首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Synoptic analysis of monthly and daily mean total ozone fields is carried out using ground-based (Roshydromet) and TOMS measurements. Large interannual changes in the evolution of the stratospheric polar vortex and the North Pacific anticyclone influence the formation and dynamics of the winter-spring ozone fields in the stratosphere of high northern latitudes. The analysis shows considerable variations in the direction of zonal ozone transport from the sector of ozone inflow from low latitudes and accumulation in the Far East depending on the winter polar stratosphere temperature and the quasi-biennial oscillation (QBO) phase. In years with the easterly QBO phase and the warm polar stratosphere, ozone at the end of winter is transported to northeastern Canada and Atlantic. In years with the easterly phase and cold polar stratosphere, ozone transport is directed to northern Eurasia. These characteristics will be verified on extensive observational data.  相似文献   

2.
热带平流层臭氧准两年周期振荡的特征及数值模拟   总被引:19,自引:1,他引:19  
利用HALOE的观测资料、对热带地区平流层臭氧垂直分布的年际变化及其准两年周期振荡(QBO)进行研究,并同赤道上空平均的纬向风场的准两年周期振荡进行了模拟研究。资料分析结果表明,平流层臭氧浓度高值区的位置在南北方向上和垂直方向上的有明显的准两年周期,臭氧浓度高值中心的南北移动和上下移动又引起局地臭氧总量的周期性变化和准两年周期振荡南北半球不对称。而臭氧浓度中心位置的准两年周期变化与赤道上空平均纬向风的准两年周期振荡密切相关。资料分析还表明,赤道上空平流层中臭氧浓度QBO的位相随高度变化多次。模拟试验表明,纬向风QBO引起垂直经圈环流的变化,在平流层有三对余差环流圈。它们对O3在不同纬度和高度的输送是引起O3准两年周期振荡的重要动力原因。其中,余差环流在平流层中层(25-35km)的环流圈起着重要的作用。  相似文献   

3.
On the basis of total column ozone (TO) data obtained in the period of 1957–2007 at 10 ground-based European stations, characterized by long and highly reliable measurements, the effects of the quasi-biennial oscillation (QBO) and 11-year solar cycle (11-year SC), manifesting in TO are investigated. The results of comparative analysis of seasonal differences between different QBO/solar extremes convincingly demonstrate interrelation between the QBO and 11-year SC effects. It is shown that solar activity modulates the phase of the QBO effect so that the quasi-biennial TO signals during solar maximum and solar minimum are nearly in opposite phase. It is also demonstrated that isolated under permanent conditions of solar minimum or solar maximum the QBO effects in TO have the time scale of about 20 months. Solar modulation of the QBO effect makes the QBO a conductor of the solar cycle impact on TO over Europe. The mechanism of influence of the 11-year SC on the QBO and probably includes its impact on the QBO amplitude in the equatorial lower stratosphere, mainly through weakening of the equatorial easterlies during solar maximum.  相似文献   

4.
The analysis of external factors, which are most significant for the formation of the monthly mean total ozone (TO) field and ozone transport over the Russian Federation, based on observation data obtained from about 30 ground-based stations of the ozonometric network averaged over a year, December through March and June through August, over five climatic regions, is considered. Performed spectrum and discriminant analysis allowed obtaining quantitative estimates of the impact of the Arctic Oscillation, deviation of the winter temperature of the lower polar stratosphere, quasi-biennial oscillations (QBO), 11-year solar cycle, El Niño-Southern Oscillation (ENSO) on the TO and to assess the regional differences in the effects of these factors. In December–March, in the years with a negative Arctic Oscillation phase, warm stratosphere, and the easterly QBO phase (QBO-E), the ozone content increases significantly relative to the opposite phases of oscillations on average by 35, 28, and 26 Dobson units (DU), respectively. The spectra, similar to the discriminant function, demonstrate strong influence of the 11-year solar cycle and QBO on the TO even in the summer months, while the QBO is more pronounced in the eastern part of the Russian Federation. The ENSO effect was not singled out against the general “noisy” background of the cold six-month period, when many atmospheric processes become active: however, during the summer months, in warm periods of the ENSO, the TO, at the 97% significance level, increases over most of the Russian area. The rest of the obtained results are significant at the 95–99.9% level.  相似文献   

