首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 828 毫秒
1.
一次沙尘过程对天津气溶胶浓度分布的影响   总被引:1,自引:1,他引:0  
姚青  蔡子颖  韩素芹  穆怀斌 《中国沙漠》2013,33(4):1138-1143
利用气溶胶质量浓度和数浓度监测资料以及不同高度的常规气象资料,结合后向轨迹模式,分析2011年4月30日至5月1日一次沙尘天气过程对天津城区气溶胶浓度的影响。结果表明:沙尘过程前的轻雾天气下PM1贡献了气溶胶质量浓度的96%和数浓度的99.9%以上;本次沙尘天气存在两个不同的浮尘过程,主要区别体现在细粒子浓度差异上,第一次浮尘过程PM1~2.5、PM2.5~10和PM10~100分别占气溶胶数浓度的6.5%、2.5%和0.1%,第二次浮尘过程占比则依次为11.3%、2.6%和0.01%;两次浮尘过程气溶胶粒子性质有明显差异,第一次浮尘过程中粗粒子浓度占PM10的80%以上,第二次浮尘过程风向转变为偏北风,细粒子浓度增高至40%,气溶胶由单纯的沙尘气溶胶转变为沙尘-污染气溶胶。  相似文献   

2.
塔克拉玛干沙漠腹地沙尘气溶胶质量浓度垂直分布特征   总被引:4,自引:0,他引:4  
 利用Grimm 1.108、Thermo RP 1 400 a以及TSP等仪器于2009年1月至2010年2月对塔克拉玛干沙漠腹地塔中不同高度沙尘气溶胶质量浓度进行连续观测,结合天气资料进行分析。结果表明:①80 m高度PM10质量浓度最高,80 m高度PM2.5和PM1.0质量浓度明显低于4 m高度PM10,80 m高度PM1.0质量浓度最低。频繁的沙尘天气是影响不同粒径的沙尘气溶胶浓度含量的主要因素。②夜间至日出,PM质量浓度逐渐降低,最低基本上出现在08:00,随后质量浓度逐渐增大,18:00前后浓度达到最高值,然后又逐步降低。其规律与风速的昼夜变化完全一致。③TSP月平均质量浓度高值主要集中在3—9月,其中4月和5月浓度最高,随后逐渐减低。3—9月也是PM月平均质量浓度的高值区域,4 m高度PM10月平均质量浓度最高发生在5月,其浓度为846.0 μg·m-3。80 m高度PM10浓度远高于PM2.5和PM1.0浓度,PM2.5和PM1.0浓度相差较小。风沙天气对大气中的不同粒径粒子的浓度含量影响较大,风沙天气越多,粗颗粒含量越高,反之则细颗粒越多。④沙尘天气过程中不同粒径沙尘气溶胶质量浓度变化具有晴天<浮尘天气<扬沙天气<沙尘暴天气的规律。各种沙尘天气中,PM10/TSP表现为晴好天气高于浮尘天气,浮尘天气远高于扬沙和沙尘暴天气。⑤沙尘天气过程中,沙尘气溶胶浓度随着粒径的减小,浓度逐渐降低。不同高度、不同粒径的沙尘气溶胶质量浓度每隔3~4 d形成一个峰值区,与每隔3~4 d出现沙尘天气强度增强过程直接相关。  相似文献   

