首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 945 毫秒
1.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

2.
Partition coefficients for trace elements in silicic magmas   总被引:2,自引:0,他引:2  
Trace element partition coefficients for 29 elements, including the rare earths, have been calculated for augite, hypersthene, sanidine, plagioclase, quartz, biotite, titanomagnetite and ilmenite from rhyodacite and rhyolite at Twin Peaks, Utah. Partition coefficients are intermediate to those reported from dacite and high silica rhyolite. At Twin Peaks, as in less silicic magmas, partitioning between phenocrysts and melt is governed primarily by crystal structure constraints as opposed to very high silica systems where the structure and volatile content of the melt become the dominant control of trace element partitioning.  相似文献   

3.
The texture of Los Angeles (stone 1) is dominated by relatively large (0.5−2.0 mm) anhedral to subhedral grains of pyroxene, and generally subhedral to euhedral shocked plagioclase feldspar (maskelynite). Minor phases include subhedral titanomagnetite and ilmenite, Fe-rich olivine, olivine+augite-dominated symplectites [some of which include a Si-rich phase and some which do not], pyrrhotite, phosphate(s), and an impact shock-related alkali- and silica-rich glass closely associated with anhedral to euhedral silica grains. Observations and model calculations indicate that the initial crystallization of Mg-rich pigeonitic pyroxenes at ≤1150 °C, probably concomitantly with plagioclase, was followed by pigeonitic and augitic compositions between 1100 and 1050 °C whereas between 1050 and 920 to 905 °C pyroxene of single composition crystallized. Below 920 to 905 °C, single composition Fe-rich clinopyroxene exsolved to augite and pigeonite. Initial appearance of titanomagnetite probably occurred near 990 °C and FMQ-1.5 whereas at and below 990 °C and ≥FMQ-1.5 titanomagnetite and single composition Fe-rich clinopyroxene may have started to react, producing ilmenite and olivine. However, judging from the most common titanomagnetite compositions, we infer that most of this reaction likely occurred between 950 and 900 °C at FMQ-1.0±0.2 and nearly simultaneously with pyroxene exsolution, thus producing assemblages of pigeonite, titanomagnetite, olivine, ilmenite, and augite. We deem this reaction as the most plausible explanation for the formation of the olivine+augite-dominated symplectites in Los Angeles. But we cannot preclude possible contributions to the symplectites from the shock-related alkali- and silica-rich glass or shocked plagioclase, and the breakdown of Fe-rich pigeonite compositions to olivine+augite+silica below 900 °C. Reactions between Fe-Ti oxides and silicate minerals in Los Angeles and other similar basaltic Martian meteorites can control the T-fO2 equilibration path during cooling, which may better explain the relative differences in fO2 among the basaltic Martian meteorites.  相似文献   

4.
《International Geology Review》2012,54(10):1179-1190
Andesite magmatism plays a major role in continental crustal growth, but its subduction-zone origin and evolution is still a hotly debated topic. Compared with whole-rock analyses, melt inclusions (MIs) can provide important direct information on the processes of magma evolution. In this article, we synthesize data for melt inclusions hosted by phenocrysts in andesites, extracted from the GEOROC global compilation. These data show that melt inclusions entrapped by different phenocrysts have distinct compositions: olivine-hosted melt inclusions have basalt and basaltic andesite compositions, whereas melt inclusions in clinopyroxene and othopyroxene are mainly dacitic to rhyolitic. Hornblende-hosted melt inclusions have rhyolite composition. The compositions of melt inclusions entrapped by plagioclase are scattered, spanning from andesite to rhyolite. On the basis of the compositional data, we propose a mixing model for the genesis of the andesite, and a two-chamber mechanism to account for the evolution of the andesite. First, andesite melt is generated in the lower chamber by mixing of a basaltic melt derived from the mantle and emplaced in the lower crust with a felsic melt resulting from partial melting of crustal rocks. Olivine and minor plagioclase likely crystallize in the lower magma chamber. Secondly, the andesite melt ascends into the upper chamber where other phenocrysts crystallize. According to SiO2-MgO diagrams of the MIs, evolution of the andesite in the upper chamber can be subdivided into two distinct stages. The early stage (I) is characterized by a phenocrystal assemblage of clinopyroxene + othopyroxene + plagioclase, whereas the late stage (II) is dominated by crystallization of plagioclase + hornblende.  相似文献   