5.
1. Introduction The quasi-biennial oscillation (QBO) of the mean zonal wind in the equatorial stratosphere was discov- ered by Reed et al. (1961) and Veryard and Ebdon (1961). Later, Funk and Garnham (1962) and Ra- manathan (1963) were the first to descri…  相似文献   

6.
Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002?C2007 at Thumba (8.5°N, 77°E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100?km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20?C100?km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone, temperature and winds simultaneously for the first time over this latitude. These observations provided a unique opportunity to explore long-period oscillations in chemistry, dynamics and thermal structure of the middle atmosphere simultaneously.  相似文献   

7.
Using the longest and most reliable ozonesonde data sets grouped for four regions (Japan, Europe, as well as temperate and polar latitudes of Canada) the comparative analysis of regional responses of ozone, temperature, horizontal wind, tropopause and surface pressure on the equatorial quasi-biennial oscillation (QBO effects), manifesting in opposite phases of the 11-year solar cycle (11-yr SC) was carried out. The impact of solar cycle is found to be the strongest at the Canadian Arctic, near one of two climatological centres of polar vortex, where in solar maximum conditions the QBO signals in ozone and temperature have much larger amplitudes, embrace greater range of heights, and are maximized much higher than those in solar minimum conditions. The strengthening of the temperature QBO effect during solar maxima can explain why correlation between the 11-yr SC and polar winter stratospheric temperature is reversed in the opposite QBO phases. At the border of polar vortex the 11-yr SC also modulates the QBO effect in zonal wind, strengthening the quasi-biennial modulation of polar vortex during solar maxima that is associated with strong negative correlation between stratospheric QBO signals in zonal wind and temperature. Above Japan the QBO effects of ozone, temperature, and zonal wind, manifesting in solar maxima reveal the downward phase dynamics, reminding similar feature of the zonal wind in the equatorial stratosphere. Above Europe, the QBO effects in solar maxima reveal more similarity with those above Japan, while in solar minima with the effects obtained at the Canadian middle-latitude stations. It is revealed that the 11-yr SC influences regional QBO effects in tropopause height, tropopause temperature and surface pressure. The influence most distinctly manifest itself in tropopause characteristics above Japan. The results of the accompanying analysis of the QBO reference time series testify that in the period of 1965–2006 above 50-hPa level the duration of the QBO cycle in solar maxima is 1–3 months longer than in solar minima. The differences are more distinct at higher levels, but they are diminished with lengthening of the period.  相似文献   

8.
Ozone mixing ratios observed by the Bordeaux microwave radiometer between 1995 and 2002 in an altitude range 25–75 km show diurnal variations in the mesosphere and seasonal variations in terms of annual and semi-annual oscillations (SAO) in the stratosphere and in the mesosphere. The observations with 10–15 km altitude resolution are presented and compared to photochemical and transport model results.Diurnal ozone variations are analyzed by averaging the years 1995–1997 for four representative months and six altitude levels. The photochemical models show a good agreement with the observations for altitudes higher than 50 km. Seasonal ozone variations mainly appear as an annual cycle in the middle and upper stratosphere and a semi-annual cycle in the mesosphere with amplitude and phase depending on altitude. Higher resolution (2 km) HALOE (halogen occultation experiment) ozone observations show a phase reversal of the SAO between 44 and 64 km. In HALOE data, a tendancy for an opposite water vapour cycle can be identified in the altitude range 40–60 km.Generally, the relative variations at all altitudes are well explained by the transport model (up to 54 km) and the photochemical models. Only a newly developed photochemical model (1-D) with improved time-dependent treatment of water vapour profiles and solar flux manages to reproduce fairly well the absolute values.  相似文献   

9.
青藏高原平流层臭氧和气溶胶的变化趋势研究   总被引:2,自引:1,他引:2  
通过分析SAGEⅡ资料,发现青藏高原平流层臭氧存在递减趋势,15—50 km臭氧的变化对臭氧总量变化贡献最大,其中25—50 km和15—25 km两层的贡献大致相当。通过青藏高原和中国东部地区平流层臭氧变化的对比,清楚地看出:两地臭氧总量变化的差异主要是由于在15—25 km臭氧变化不同所致。5—7月臭氧变化趋势的情况与年平均的变化类似,两地臭氧变化的差异主要在平流层低层,即15—25 km。青藏高原平流层气溶胶面密度的时间变化序列显示:大的火山喷发对青藏高原平流层气溶胶具有重要影响,其影响可持续6年左右。从1997年至今,青藏高原18—25 km气溶胶面密度增加,最大的增长出现在23 km,每年大约增长4%—5%。而在16—17 km气溶胶的面密度出现减少趋势。与此同时,在37 km以下,青藏高原的温度出现递减的趋势,而且其递减速度比中国东部地区快;在37—50 km,温度出现增加的趋势,青藏高原的增温也比中国东部地区快。青藏高原平流层低层气溶胶的增加和温度的降低都将增强该区域非均相反应的作用。  相似文献   