3.
利用Thermo RP 1400a对塔克拉玛干沙漠腹地塔中及周边的哈密与和田进行了长达6 a多的沙尘气溶胶PM10连续观测,结合气象资料,分析了该区域沙尘气溶胶PM10的基本特征及影响因素。其结果是:①在哈密、塔中与和田,浮尘、扬沙日数呈上升趋势,沙尘暴日数变化不明显,沙尘天气出现的频率和强度是影响沙漠地区沙尘气溶胶PM10浓度的主要因素。②PM10质量浓度具有明显的区域分布特征,塔克拉玛干沙漠东缘的哈密最低,其次为沙漠南缘的和田,最高的为沙漠腹地的塔中。③每年3—9月是哈密PM10质量浓度的高值时段;塔中与和田PM10质量浓度高值时段分布在3—8月,平均浓度分别在500~1 000 μg·m-3之间变化。④哈密、塔中与和田PM10季节平均浓度变化特征,春季>夏季>秋季>冬季;PM10平均浓度最高的塔中,春季在1 000 μg·m-3左右变化,夏季在400~900 μg·m-3之间,秋冬两季浓度较低基本上在200~400 μg·m-3之间变化。⑤哈密、塔中与和田沙尘暴季节PM10浓度远高于非沙尘暴季节,沙尘暴季节浓度基本上为非沙尘暴季节浓度的两倍以上;塔中2004年和2008年沙尘暴季节平均浓度分别是非沙尘暴季节的6.2倍和3.6倍。⑥沙尘天气过程中PM10质量浓度变化具有以下规律,晴天<浮尘天气<浮尘、扬沙天气<沙尘暴天气。⑦风速大小直接影响大气中PM10浓度,风速越大浓度越高。气温、相对湿度和气压是影响沙尘暴强度的重要因素,也间接影响大气中PM10浓度的变化。  相似文献   

4.
2007年春季沙尘暴对辽宁中部城市群空气质量的影响   总被引:3,自引:1,他引:2  
根据大气降尘量和可吸入颗粒物PM10 、PM2.5、 PM1的观测资料,分析了2007年春季发生于我国北方的两次沙尘暴天气过程对辽宁中部城市群空气质量的影响。结果显示,沙尘天气使各城市大气降尘量与可吸入颗粒物PM10和PM2.5的质量浓度明显增高,空气质量明显下降。在3月31日和5月7日的两次沙尘暴过程中,城市群的大气降尘量比当月日平均值分别增加了1.5倍和2.5倍,各城市PM10的日均质量浓度比沙尘出现前一日分别增加了0.2~2.6倍和1.5~3.8倍。3月31日除铁岭和鞍山空气质量状况为良外,均达到轻微污染程度;5月7日鞍山达严重污染程度;沈阳、辽阳、本溪、铁岭和抚顺的空气质量均为中度污染或中度重污染。沙尘暴期间1.0~10.0 μm的粗粒子为影响辽宁中部城市空气质量的主要成分,其小时平均质量浓度最大时是沙尘出现前的10~30倍。  相似文献   

5.
利用2017—2019年中天山北坡城市群(乌鲁木齐市、昌吉市、石河子市、五家渠市)逐时大气污染物监测数据及气象数据,分析了大气污染物年内变化和污染天气类型特征。结果表明:(1) 中天山北坡4座城市6类大气污染物中PM2.5超标日数最多(年均94~104 d),年均浓度介于64~73 μg·m-3,且五家渠市>乌鲁木齐市>石河子市>昌吉市。采暖期PM2.5浓度在100~118 μg·m-3之间,是非采暖期的4.00~5.00倍,靠近山前地带的城市PM2.5浓度日变化大体呈现“双峰双谷型”。(2) 4座城市污染天气类型主要分为静稳型、沙尘型和特殊型,其中静稳型占86.2%~93.6%、沙尘型占5.8%~13.2%。静稳型污染天气多出现在冬季,沙尘型主要出现在春、秋季节。静稳型污染天气中Ⅴ-Ⅵ级污染级别占比45.8%~56.6%,沙尘型污染天气中Ⅴ-Ⅵ级污染级别占比14.9%~29.4%。(3) 静稳型和沙尘型污染天气下PM2.5和PM10浓度都存在显著的线性相关,前者PM10浓度是PM2.5的1.26倍,而后者达3.16倍,此倍数可以作为区分静稳型和沙尘型污染天气的判据。  相似文献   