5.
The 150 m thick late Miocene Graveyard Point sill (GPS) is situated at the Idaho-Oregon border near the southwestern edge of the western Snake River Plain. It records from bottom to top continuous fractional crystallization of a tholeiitic parent magma (lower chilled border, FeO/(FeO+MgO) = 0.59, Ni = 90 ppm) towards granophyres (late pods and dikes, FeO/(FeO+MgO) = 0.98, 78 wt% SiO2 3.5 wt% K2O, <4 ppm Ni) showing a typical trend of Fe and P enrichment. Fractionating minerals are olivine (Fo79-Fo2), augite (X Fe = 0.18−0.95), feldspars (An80Or1-An1Or62), Fe-Ti oxides (Ti-rich magnetite and ilmenite), apatite and in two samples super-calcic pigeonite (Wo18–28 Fs41–54). The granophyres may bear some quartz. Compositionally zoned minerals record a large interval of the fractionation process in every single sample, but this interval changes with stratigraphic height. In super-calcic pigeonite-bearing samples, olivine is scarce or lacking and because super-calcic pigeonite occurs as characteristic overgrowths on augite, its formation is interpreted to be related to the schematic reaction: augite + olivine (component in melt) + SiO2 (in melt) = pigeonite, that defines the cotectic between augite and pigeonite in olivine-saturated basaltic systems. Line measurements with the electron microprobe reveal that the transition from augite to super-calcic pigeonite is continuous. However, some crystals show an abrupt “reversal” towards augite after super-calcic pigeonite growth. Two processes compete with each other in the GPS: fractional crystallization of the bulk liquid (the bulk melt separates from solids and interstitial liquids in the solidification front) and fractional crystallization of interstitial melt in the solidification front itself. Interplay between those two processes is proposed to account for the observed variations in mineral chemistry and mineral textures. Received: 25 November 1998 / Accepted: 14 June 1999  相似文献   

6.
At Medicine Lake Volcano, California, the compositional gap between andesite (57–62 wt.% SiO2) and rhyolite (73–74 wt.% SiO2) has been generated by fractional crystallization. Assimilation of silicic crust has also occurred along with fractionation. Two varieties of inclusions found in Holocene rhyolite flows, hornblende gabbros and aphyric andesites, provide information on the crystallization path followed by lavas parental to the rhyolite. The hornblende gabbros are magmatic cumulate residues and their mineral assemblages are preserved evidence of the phases that crystallized from an andesitic precursor lava to generate the rhyolite lavas. The andesitic inclusions represent samples of a parental andesite and record the early part of the differentiation history. Olivine, plagioclase and augite crystallization begins the differentiation history, followed by the disappearance of olivine and augite through reaction with the liquid to form orthopyroxene and amphibole. Further crystallization of the assemblage plagioclase, amphibole, orthopyroxene, magnetite, and apatite from a high-SiO2 andesite leads to rhyolite. This final crystallization process occurs on a cotectic that is nearly horizontal in temperature-composition space. Since a large amount of crystallization occurs over a limited temperature interval, a compositional gap develops between rhyolite and high SiO2 andesite.Liquidus surfaces with shallow slopes in temperature-composition space are characteristic of several late-stage crystallization assemblages in the andesite to rhyolite compositional range. Experimentally produced plagioclase+ amphibole+orthopyroxene+magnetite and plagioclase+ augite+low-Ca pyroxene+magnetite cotectics have liquidus slopes that are nearly flat. At other calc-alkaline volcanic centers crystallization processes involving large compositional changes over small temperature intervals may also be important in the development of bimodal volcanism (i.e. the existence of a composition gap). At Mt. Mazama and Mt. St. Helens, USA and Aso Caldera and Shikotsu, Japan the amphibole-bearing assemblage was important. At Krakatau, Indonesia and Katmai, USA, an augite+orthopyroxene-bearing assemblage was important. In addition to its role in the production of a compositional gap between intermediate and rhyolitic lavas, the crystallization process increases the H2O content of the residual liquid. This rapid increase in residual liquid volatile content which results from the precipitation of a large proportion of crystalline solids may be an important factor among several that lead to explosive silicic eruptions.  相似文献   

