首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The digestive gland and gills of the mussel Crenomytilus grayanus extracted from three locations — (i) sampled from a clean and (ii) polluted site and (iii) transplanted from the nonpolluted to polluted site - were analysed for antioxidant enzymes (superoxide dismutase, catalase, glutathione reductase), total oxyradical scavenging capacity and levels of lipid peroxidation products (malondialdehyde, conjugated dienes and lipofuscin). Perturbation of redox status was found in both digestive gland and gill tissues of mussels living in the polluted area. As the activities of superoxide dismutase and catalase were 1.2–3 times higher, the total oxyradical scavenging capacity was lower by 20–35% and the levels of lipid peroxidation products were 2–7 times higher compared to mussels from the reference site. In transplanted mussels, the lipid peroxidation process in both tissues was significantly stimulated (the level of conjugated dienes was increased 1.7–2.5-fold; malondialdehyde and lipofuscin contents were increased 3.5–5-fold) and the total oxyradical scavenging capacity fell by 50–70%. In addition, the transplantation generally resulted in transient and variable responses of antioxidant enzymes for both tissues. Complex response-behaviour of the antioxidant enzymes strongly points to the necessity of employing a combined approach that takes into account activities of antioxidant enzymes and the total oxyradical scavenging capacity, as well as measurement of oxidative damage (e.g., lipid peroxidation) to evaluate the physiological health of molluscs.  相似文献   

2.
海水酸化暴露可对海洋生物产生多层面的影响。本研究以潮间带野生与潮下带养殖长牡蛎(不同生境背景)的不同组织(鳃、外套膜及消化腺)为研究对象,分析在室内调控p CO2模拟海水酸化暴露条件下,其基础代谢活动、能量代谢以及氧化应激相关指标的变化情况。结果显示:海水酸化暴露后,两种长牡蛎(Crassostrea gigas)的基础代谢过程均受到了一定抑制作用且受影响程度差异明显。潮间带野生与潮下带养殖长牡蛎的关键生理过程(能量代谢及氧化应激)对海水酸化暴露存在不同的响应变化,表明两种长牡蛎应对海水酸化的调节机制可能存在差异。依据PLS-DA分析结果显示,在所有生理指标中,对样本的差异贡献较高(VIP值1)的指标为:SDH、AST、ATPase、ATP含量、糖原含量、CAT、GST及SOD,表明海水酸化暴露后,在两种长牡蛎的3种组织中上述指标的响应变化程度更大。综合评价分析多个生理指标的整体变化揭示:在海水酸化暴露条件下,潮间带野生长牡蛎比潮下带养殖长牡蛎对海水酸化的生理响应更为剧烈;相比于鳃及消化腺组织,长牡蛎外套膜组织可能受影响更大。  相似文献   

3.
Intertidal blue mussels, Mytilus edulis, experience hypoxia reoxygenation during tidal emersion and resubmersion cycles, and this is often suggested to represent a major stress for the animals, especially for their respiratory tissues, the gills. We exposed mussels to experimental short and prolonged anoxia and subsequent reoxygenation and analyzed the respiratory response in excised gill tissue and the effects of treatment on reactive oxygen species (mainly ROS: superoxide anion, O2·− and hydrogen peroxide, H2O2), formation using live imaging techniques and confocal microscopy. Our aim was to understand if this “natural stress” would indeed produce oxidative damage and whether antioxidant defenses are induced under anoxia, to prevent oxidative damage during reoxygenation. Exposure to declining pO2 in the respiration chamber caused an increase of gill metabolic rate between 21 and 10 kPa, a pO2 range in which whole animal respiration is reported to be oxyregulating. Exposure of the animals to severe anoxia caused an onset of anaerobiosis (succinate accumulation) and shifted high and low critical pc values (pc1: onset of oxyregulation in gills, pc2: switch from oxyregulation to oxyconformity) to higher pO2. Concentrations of both ROS decreased strongly during anoxic exposure of the mussels and increased upon reoxygenation. This ROS burst induced lipid peroxidation in the mantle, but neither were protein carbonyl levels increased (oxidative damage in the protein fraction), nor did the tissue glutathione concentration change in the gills. Further, analysis of apoptosis markers indicated no induction of cell death in the gills. To our knowledge, this is the first paper that directly measures ROS formation during anoxia reoxygenation in mussels. We conclude that hypoxia tolerant intertidal mussels do not suffer major oxidative stress in gill and mantle tissues under these experimental conditions.  相似文献   