6.
额济纳地区沙尘气溶胶质量浓度特征初步分析   总被引:2,自引:1,他引:1  
为更好地理解亚洲沙尘源区气溶胶特征,在巴丹吉林沙漠边缘额济纳地区进行了野外观测。通过对沙尘源区之一的额济纳地区沙尘气溶胶的长期临测,获得了其区域代表性沙尘气溶胶理化特征。其TSP年变化以5月最大,9月最小,这与气象条件密切相关。针对典型天气过程的观测结果表明,不同天气条件(背景大气、浮尘、扬沙和沙尘暴)下TSP浓度存在倍数关系和量级的差异,其质量浓度随粒径的分布特征也明显不同。总体上讲,额济纳地区清洁大气中沙尘气溶胶浓度量级为10^2μg/m^3,而浮尘,扬沙及沙尘暴期间沙尘气溶胶质量浓度量级为10^2μg/m^3,超强沙尘暴沙尘质量浓度可达量级为10^4μg/m^4,在不同风向影响下,气溶胶粒径分布呈现不同特征;与沙坡头、敦煌地区相比,具有其独特的区域特性。  相似文献   

7.
塔里木盆地沙尘气溶胶对短波辐射的影响——以塔中为例   总被引:15,自引:11,他引:4  
陈霞  魏文寿  刘明哲 《中国沙漠》2008,28(5):920-926
利用2006年8—9月塔克拉玛干沙漠腹地塔中气象站的80 m铁塔上,距地1.5 m的KIPP & ZONEN自动辐射仪获取的监测资料,根据沙尘暴资料中PM10的小时浓度变化,参照TSP的变化趋势和塔中地面气象站的能见度和风速,将天气划分为晴空、浮尘和扬沙、沙尘暴三种类型,并分别选取其代表性天气,分析以塔中为代表的沙漠腹地,沙尘气溶胶浓度的变化对短波辐射的影响。结果表明:沙尘气溶胶减弱到达地面的总的太阳辐射,在大气总的透过率上表现为晴空是沙尘暴的2.04倍;直接辐射表现在大气透明系数的变化与沙尘暴、浮尘PM10呈显著负相关,相关系数分别为-0.714,-0.771;沙尘气溶胶改变散射辐射波形,由遁形平顶型改为倒“V”型,增加散射日总量,沙尘暴是晴空的1.68倍,浮尘是晴空的2.12倍。  相似文献   

8.
乌鲁木齐市不同区域PM_(10)的监测与分析   总被引:1,自引:1,他引:0  
针对2007年5月~2008年3月乌鲁木齐市PM10(吸入颗粒物)冬、春季节的大气污染情况,应用乌鲁木齐市三个监测点的空气污染PM10监测资料,采用PM10国家《空气质量标准(GB3095-1996)》重量法数据处理方法,对乌鲁木齐市不同区域的空气污染PM10进行监测分析,结果表明:(1)在采暖期PM10浓度变化为天山区沙依巴克区(以下简称沙区)新市区,而在非采暖期天山区PM10浓度略高于新市区和沙区,三个采样点PM10浓度基本一致;(2)影响PM10的主要气象因素是降水,夏季降水对PM10粒子浓度清除影响较大,冬季微量降雪日,逆温、高湿对污染物聚集的加剧高于微雪的清除能力;(3)2001-2007年乌鲁木齐地区API(空气污染指数)趋于下降趋势,与PM10变化趋势一致,说明乌鲁木齐地区的环境污染有所改善。  相似文献   

9.
新疆沙尘源状况及其沙尘气溶胶释放条件分析   总被引:9,自引:7,他引:2  
沙尘气溶胶是干旱、半干旱区大气中重要的组成物质, 沙尘天气多发是该区域沙尘气溶胶含量高的主要原因。新疆1/4的土地被沙漠覆盖,塔里木盆地绝大部分地区沙土和沙壤土占地比率大于60%,沙漠沙以细沙为主, 特殊的下垫面为沙尘天气的形成提供了丰富的沙源;沙漠周围的边缘地带、河流两岸、古河道中的土壤类型中粒径小于2.5 μm和粒径小于10 μm的土壤颗粒物中细颗粒物分别达到了50%和20%,是大气沙尘气溶胶中细颗粒物的主要来源和潜在来源。沙尘天气的产生受大风、降水、植被覆盖度、下垫面性质以及大气环流等多种因素的影响。  相似文献   