10.
准两年振荡对大气中微量气体分布的影响   总被引:11,自引:5,他引:6  
张弘  陈月娟  吴北婴 《大气科学》2000,24(1):103-110
NCAR的包含化学、辐射、动力相互作用的两维模式(SOCRATES)移植回国后进行了初步的模拟试验,用以研究某些对环境问题重要的微量气体的化学、辐射、动力传输过程。在不考虑极地平流层云和气溶胶表面非均相化学等情况下,模式积分多年,计算结果稳定,模拟的风场、温度场显示出正常的季节变化,模拟的微量气体分布与卫星实测资料对照,结果也比较一致。为了探讨热带平流层风场的准两年周期振荡(QBO)对平流层微量气体分布的影响,我们做了QBO强迫的数值试验,即在模式中加入QBO强迫,并与不考虑QBO强迫的模拟结果对比。结果表明,QBO与其相关的次级环流所引起动力输送的变化,使平流层微量气体分布发生变化。  相似文献   

11.
In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.  相似文献   

12.
利用东亚清洁背景站近地面臭氧观测资料,结合风场和降水资料,分析东亚各地区臭氧的多年季节变化特征,并探讨东亚太平洋地区臭氧的季节和年际变化与季风的关系以及影响近地层臭氧的主要因子。结果表明:东亚大部分地区与北半球背景站观测一致,近地层臭氧季节变化表现为春季最高、夏季最低的特征;但在东亚中纬度33~43°N,臭氧表现为夏季最高,而在东亚20°N以南地区臭氧则表现为冬末、春初最高。东亚太平洋沿岸近地面臭氧的季节变化主要受东亚冬、夏季风环流的季节变化控制。该地区不同纬度上春季峰值出现时间的差异与亚洲大陆春季不同时期污染物输送路径的差异有关。对东亚太平洋沿岸对流层顶附近位势涡度、高空急流和垂直环流季节变化的分析表明,冬春季可能是平流层向对流层输送的最强期,对近地面臭氧贡献最大。初夏至秋季(5-11月),平流层向对流层输送较弱,对近地面臭氧贡献较小。东亚太平洋地区夏季风爆发的时间和强度以及季风环流型的年际差异是导致该地区春、夏季臭氧年际变化的主要原因;而季风降水和云带位置以及平流层一对流层交换是造成臭氧年际变化的其他原因。  相似文献   

13.
Effects of the Tibetan Plateau on total column ozone distribution   总被引:4,自引:0,他引:4  
The relatively low total column ozone (TCO) above the Tibetan Plateau (TP) observed in summer is only partly due to the thinness of the atmospheric column. In this paper the effect of the TP on the TCO is further investigated using satellite data [Total Ozone Mapping Spectrometer (TOMS) ozone column and Stratospheric Aerosol and Gas Experiment II (SAGE II) ozone profiles], ECMWF ERA-40 reanalysis data and a 3-D chemistry-climate model (CCM). It is found that the low TCO over the TP is also closely related to large-scale uplift and descent of isentropic surfaces implied by seasonal and longitudinal variations in the tropopause height. The variations in tropopause height, with a maximum in summer, can be driven by various processes including convective activity, air expansion as well as the monsoon system. While previous studies have showed an important role of troposphere-to-stratosphere transport in contributing to the observed low ozone column over the TP, the mechanism revealed in this study is an alternative amendment to the causes of the TCO low over the TP. It is also found that the monsoon anticyclone circulation induces an isentropic transport of trace gases from high latitudes towards the TP in the lower stratosphere and hence modifies tracer distributions. For the vertical distribution of ozone, the modulation by the TP is most significant below ∼20 km, that is, in the upper troposphere and lower stratosphere (UTLS). The smaller differences in NO x between Eastern TP and TP compared to large dynamically caused differences in ozone and methane imply the TCO low over the TP is mainly due to transport processes rather than chemistry.  相似文献   