4.
A laboratory study was carried out exposing mussels (Mytilus sp.) to linear alkylbenzene sulphonate (LAS) (6 mg litre−1), Cd (0.05 mg litre−1) and LAS plus Cd at the same concentrations. The aim was to assess the use of several histopathological and biochemical indices as potential biomarkers of the impact of these xenobiotics in the digestive gland of molluscs. Treated mussels actively accumulated Cd in the digestive gland compared with controls (p 0.01), the highest levels occurring after 30 days of exposure in the group treated with Cd plus LAS. Among several histological alterations screened in digestive gland tissues the thickness of digestive tubules in Cd treated animals decreased more markedly (p 0.01) than in LAS exposed mussels. As for biochemical parameters, the investigated antioxidant enzyme activities, superoxide dismutase (SOD), catalase, DT-diaphorase and glutathione peroxidase (GPX) did not show any significant induction due to these xenobiotics. However, a slight decrease of the antioxidant defences of the animals was detected after 30 days of exposure to contaminants.  相似文献   

5.
Biological effects of environmental pollution, mainly related to presence of PAHs, were assessed in mussels Mytilus galloprovincialis caged in Priolo, an anthropogenically-impacted area, and Vendicari, a reference site, both located along the eastern coastline of Sicily (Italy). PAHs concentration and histopathological changes were measured in digestive gland tissues. Expression of cytochrome P4504Y1 (CYP4Y1) and glutathione S-transferase (GST), indicative of xenobiotic detoxification, and activity of catalase (CAT) as oxidative stress index, were evaluated.The results show a direct correlation between the high concentrations of PAHs in digestive glands of mussels from Priolo and the significantly altered activity of phase I (P < 0.001) and phase II (P < 0.0001) biotransformation enzymes, along with increased levels of CAT activity (P < 0.05). These findings show the enhancement of the detoxification and antioxidant defense systems. The mussel caging approach and selected biomarkers demonstrated to be reliable for the assessment of environmental pollution effects on aquatic organisms.  相似文献   

6.
Metals are known to influence lipid peroxidation and oxidative status of marine organisms. Hydrothermal vent mussels Bathymodiolus azoricus live in deep-sea environments with anomalous conditions, including high metal concentrations. Although B. azoricus are aerobic organisms they possess abundant methano and thioautotrophic symbiotic bacteria in the gills. The enzymatic defences (superoxide dismutase (SOD), catalase (CAT), total glutathione peroxidase (Total GPx) and selenium-dependent glutathione peroxidase (Se–GPx)) and lipid peroxidation were determined in the gills of B. azoricus exposed to Cd (0.9 μM), Cu (0.4 μM) and Hg (0.1 μM) with different times of exposure. The experiments were performed in pressurized containers at 9 ± 1 °C and 85 bars.Results show that vent mussels possess antioxidant enzymatic protection in the gills. Cd and Cu had an inhibitory effect in the enzymatic defence system, contrarily to Hg. These enzymatic systems are not completely understood in the B. azoricus, since reactive oxygen species might be produced through other processes than natural redox cycling, due to hydrogen sulphide and oxygen content present. Also the symbiotic bacteria may play an important contribution in the antioxidant protection of the gills.  相似文献   

7.
Biochemical characterization of cholinesterase activity (ChE) was carried out on the Antarctic scallop Adamussium colbecki collected in winter 2000 from Campo Icaro (Ross Sea, Antarctica) in order to increase its suitability as a sentinel organism for monitoring the Antarctic environment. The digestive gland, gills and adductor muscle were investigated for substrate specificity and inhibitors sensitivity using acetylthiocholine iodide (ASCh) and butyrylthiocholine iodide (BSCh) as substrates and tetra (monoisopropyl)pyrophosphor-tetramide (Iso-OMPA), 1,5-bis(4-allyldimethylammoniumphenyl)-penthan-3-one dibromide (BW284c51) and the insecticide chlorpyrifos as inhibitors. Effect of in vivo exposure to ZnCl2 was also investigated. All the tissues expressed ChE activity (gill > adductor muscle > digestive gland) and low substrates specificity throughout the hydrolysis of both ASCh and BSCh substrates. Partial (25–29%) and total inhibition (100%) of ChE activity in gills was demonstrated following in vitro incubation with Iso-OMPA and BW284c51 (3 mM), respectively. Concentration-dependent inhibition was also evident with chlorpyrifos in the range 10−4–10−10 M (IC50 10−6) while in vivo exposure to ZnCl2 did not seem to affect ChE activity in the scallop. The potential use of ChE in the A. colbecki as biomarker for monitoring water contamination in the marine Antarctic environment is discussed.  相似文献   