10.
塔克拉玛干沙漠中心的沙尘气溶胶观测研究   总被引:27,自引:17,他引:10  
沙尘气溶胶严重影响中国北方的空气质量,作为一种重要气溶胶并影响区域的辐射平衡。塔克拉玛干沙漠每年释放大量的沙尘气溶胶,而位于塔克拉玛干沙漠中心的塔中站,提供了对沙尘气溶胶的近距离观测。利用该站地面太阳光度计的观测数据分析了沙尘气溶胶的年变化特征,并分析了该站光学厚度、能见度、大气飘尘质量浓度(PM10)和大气总悬浮颗粒物浓度(TSP)之间的相关性。结果显示,气溶胶的440 nm光学厚度在春季最高、秋季最小,440 nm光学厚度与能见度呈现负幂函数关系,TSP与PM10呈现线形相关关系,PM10与能见度呈现负幂函数关系。  相似文献   

11.
通过采集兰州市和延安市主城区的土壤灰尘样品,测量了其粒径组成,界定了土壤和灰尘不同粒径的空间分布,分析了环境影响。结果表明:兰州市和延安市城市土壤灰尘粒径组成有明显的分布特征,主要集中在小于100μm的部分,整体粒径分布情况为:粉黏粒(<50μm)>极细砂(50~100μm)>细砂(100~250μm)>中砂(250~500μm)>粗砂(500~1000μm)。其中兰州市小于100μm灰尘颗粒物粒径所占比例(69.17%)大于延安市(53.49%),极易在外动力条件下再次扬起成为扬尘污染的潜在污染源。从2个城市土壤和灰尘相似文献   

12.
南极地区提供了地球上最好的研究气溶胶的背景组成场所,为此,我们用八级阶式撞击采样器采集了不同粒径的样品。采样于1986年间在南极中国长城站进行,样品分析方法是质子激发X射线发射法(PIXE)。为了研究不同元素的富集因子,将全部结果分为两组,粒径大于10/μm粒子为粗粒,小于10/μm的粒子为细粒,并且还讨论了粗、细粒中各元素的相关因子,长城站气溶胶所测元素结果与其他地区采样点所测结果作了比较,证明南极地区是地球上良好的背景地区。  相似文献   

13.
利用2019年冬季吐鲁番和2020年冬季若羌共14次完整机载探测气溶胶资料,结合宏观天气资料及大气污染数据,研究飞机爬升或降落阶段两地上空气溶胶粒子数浓度、粒子平均粒径的垂直变化规律,分析不同高度的粒子谱分布特征。结果表明:(1) 两地冬季气溶胶粒子数浓度及粒子直径存在明显差异。在无明显天气过程下,若羌气溶胶粒子数浓度均值(5354·cm-3)明显高于吐鲁番(3948·cm-3);粒子平均粒径来看,均值差异不大,但吐鲁番出现大直径粒子(0.16 μ m)数量高于若羌(0.13 μ m)。2019年12月15日大风后最为明显,粒子直径最大值达到0.21 μ m,这与沙尘气溶胶多有关联。从垂直变化情况来看,两地气溶胶粒子数浓度均随高度增加而升高,若羌各层普遍高于吐鲁番,但吐鲁番近地面粒子直径随高度增加有明显下降,若羌整层变化很小。(2) 吐鲁番、若羌气溶胶粒子数浓度和粒子平均粒径受大风、降水等天气过程以及逆温层的影响十分明显。两地高层均主要为输入型气溶胶,低层差异主要是由于吐鲁番地区人为源气溶胶粒子的排放导致的大气环境污染。(3) 吐鲁番、若羌两地粒子谱分布在0.10~3.00 μ m范围内变化趋势大体一致,主要以小粒径为主,谱分布受天气过程影响变化较为明显。(4) 从三模态粒径相似度对比可以得出,无论是吐鲁番还是若羌,在第一模态中数谱分布差异不大,若羌平均相似度为50.330%,略高于吐鲁番46.770%。有明显天气过程时,吐鲁番气溶胶数谱在二、三模态相似度(小于0.020%)急剧下降,而若羌第二模态相似度仍满足置信度95%,但第三模态中变化凸显,相似度不足0.020%。  相似文献   