7.
The Loch Ba ring-dyke in the Tertiary igneous central complex of Mull, N.W. Scotland is composed predominantly of a banded rhyolitic welded tuff. The rhyolite contains numerous inclusions of dark aphanitic rock. The textural relationships between the different rocks indicate rapid, violent and intimate mixing during emplacement of the dyke. The dark glassy component varies continuously from basaltic andesite to andesite, dacite and rhyolite. These glasses are enriched in FeO and depleted in MgO at a given SiO2 content in comparison to other tholeiitic highly differentiated volcanic rocks. The rhyolite contains an average of 4% phenocrysts and is associated with the mineral assemblage plagioclase (An32 to An21)-sanidine(Or50–60)-hedenbergite-fayalite-magnetite-ilmenite-apatite-zircon. Mineral aggregates involving either plagioclase-hedenbergite-ilmenite or plagioclase-fayalite-magnetite are common, but aggregates containing fayalite and hedenbergite together are scarce. The dark glassy components are either phenocryst free or contain less than 0.2% phenocrysts. The main phenocrysts associated with the dark glasses are plagioclase (An65-An30), high calcium clinopyroxene ranging continuously from augite to pure hedenbergite, pigeonite, magnetite, ilmenite and rare apatite. Zoning in minerals is generally weak or absent. The plagioclase feldspar, high calcium clinopyroxenes and pigeonites have similar compositional ranges to the minerals observed in the Middle and Upper Zones of the Skaergaard Intrusion. The mineral compositions are systematically related to SiO2 content and Mg number of the glasses. The data demonstrate that mineral compositions and assemblages similar to the Skaergaard form from silica-rich andesitic to rhyolitic liquids. The various mafic glasses are interpreted to have been derived from a zoned magma chamber underlying an upper layer of rhyolitic magma. Differentiation is attributed to fractional crystallization of the observed mineral assemblages causing SiO2 enrichment and FeO depletion. However, glasses with less than 57% SiO2 have unusual compositions with very low MgO and P2O5 as well as variable Al2O3 and TiO2. Their peculiarities could be explained by andesitic magmas assimilating cumulate mineral aggregates precipitated from more differentiated dacite and rhyolite magmas. The bulk compositions of these cumulates have high FeO, low SiO2 and negligible MgO and P2O5. It is suggested that the high density of the mineral aggregates containing fayalite-hedenbergite-magnetite and ilmenite caused them to settle through the zoned chamber to be assimilated by high temperature, less differentiated magmas.  相似文献   

8.
南极月球陨石MIL05035矿物学、岩石学及演化历史   总被引:1,自引:0,他引:1  
月球陨石MIL05035岩石类型上属于普通辉石低钛玄武岩,粗粒辉长结构,无角砾化。主要矿物为辉石(60.2%)、斜长石(27.3%)和橄榄石(6.05%),次要矿物为石英(4.36%)、钛铁矿(1.25%)和陨硫铁(0.84%),含极少量富Ti、Fe尖晶石和磷灰石,广泛发育由钙铁辉石+铁橄榄石+石英组成的后成合晶三相集合体。辉石颗粒具有明显的化学成分不均匀性和出溶片晶,核部相对贫铁钙富镁(Fs30.2-60.8Wo14.2-35.0),边部富铁钙贫镁(Fs47.5-64.9Wo22.8-44.3)。熔长石化斜长石具有微弱的成分环带,边部相对富碱金属元素(Ab9.3-12.3,Or0.31-1.03),核部则相反(Ab7.6-10.6,Or0.12-0.36),含有未熔长石化的残留斜长石。橄榄石具有粗晶橄榄石(Fa95.5-96.6)和后成合晶中细粒橄榄石(Fa88.9-93.5)两种产状。石英具有脉状、团块状和蠕虫状等产状:脉状石英大部分转变为二氧化硅玻璃,核部石英具有较宽的拉曼谱特征峰(448~502cm-1),证明其经历了冲击变质与退变质作用;团块状石英分布于粗粒橄榄石颗粒间或橄榄石与斜长石和辉石接触边界上,与斜长石构成充填结构;蠕虫状石英分布于细粒后成合晶中。粗粒辉石边部铁辉石和后成合晶中辉石成分的继承性、结构上的延续性、光学特征上的冲击暗化现象、与冲击熔脉结构上的相关性和后成合晶中发育与粗粒辉石方向几乎一致的解理等方面的证据,认为后成合晶可能由于铁辉石在冲击压力释放与温度降低后的退变质作用下分解形成。根据岩石矿物结构观察、成分分析和MELTS模拟表明该陨石母岩的岩浆演化过程可能为:母岩浆在温度降低后首先产生极少量钛铁尖晶石、其次是普通辉石和钙长石先后结晶;随着温度下降,贫钙铁普通辉石、铁钙铁辉石和铁普通辉石等在普通辉石边部大量结晶,钙长石边部分异结晶少量培长石或拉长石;随着温度继续下降,早期结晶的普通辉石析出易变辉石等出溶片晶,橄榄石在辉石和斜长石边部结晶;其后,钛铁矿和陨硫铁析出,石英沿橄榄石和钙长石等先结晶矿物裂隙充填。出露月表后强烈的冲击变质作用使斜长石几乎全部转变为熔长石、石英大部分转变为二氧化硅玻璃,并具有一系列面状变形,冲击熔脉发育,冲击变质程度至少为S5。本研究为月球的岩浆演化和冲击变质过程提供了重要证据。  相似文献   