8.
原油污染对栉孔扇贝抗氧化酶活性的影响   总被引:2,自引:0,他引:2  
以原油水溶性成分(water soluble fraction of crude oil,WSF)为污染物,采用暴露实验法,研究了栉孔扇贝(Chlamys farreri)鳃和消化腺组织中超氧化物歧化酶(Superoxide Dismutase,SOD)和过氧化氢酶(Catalase,CAT)活性的变化.结果表明,WSF污染下,鳃和消化腺组织SOD和CAT酶活性随暴露时间增加一般表现为降低-升高-降低的趋势,酶活性达到最高的时间随浓度不同而变化.第1天时消化腺SOD在0.08 mg/L浓度下被诱导,而后随时间增加表现为抑制效应;浓度为0.21和0.88 mg/L时消化腺SOD酶活性被抑制,随暴露时间延长而活性增加.暴露时间为4d时,石油烃浓度在0.08和0.88 mg/L时鳃组织SOD酶活性均被抑制,而浓度为0.21 mg/L时被诱导.消化腺和鳃组织SOD可以作为扇贝被污染胁迫的指标.  相似文献   

9.
This study investigated the effects of pollution and its interaction with temperature on the oxidative status of the ribbed mussel Aulacomya atra in the southern Atlantic Patagonian coast. Animals were collected from four sites with different degree and type of human activity impact, during the summer and winter of 2011. Seawater chromium, copper, manganese, nickel and zinc concentrations were measured, as well as metal accumulation, lipid peroxidation, protein oxidation, reduced glutathione levels, and enzymatic activities of superoxide dismutase and glutathione-S-transferase in gills and digestive glands.Metal bioaccumulation and oxidative stress responses in both tissues were generally higher in mussels from harbor areas. Water temperature had a remarkable effect on gill SOD activity and protein oxidation during winter in mussels from all locations.Methodologically, we conclude that measuring both metal bioaccumulation and oxidative stress responses allowed for a more accurate assessment of the biological effects of metal present in seawater.  相似文献   

10.
Hydrothermal vent mussels are exposed continually to toxic compounds, including high metal concentrations and other substances like dissolved sulphide, methane and natural radioactivity. Fluctuations in these parameters appear to be common because of the characteristic instability of the hydrothermal environment. Temporal variation in the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), total glutathione peroxidases (Total GPx), selenium dependent glutathione peroxidases (Se-GPx)), metallothioneins and lipid peroxidation (LPO) in the gills and mantle of the mussel Bathymodiolus azoricus from Menez–Gwen hydrothermal vent site was evaluated and related to the accumulated metal concentrations (Ag, Cu, Cd, Fe, Mn and Zn) in the tissues. Maximum antioxidant enzyme activities in the gills were detected in the beginning of summer, followed by a gradual decrease throughout the following months. One year after, the levels of antioxidant enzyme activities were similar to those reported one year before. LPO in this tissue exhibited a similar temporal variation trend. A different pattern of temporal variation in antioxidant enzyme activities was observed in the mantle, with a gradual increase from summer to the end of autumn (November). LPO in the mantle exhibited an almost reverse trend of temporal variation to that of antioxidant enzyme activities in this tissue. Antioxidant defences in the gills of B. azoricus were significantly enhanced with increasing concentrations of Ag, Cu and Mn, while negative relationships between antioxidant enzymes and Cd, Cu, Mn and Zn concentrations in the mantle were observed, suggesting different pathways of reactive oxygen species (ROS) production and that these tissues responded differently to the metal accumulation. However, temporal variation in biomarkers of defence and damage were in general similar to coastal bivalve species and can be associated with temporal variations of the physiological status due to reproduction. These variations might also be linked to the highly unstable nature of the hydrothermal environment.  相似文献   