14.
Summary Umkehr observations taken during the 1957–2000 period at 15 stations located between 19 and 52° N have been reanalyzed using a significantly improved algorithm-99, developed by DeLuisi and Petropavlovskikh et al. (2000a,b). The alg-99 utilizes new latitudinal and seasonally dependent first guess ozone and temperature profiles, new vector radiative transfer code, complete aerosol corrections, gravimetric corrections, and others. Before reprocessing, all total ozone values as well as the N-values (radiance) readings were thoroughly re-evaluated. For the first time, shifts in the N-values were detected and provisionally corrected. The re-evaluated Umkehr data set was validated against satellite and ground based measurements. The retrievals with alg-99 show much closer agreement with the lidar and SAGE than with the alg-92. Although the latitudinal coverage is limited, this Umkehr data set contains ∼ 44,000 profiles and represent the longest (∼ 40 years) coherent information on the ozone behavior in the stratosphere of the Northern Hemisphere. The 14-months periods following the El-Chichon and the Mt. Pinatubo eruptions were excluded from the analysis. Then the basic climatological characteristics of the vertical ozone distribution in the 44–52° N and more southern locations are described. Some of these characteristics are not well known or impossible to be determined from satellites or single stations. The absolute and relative variability reach their maximum during winter–spring at altitudes below 24 km; the lower stratospheric layers in the middle latitudes contain ∼ 62% of the total ozone and contribute ∼ 57% to its total variability. The layer-5 (between ∼ 24 and 29 km) although containing 20% of the total ozone shows the least fluctuations, no trend and contributes only ∼ 11% to the total ozone variability. Meridional cross-sections from 19 to 52° N of the vertical ozone distribution and its variability illustrate the changes, and show poleward-decreasing altitude of the ozone maximum. The deduced trends above 33 km confirm a strong ozone decline since the mid-1970s of over 5% per decade without significant seasonal differences. In the mid-latitude stations, the decline in the 15–24 km layer is nearly twice as strong in the winter-spring season but much smaller in the summer and fall. The effect of including 1998 and 1999 years with relatively high total ozone data reduces the overall-declining trend. The trends estimated from alg-99 retrievals are statistically not significantly different from those in WMO 1998a; however, they are stronger by about 1% per decade in the lower stratosphere and thus closer to the estimates by sondes. Comparisons of the integrated ozone loss from the Umkehr measurements with the total ozone changes for the same periods at stations with good records show complete concurrence. The altitude and latitude appearances of the long-term geophysical signals like solar (1–2%) and QBO (2–7%) are investigated. Received April 12, 2001 Revised September 19, 2001  相似文献   

15.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

16.
陈权亮  高国路  李扬 《大气科学》2022,46(5):1198-1208
深对流能够向上对流层—下平流层(UTLS)输送大量水汽和污染物,对对流层顶的辐射平衡、平流层的臭氧恢复以及全球气候变化都有着重要的影响。近年来,一系列重要的观测事实发现,青藏高原和亚洲季风区是对流层向平流层物质输送(TST)的重要窗口。本文介绍了近年来取得的一些主要进展和成果,包括:(1)通过卫星观测在青藏高原—亚洲季风区上空发现水汽、气溶胶的极大值区和臭氧的极小值区;(2)深对流活动的主要观测途径和通过卫星观测识别深对流的方法;(3)青藏高原深对流向平流层物质输送的物理过程;(4)青藏高原深对流与亚洲季风区、热带海洋地区深对流的结构差异以及不同环境场对深对流物质输送过程的影响。  相似文献   

17.
北半球冬季行星波的传播及其输运作用   总被引:20,自引:0,他引:20  
利用变换欧拉平均方程讨论了行星波动力学。观测和模拟结果都表明,在北半球冬季准定常行星波的经向传播存在两支波导。一支为高纬度波导,另一支则为低纬度波导。这些结果与理论分析相当一致。通过对EP通量进一步的研究表明,平流层爆发性增温是沿高纬度波导传播的异常行星波与平均气流相互作用的结果。而热带风场的准两年周期振荡(QBO)是低纬度平流层下层大气纬向平均流的一个重要年际变化,它可以影响行星波沿低纬度波导的传播;此外,由一个行星波一平均流耦合模式模拟的结果表明,这个热带风场的变化还可以通过波流相互作用调制行星波沿高纬度波导的传播。 行星波对臭氧的输运作用在文中也进行了分析。行星波强迫出的剩余平均环流表明,耗散的行星波有强的输运作用;向北的涡动热量输送可以强迫出一个正的输运环流,其在低纬度上升并在高纬度下沉。同时研究还表明,热带风场的QBO对行星波传播的调制对输运环流也有重要影响,模式结果表明,在QBO的东风位相期间行星波引起的输运作用明显增强,其结果可用于解释平流层高纬度臭氧的年际变化。  相似文献   