9.
The compositions of five different coexisting pyroxenes hypersthene, pigeonite and augite in groundmass and bronzite and augite of phenocryst in a tholeiitic andesite from Hakone Volcano, Japan have been determined by the electron probe microanalyser. It is shown that there is a compositional gap of about 25 mole per cent CaSiO3 between groundmass pigeonite and augite, compared with 35 per cent CaSiO3 between phenocrystic augite and bronzite. Subcalcic augite or pigeonitic augite was not found. The groundmass augite, which occurs only as thin rims of pigeonite and hypersthene, is less calcic and more iron-rich than the phenocryst augite. It is also shown that the groundmass pigeonite is 3–4 mole per cent more CaSiO3-rich than the coexisting groundmass hypersthene. The Fe/(Mg + Fe) ratios of these coexisting hypersthene and pigeonite are about 0.31 and 0.33, respectively. It is suggested from these results that a continuous solid solution does not exist between augite and pigeonite of the Fe/(Mg + Fe) ratio at least near 0.3 under the conditions of crystallization of groundmass of the tholeiitic andesite. It is suggested from the Mg-Fe partition and the textural relation that the groundmass augite crystallized from a liquid more iron-rich than that from which groundmass hypersthene and pigeonite crystallized.  相似文献   

10.
Pseudotachylite veins have been found in the mylonite zone of the Hidaka metamorphic belt, Hokkaido, northern Japan. They are associated with faults with WNW-ESE to ENE-WSW or NE-SW trends which make a conjugate set, cutting foliations of the host mylonitic rocks with high obliquity. The mylonitic rocks comprise greenschist facies to prehnite-pumpellyite facies mineral assemblages. The mode of occurrence of the pseudotachylite veins indicates that they were generated on surfaces of the faults and were intruded as injection veins along microfractures in the host rocks during brittle deformation in near-surface environments. An analysis of the deformational and metamorphic history of the Hidaka Main Zone suggests that the ambient rock temperature was 200–300° C immediately before the formation of the Hidaka pseudotachylite. Three textural types of veins are distinguished: cryptocrystalline, microcrystalline and glassy. The cryptocrystalline or glassy type often occupies the marginal zones of the microcrystalline-type veins. The microcrystalline type is largely made up of quench microlites of orthopyroxene, clinopyroxene, biotite, plagioclase and opaque minerals with small amounts of amphibole microlites. The interstices of these microlites are occupied by glassy and/or cryptocrystalline materials. The presence of microlites and glasses in the pseudotachylite veins suggests that the pseudotachylites are the products of rapid cooling of silicate melts at depths of less than 5 km. The bulk chemical composition of the pseudotachylite veins is characterized by low SiO2 and a high water content and is very close to that of the host mylonitic rocks. This indicates that the pseudotachylite was formed by virtual total melting of the host rocks with sufficient hydrous mineral phases. Local chemical variation in the glassy parts of the pseudotachylite veins may be due to either crystallization of quench microlites or the disequilibrium nature of melting of mineral fragments and incomplete mixing of the melts. Pyroxene microlites show a crystallization trend from hypersthene through pigeonite to subcalcic augite with unusually high Al contents. The presence of pigeonite and high-Al pyroxene microlites, of hornblende and biotite microlites and rare plagioclase microlites may indicate the high temperature and high water content of the melt which formed the pseudotachylite veins. The melt temperatures were estimated to be up to 1100° C using a two-pyroxene geothermometer. Using published data relating water solubilities in high-temperature andesitic magmas to pressure, a depth estimate of about 4 km is inferred for the Hidaka pseudotachylites. Evidence derived from pseudotachylites in the Hidaka metamorphic belt supports the conclusion that pseudotachylite is formed by frictional melting along fault surfaces at shallow depths from rocks containing hydrous minerals.  相似文献   