11.
Crustacea experience periods of starvation during moulting or when limited food availability occurs. The effects of starvation on Crustacea physiological responses have been demonstrated, whereas the effects of starvation on Crustacea immune parameters remain to be more fully studied. In the present study the effects of starvation on immune parameters and antioxidant enzyme activities of the crab Carcinus aestuarii were evaluated for the first time. Treated crabs were starved for 7 days, whereas control crabs were fed daily with mussels. Total haemocyte count (THC), haemocyte diameter and volume, haemocyte proliferation, cell-free haemolymph (CFH) glucose and total protein levels, and phenoloxidase (PO) activity in both haemocyte lysate (HL) and CFH were measured in crabs. In addition, superoxide dismutase (SOD) and catalase (CAT) activities were evaluated in both gills and digestive gland from crabs, in order to evaluate whether starvation induced oxidative stress in C. aestuarii. THC increased significantly in starved crabs, with respect to controls, whereas no significant variations were observed in haemocyte diameter, volume and proliferation. In CFH of starved animals glucose concentration significantly increased, whereas total protein concentration significantly reduced. A significantly higher PO activity was recorded in HL from starved crabs, than in control crabs. Conversely, PO activity did not vary significantly in CFH. Starvation did not cause significant alterations in antioxidant enzyme activities in both gills and digestive gland. Results obtained demonstrated that starvation influenced crab immune parameters, but did not induce oxidative stress. Results also indicated that C. aestuarii can modulate its cellular and biochemical parameters in order to cope with starvation.  相似文献   

12.
利用综合生物标志物响应(IBR)指数对北部湾潮间带沉积环境中多氯联苯(PCBs)、石油烃(TPH)、壬基酚(NP) 和苯并芘(B[a]P)的综合污染水平进行评价。在9个站位采集波纹巴非蛤(Paphia undulata)和沉积物样品,测定沉积物和生物软组织中有机污染物含量,同时对鳃、内脏中与细胞防御系统有关的各7种标志物(包括还原型谷胱甘肽(GSH)、氧化型谷胱甘肽(GSSG)、谷胱甘肽过氧化物酶(GPx)、过氧化氢酶(CAT)等)进行分析。利用相关性分析法筛选出对1~2种有机污染物响应敏感的生物标志物共8种,分别为内脏中的GPx、GSH、GSSG、CAT和鳃中的GPx、GSH、GSSG、CAT。以筛选的8种生物标志物为基础, 9个站位IBR指数范围为0.27~1.48,其中站位S2(湛江市乐民镇码头)、站位S9(湛江市江洪码头)的IBR较小,显示污染程度最轻;站位S4(防城港西湾)、站位S3(钦州湾老人沙浅滩) IBR较高,显示生物体因有机污染产生氧化逆境。不同站位的IBR值与污染源分布、化学污染物分析结果基本一致,表明该方法可用于北部湾潮间带沉积物有机污染程度的综合评价。  相似文献   

13.
The critical role of ecological preferences and opportunity in determining contaminant uptake and adaptive responses of sexes in the wild is still poorly understood. This ecological relationship was investigated by measuring metal bioaccumulation and antioxidant activity in male and female blue crab populations from open water habitat and the littoral/inter‐tidal zone of the Lagos Lagoon. A total of 741 samples of blue crab (littoral zone: 263 females, 137 males; open water zone, 230 females, 111 males) was collected monthly over 24 months (January 2010–January 2012) from each site and the measurements of morphometric features (wet weight, carapace length, carapace width) were recorded; condition index, metal (redox active: Cu, Zn, redox inactive: Pb, Cd) concentration in tissues (gills, hepatopancreas, gonads and muscle) and antioxidant activity (superoxide dismutase, reduced glutathione, glutathione peroxidase, catalase and malondialdehyde) were measured for each sex. Monthly sediment samples for both habitats were also analysed for metals using standard methods. Female crabs were significantly larger (p < .05) with a better condition index than the male crabs across sites and seasons, while higher oxidative damage was recorded in male crabs in the littoral zone compared to the open water zone. The results show that there was a negative association between antioxidant activity and lipid peroxidation; a negative relationship between concentrations of redox‐inactive metals (Pb and Cd) and antioxidant activity in male crab tissues; and a positive relationship between uptake of a redox‐active metal (Cu) and antioxidant activity in female crab tissues. Although these trends suggest sex‐specific toxicity, they also associate redox‐inactive metals with the downregulation of antioxidant activity and oxidative stress. Furthermore, the higher condition index of females corroborates the possibility of sex‐specific toxicity, while the larger‐sized females compared to males suggests size‐sexual dimorphism in the blue crab populations. The site‐specific oxidative damage between sexes may be attributed to the different complexity of both habitats, which affords different ecological opportunities for the sexes.  相似文献   