14.
1987年1~2月用分八级的串列撞击式采样器在南极长城站地区进行了三次大气气溶胶采样,用质子激发X荧光分析法进行了元素质量浓度测定,获得了18种元素质量浓度的粒径分布谱。计算了气溶胶中各种粒径各元素浓度对于地壳中含量和盐度为35.0‰海水中含量的富集因子。对气溶胶中粗粒子、细粒子和超细粒子的特征进行了讨论并对它们的来源作了推测。  相似文献   

15.
基于CE318太阳光度计观测数据,采用消光法对广州市2011年全年的气溶胶粒子体积浓度、数浓度、体积谱、数浓度谱的全年总体特征,季节性特征及日变化进行了分析。结果表明:1)广州市气溶胶粒子体积浓度年均值为0.45 μm3/μm2,春季最高,夏季最低;且粒子体积浓度与浑浊度的相关系数达到0.956。2)广州市气溶胶体积谱为双峰型,数浓度谱为单峰型。半径<0.1 μm的细粒子为气溶胶主控粒子,主要由水溶性粒子和煤烟组成。3)广州市的气溶胶污染主要与工业、交通等人为污染有关;其主要成分为水溶性粒子和煤烟,此外还存在少量的沙尘和海洋气溶胶粒子。4)一天当中气溶胶粒子体积浓度随着人类活动增加逐步上升,T 12:00―15:00时段细粒子的体积浓度为一天中最高。  相似文献   

16.
李霞  胡秀清  崔彩霞  李娟 《中国沙漠》2005,25(4):488-495
依据气溶胶光学厚度测量原理,利用布设于塔里木盆地腹地塔中和盆地西南边缘和田气象站的2部CE318自动跟踪太阳光度计于2002年6月至2003年11月期间的探测结果,结合地面气象实测资料,分析了南疆盆地大气气溶胶的光学特性。同时结合我国已有的沙尘气溶胶光学特性的研究成果,初步提出了依据气溶胶光学厚度判断沙尘天气强度的标准。结果表明:塔中、和田气溶胶光学厚度随波长的增大多呈现减小趋势,塔中个别季节有些例外;2站气溶胶光学厚度的日变化基本保持对称的抛物线形,在春、夏季尤为明显;Angstrom浑浊度系数β的拟合曲线显示β随能见度增大而减小,波长指数α随能见度的变化趋势说明弱沙尘天气下,大气中主要弥漫着小粒径的气溶胶颗粒,而强沙尘天气则以大粒径为主;沙尘气溶胶光学厚度随晴空、浮尘、扬沙、沙尘暴依次增加;沙尘天气发生时,气溶胶光学厚度的临界值基本为晴空值的两倍,沙漠地区气溶胶光学厚度≥1.1206,北京≥0.3174。而发生沙尘暴的阈值则有很大不同,沙漠区气溶胶光学厚度至少 > 3.0,北京由于大气污染等因素,其判断沙尘暴发生的阈值为1.9982。另外笔者认为AOD与水平能见度之比值能够较全面地考虑水平和垂直两个方向的要素变化,衡量沙尘天气强度更具有合理意义,值得更深一步的探讨。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号