18.
青藏高原上空气溶胶含量的分布特征及其与臭氧的关系   总被引:7,自引:5,他引:2  
采用1991年10月—2005年11月的HALOE资料,分析了青藏高原(27°~40°N,75°~105°E)上空气溶胶数密度、体积密度、面积密度的分布和变化特征,探讨了它们与臭氧的关系,并且与同纬度带中国东部地区(107°~122°E,27°~40°N)、北太平洋(170°E~170°W,27°~40°N)上空进行了对比。结果表明:高原上空气溶胶的体积密度、面积密度受Pinatubo火山喷发的影响主要发生在1991—1995年,然而气溶胶数密度受火山影响则不如前二者明显;高原上空气溶胶在对流层顶附近存在一个极大值区,在夏季该极大值区位于对流层顶下方(约120 hPa),而其他季节则位于对流层顶上方(约100hPa);青藏高原、中国东部地区、北太平洋三地上空气溶胶数密度的差异主要出现在60 hPa以下的气层,夏季差异最突出,高原上120 hPa附近的气溶胶数密度约为平原上的1.8倍,约为海洋上的5.5倍;在高原上空对流层顶附近以及平流层低层,气溶胶数密度与臭氧体积混合比呈很好的负相关关系,而在20 hPa以上则有明显的正相关关系;对比三地上空气溶胶与臭氧的关系,得到在对流层顶附近及平流层低层气溶胶在高原和平原上空与臭氧的变化呈很好的负相关,其中以高原上空的负相关关系更好,但是在海洋上空气溶胶和臭氧的相关不明显。而在20 hPa以上气层中,三地上空的气溶胶与臭氧的变化都具有很好的正相关关系。  相似文献   

19.
根据Dobson和TOMS资料分析北京和昆明大气臭氧总量变化特征   总被引:11,自引:0,他引:11  
用约20年 Dobson和TOMS资料来分析北京(39.93°N,116.40°E)和昆明 (25.02°N,102.68°)两地大气臭氧总量的变化特征,结果表明:(1)在1979-2000年间北京大气臭氧长期变化趋势是-0.642 DU/年,而昆明在1980-2000年间的趋势是-0.009 DU/年;(2)北京和昆明两地大气臭氧都有很强的季节内变化(尤其冬季更强),与季节性变化强度相当;(3)在北京和昆明,由记录较短的大气臭氧资料分析得到的长期变化趋势,与较长记录得到的结果有显著差异;(4)在北京(中纬度)和昆明(低纬度)大气臭氧都有显著的准两年振荡信号;(5)两个站点大气臭氧的年际变化主要由长期趋势项和准两年振荡信号组成;(6)Dobson仪测量得到的臭氧总量与TOMS资料非常一致。  相似文献   

20.
利用探空资料验证GOME卫星臭氧数据   总被引:2,自引:0,他引:2       下载免费PDF全文
利用1996年3月-2003年6月部分时段拉萨、西宁、北京3个站的臭氧探空资料验证了GOME(Global Ozone Monitoring Experiment)卫星臭氧廓线及对流层臭氧柱总量。对比结果表明:在对流层中下层,拉萨和西宁两地GOME与探空的平均偏差小于5%,北京地区平均偏差小于10%;在对流层上层/平流层下层,拉萨和西宁平均偏差小于10%,北京小于20%;在平流层中上层3个站的平均偏差均小于5%。在对流层上层/平流层下层区域,GOME与臭氧探空的平均偏差在北京明显高于拉萨和西宁。3个地区对流层柱总量的平均偏差都在10%以内,表明该资料可用于研究我国对流层臭氧总量的变化规律。同时段的GOME最低层(0~2.5km)月平均臭氧浓度对比结果显示,GOME结果同地面臭氧观测值有很好的相关性,GOME臭氧浓度反映了拉萨、瓦里关、临安地面臭氧浓度的主要变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号