14.
Environmental pollutants, such as metals, are widespread in aquatic environments and can lead to the formation of reactive oxygen species (ROS). ROS are highly toxic in marine species since they can cause serious reversible and irreversible changes in proteins including ubiquitination and modifications such as carbonylation. This study aimed to confirm the potential of ubiquitination and carbonylation as markers of oxidative stress in the clam Ruditapes decussatus (Veneroida, Veneridae) exposed to cadmium (40 microg/L). After 21 days of exposure clams were dissected into gills and digestive gland. Cytosolic proteins of both tissues were separated by two-dimensional electrophoresis (2-D SDS-PAGE) and analysed by immunobloting. Higher ubiquitination and carbonylation levels were in digestive gland of contaminated organisms. These results confirm the potential of ubiquitination and carbonylation as a sensitive and specific marker of oxidative stress in marine bivalves. In this approach, changes in protein structure provide options for affinity selection of sub-proteomes for 2D SDS-PAGE, simplifying the detection of protein biomarkers using proteomic approach.  相似文献   

15.
The vent mussel Bathymodiolus azoricus is the dominant member of the Northern Mid‐Atlantic Ridge (MAR) hydrothermal megafauna, and lives in an environment characterized by temporal and spatial variations in the levels of heavy metals, methane and hydrogen sulphide, substances which are known to increase reactive oxygen species levels in the tissues of exposed organisms. To evaluate the effects of two contrasting hydrothermal environments on the antioxidant defence system of this vent mussel species, a 2‐week transplant experiment was carried out involving mussels collected from the relatively deep (2300 m), and chemical rich, Rainbow vent field. These were transplanted to the shallower (1700 m), and relatively less toxic, Lucky Strike vent field. To achieve this objective, levels of superoxide dismutase, catalase (CAT), total glutathione peroxidase (GPx), selenium‐dependent glutathione peroxidase and lipid peroxidation (LPO) were measured in the gills and mantle tissues of resident and transplant mussels before and after the transplant experiment. With the exception of CAT, the gills of the transplanted mussels had significantly higher antioxidant enzyme activity compared with the basal levels in the donor (Rainbow) and recipient (Lucky Strike) populations; whereas the antioxidant enzyme levels in the mantle tissues of the transplants reflected the baseline levels of activity in the native Lucky Strike mussels after 2 weeks. In contrast, LPO levels were significantly higher in both tissue types in the transplants than in either the source or the recipient populations, which suggested a response to hydrostatic pressure change (note, the transplant animals were brought to the surface for transportation between the two vent fields). The fact that the Rainbow mussels survived the transplant experience indicates that B. azoricus has a very robust constitution, which enables it to cope behaviourally, physiologically and genetically with the extreme conditions found in its naturally contaminated deep‐sea environment.  相似文献   

16.
谷胱甘肽过氧化物酶(Glutathione peroxidase,GPx)是生物体内重要的抗氧化酶,能防止过氧化氢对生物体的氧化应激。该研究利用RACE技术获得了斑节对虾(Penaeus monodon)GPx3a(PmGPx3a)的全长c DNA序列,进行了相关生物信息学分析。作者利用荧光定量PCR方法研究了PmGPx3a在斑节对虾不同组织的表达情况。探究了PmGPx3a在不同胁迫条件下(盐度、重金属和细菌)的表达情况。结果表明PmGPx3a c DNA全长1135 bp,其中开放阅读框(ORF)长651 bp,预测编码216个氨基酸。PmGPx3a推导的氨基酸序列与其他动物的GPx3a氨基酸序列具有高度一致性。实时定量PCR结果显示,在高低盐胁迫下,PmGPx3a在肝胰腺中相对表达量都为上升的(p0.05)。在铜、锌、铬胁迫中,鳃中的PmGPx3a的相对表达量总体呈现下降趋势,在肝胰腺中呈现上升趋势。在哈维弧菌(Vibrio harveyi)刺激下,PmGPx3a在血淋巴中的相对表达量总体呈现上升趋势,24 h后表达量最大,显著高于对照组2.2倍(P0.05)。以上研究结果表明,PmGPx3a基因参与了斑节对虾对环境胁迫和氧化应激的适应性反应。  相似文献   

17.
于2006年2月、5月、8月和11月四个季度月采用呼吸瓶法现场研究了胶州湾菲律宾蛤仔的呼吸排泄作用。结果表明,胶州湾菲律宾蛤仔呼吸排泄速率具有明显的季节变化趋势,春、夏季高于秋、冬季。不同生物学规格的蛤仔呼吸排泄速率具有明显的差异,单位个体耗氧率、排氨率和排磷率均随着个体大小的增加而增加,而单位体重的耗氧率、排氨率和排...  相似文献   

