of particles in the and hard X-ray bursts was restricted to closed field lines. Thermal expansion of the loop system may subsequently lead to the generation of radially propagating blast waves in the solar corona which are accompanied by type II solar radio bursts and decimetre emissions. The emission during the onset of the flare was dominated by a continuum originating from electron bremsstrahlung at X-ray and -ray energies with only little evidence for the presence of energetic ions. It is, therefore, concluded that energetic electrons have been primary and not secondary products of the particle acceleration process.  相似文献   

17.
Pohjolainen  S.  Valtaoja  E.  Urpo  S.  Aurass  H. 《Solar physics》1997,173(1):131-149
Two small radio flares following the great gamma-ray burst on 11 June 1991 are studied. We analyse the different association of emission features at microwaves, decimeter waves, and soft and hard X-rays for the events. The first flare has well-defined emission features in microwaves and soft and hard X-rays, and a faint decimetric signature well after the hard X-ray burst. It is not certain if the decimetric event is connected to the burst features. The second event is characterized by an almost simultaneous appearance of hard X-ray burst maxima and decimetric narrowband drift bursts, but soft X-ray emission is missing from the event. With the exception of the possibility that the soft X-ray emission is absorbed along the way, the following models can explain the reported differences in the second event: (1) Microwave emission in the second event is produced by 150 keV electrons spiraling in the magnetic field relatively low in the corona, while the hard X-ray emission is produced at the beginning of the burst near the loop top as thick-target emission. If the bulk of electrons entered the loop, the low-energy electrons would not be effectively mirrored and would eventually hit the footpoints and cause soft X-ray emission by evaporation, which was not observed. The collisions at the loop top would not produce observable plasma heating. The observed decimetric type III bursts could be created by plasma oscillations caused by electron beams traveling along the magnetic field lines at low coronal heights. (2) Microwave emission is caused by electrons with MeV energies trapped in the large magnetic loops, and the electrons are effectively mirrored from the loop footpoints. The hard X-ray emission can come both from the loop top and the loop footpoints as the accelerated lower energy electrons are not mirrored. The low-energy electrons are not, however, sufficient to create observable soft X-ray emission. The type III emission in this case could be formed either at low coronal heights or in local thick regions in the large loops, high in the corona.  相似文献   

18.
Multiple moving magnetic structures in the solar corona   总被引:1,自引:0,他引:1  
We report the study of moving magnetic structures inferred from the observations of a moving type IV event with multiple sources. The ejection contains at least two moving radio emitting loops with different relative inclinations. The radio loops are located above multiple H flare loops in an active region near the limb. We investigate the relationship between the two systems of loops. The spatial, temporal and geometrical associations between the radio emission and near surface activities suggest a scenario similar to coronal mass ejection (CME) events, although no CME observations exist for the present event. From the observed characteristics, we find that the radio emission can be interpreted as Razin suppressed optically thin gyrosynchrotron emission from nonthermal particles of energy 100, keV and density 102–105 cm–3 in a magnetic field 2 G.  相似文献   

19.
Jordan  Stuart  Garcia  Adriana  Bumba  Vaclav 《Solar physics》1997,173(2):359-376
A time series of K3 spectroheliograms taken at the Coimbra Observatory exhibits an erupting loop on the east limb on July 9, 1982 in active region NOAA 3804. The Goddard SMM Hard X-Ray Burst Spectrometer (HXRBS) observations taken during this period reveal a hard X-ray flare occurring just before the loop eruption is observed, and SMS-GOES soft X-ray observations reveal a strong long-duration event (LDE) following the impulsive phase of the flare. A Solwind coronagram exhibits a powerful coronal mass ejection (CME) associated with the erupting loop. H flare and prominence observations as well as centimeter and decimeter radio observations of the event are also reviewed. A large, north–south-oriented quiescent prominence reported within the upper part of the CME expansion region may play a role in the eruption as well. The spatial and temporal correlations among these observations are examined in the light of two different current models for prominence eruption and CME activation: (1) The CME is triggered by the observed hard X-ray impulsive flare. (2) The CME is not triggered by a flare, and the observed soft X-ray flare is an LDE due to reconnection within the CME bubble. It is concluded that this event is probably of a mixed type that combines characteristics of models (1) and (2). The July 9 event is then compared to three other energetic CME and flare eruptions associated with the same active-region complex, all occurring in the period July 9 through September 4, 1982. It is noted that these four energetic events coincide with the final evolutionary phase of a long-lasting active-region complex, which is discussed in a companion paper (Bumba, Garcia, and Jordan, 1997). The paper concludes by addressing the solar flare myth controversy in the light of this work.  相似文献   

20.
We compare simultaneous high resolution soft X-ray and 6 cm images of the decay phase of an M3 X-ray flare in Hale Region 16413. The photographic X-ray images were obtained on an AS & E sounding rocket flown 7 November, 1979, and the 6 cm observations were made with the VLA. The X-ray images were converted to arrays of line-of-sight emission integrals and average temperature throughout the region. The X-ray flare structure consisted of a large loop system of length 1.3 arc min and average temperature 8 × 106 K. The peak 6 cm emission appeared to come from a region below the X-ray loop. The predicted 6 cm flux due to thermal bremsstrahlung calculated on the basis of the X-ray parameters along the loop was about an order of magnitude less than observed. We model the loop geometry to examine the expected gyroresonance absorption along the loop. We find that thermal gyroresonance emission requiring rather large azimuthal or radial field components, or nonthermal gyrosynchrotron emission involving continual acceleration of electrons can explain the observations. However, we cannot choose between these possibilities because of our poor knowledge of the loop magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号