18.
在全球变暖的背景下, 海水温度不断升高、海洋暖化逐渐加剧, 高温严重影响着海洋生物的各种生命过程, 但对于海洋双壳贝类如何应对热应激的研究仍然不足。为此, 开展了以18 °C (CT)为对照组在26 °C (ST)和33 °C (HT)下对厚壳贻贝消化腺组织进行了急性热胁迫下的代谢组学分析,以便于研究其代谢反应。采用LC-MS/MS技术, 并结合生物信息分析手段对差异代谢物进行筛选, 并分析确定相关的代谢通路的变化, 共有2 532种代谢物在厚壳贻贝消化腺中被鉴定。KEGG富集分析用于探索差异代谢物的潜在代谢途径, 共有29条代谢通路被显著富集, 与对照组相比, ST组显著富集于牛磺酸和次牛磺酸代谢、神经活性配体-受体相互作用、鞘脂类代谢和视黄醇代谢等代谢通路; HT组显著富集于酪氨酸代谢、亚油酸代谢、丙氨酸新陈代谢、酪氨酸代谢、色氨酸代谢、苯丙氨酸代谢等代谢通路。研究结果显示, 厚壳贻贝消化腺主要通过调节色氨酸代谢、酪氨酸代谢、鞘脂代谢、苯丙氨酸代谢、氧化磷酸化, 脂肪酸、赖氨酸降解等信号通路应对热应激, 从而帮助维持身体内部环境的稳定状态。上述研究为多视角探究厚壳贻贝耐热机制与应对环境中温度变化的适应性进化提供理论基础。  相似文献   

19.
A population of killifish (Fundulus heteroclitus) inhabiting a creosote-polluted inlet of the Elizabeth River demonstrates tolerance to the acute toxic effects exerted by contaminated sediments on reference site killifish. Previous data have suggested that upregulated antioxidant defenses contribute to short-term tolerance in killifish exposed to Elizabeth River sediments. This study investigated population differences in antioxidant defenses from wild caught Elizabeth River and reference population killifish in different seasons, and after being held in the laboratory. Parameters measured in the killifish were total glutathione concentrations (GSHT), activities of glutathione reductase (GR), glutathione peroxidase (GPx), and lipid peroxidation (LPO), all in adult hepatic tissues. The Elizabeth River population exhibited greater GSHT, higher GPx activities, and increased LPO as compared to the reference population. Sex specific population differences were also observed in GSHT and GPx. Both populations displayed decreased GSHT and increased GR from early to late summer, as well as after being held in the laboratory. This study indicates that there are many factors that may contribute to differences in levels of antioxidant defenses in addition to exposure to contaminants, including reproductive status and environmental conditions.  相似文献   

20.
本文探究环境低氧对军曹鱼(Rachycentron canadum)氧化应激和能量利用指标的影响,为军曹鱼的健康养殖提供参考依据。通过设置低氧胁迫–恢复实验,将军曹鱼幼鱼(平均体质量(220.67±20.73)g)在低氧((2.64±0.25)mg/L)胁迫3 h及复氧((6.34±0.15)mg/L)8 h、24 h和48 h后,测定其肝脏和肌肉组织的氧化应激与能量利用指标。结果显示,低氧胁迫后,肝脏中丙二醛(Malondialdehyde,MDA)、过氧化氢酶(Catalase,CAT)和谷胱甘肽还原酶(Glutathione Reductase,GR)活力均显著低于对照组(p<0.05),乳酸脱氢酶(Lactate Dehydrogenase,LDH)活性显著高于对照组(p <0.05);肌肉中MDA和脂质过氧化物(Lipid Peroxidase,LPO)活性均显著低于对照组(p<0.05),超氧化物歧化酶(Superoxide Dismutase,SOD)和LDH活性均显著高于对照组(p<0.05);肌糖原和肝糖原含量极显著低于对照组(p<0.01)。复氧过程中,肝脏和肌肉中MDA、LPO、SOD、CAT、谷胱甘肽过氧化物酶(Glutathione Peroxidase,GPx)和GR含量均出现不同程度的升高;肝糖原在复氧24 h后显著高于对照组(p<0.05),复氧48 h后显著低于对照组(p<0.05);肌糖原在复氧8 h、24 h和48 h后均显著低于对照组(p<0.05)。研究表明,低氧胁迫能够对军曹鱼幼鱼机体造成一定的氧化损伤,肝脏和肌肉组织的酶活力和能量供应发生变化;低氧胁迫后的再复氧环境,对机体造成更为强烈的氧化损伤,可通过自身生理调节逐渐恢复到正常水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号