11.
On Rhum, Eigg, Canna and Muck Tertiary volcanics rest upon a Mesozoic or Pre-Mesozoic basement. Aphyric, olivine-phyric, and plagioclase-phyric basalts are recognized. The aphyric basalts are mildly alkaline or transitional types with either a few percent normative nepheline or normative hypersthene. They have anomalously low concentrations of Rb, Sr and K2O compared to Tertiary tholeiites from the same province.Aphyric hawaiites, and mugearties are found on all the islands, but are particularly abundant on Rhum. The volcanics from Bloodstone Hill, Rhum, originally described as mugearites are anomalous in that they are quartz normative and contain both augite and hypersthene, in contrast to the normal one-pyroxene rocks of the alkali basalt-trachyte association (Muir and Tilley, 1961). These volcanics have closer affinities to the icelandites, the presence of basic plagioclase xenocrysts suggesting an hybrid origin.Olivine and plagioclase are involved in the low-pressure fractionation of the transitional basalts, whereas pyroxene and titanomagnetie play only minor roles. Consequently, the suppression of titanomagnetite crystallization results in an initial trend towards iron enrichment. The presence of both oversaturated and undersaturated derivitives following the hawaiite stage of differentiation, reflects variation in the amount of extracted pyroxene and titanomagnetite.Felsites and pitchstones intrude the volcanic pile on Eigg. The felsites carry corroded quartz crystals and rare alkali feldspar. The more crystal rich pitchstones generally contain augite, hypersthene, zoned plagioclase and titanomagnetite. One from Rudh an Tancaird contains alkali feldspar, titanomagnetite and ferrohedenbergite.Whole rock analyses and microprobe analyses of feldspars and pyroxenes indicate that the acid volcanics are not genetically related to the basalt-hawaiite-mugearite lineage. The felsites appear to have been derived from Torridonian arkose by partial melting, but the pitchstones could only be derived by anatexis of Lewisian gneiss basement (see Dunham, 1968) substantially more basic than that outcropping on Rhum.It is suggested that the low concentrations of Rb, Sr, and K2O in the alkaline and transitional basalts, mitigates against extensive pre-eruptive differentiation. Possibly the basalts could have been derived by partial melting of a mantle depleted in these elements.  相似文献   

12.
Three genetically unrelated magma suites are found in the extrusivesequences of the Troodos ophiolite, Cyprus. A stratigraphicallylower pillow lava suite contains andesite and dacite glassesand shows the crystallization order plagioclase; augite, orthopyroxene;titanomagnetite (with the pyroxenes appearing almost simultaneously).These lavas can in part be correlated chemically and mineralogicallywith the sheeted dikes and the upper part of the gabbro complexof the ophiolite. The second magma suite is represented in astratigraphically upper extrusive suite and contains basalticandesite and andesite glasses with the crystallizaton orderchromite; olivine; Ca-rich pyroxene; plagioclase. This magmasuite can be correlated chemically and mineralogically withparts of the ophiolitic ultramafic and mafic cumulate sequence,which has the crystallization order olivine; Ca-rich pyroxene;orthopyroxene; plagioclase. The third magma suite is representedby basaltic andesite lavas along the Arakapas fault zone andshows a boninitic crystallization order olivine; orthopyroxene;Ca-rich pyroxene; plagioclase. One-atmosphere, anhydrous phaseequilibria experiments on a lava from the second suite indicateplagioclase crystallization from 1225?C, pigeonite from 1200?C,and augite from 1165?C. These experimental data contrast withthe crystallization order suggested by the lavas and the associatedcumulates. The observed crystallization orders and the presenceof magmatic water in the fresh glasses of all suites are consistentwith evolution under relatively high partial water pressures.In particular, high PH2O (1–3 kb) can explain the lateappearances of plagioclase and Ca-poor pyroxene in the majorityof the basaltic andesite lavas as the effects of suppressedcrystallization temperatures and shifting of cotectic relations.The detailed crystallization orders are probably controlledby relatively minor differences in the normative compositionsof the parental magmas. The basaltic andesite lavas are likelyto reach augite saturation before Ca-poor pyroxene saturation,whereas the Arakapas fault zone lavas, which have relativelyless normative diopside and more quartz, reached the Ca-poorpyroxene-olivine reaction surface and crystallized Ca-poor pyroxeneafter olivine.  相似文献   

13.
Pb contents were determined by isotope dilution in separated glass, sanidine, and plagioclase from 18 rocks ranging in composition from basalt to rhyolite. These data indicate that Pb is partitioned into silicate melt relative to plagioclase, but is equally distributed between melt and sanidine. Plagioclase/glass distribution coefficients increase from 0.1 to 0.7 in going from basalt to rhyolite. This relationship suggests that the distribution coefficient is dependent upon bulk composition, temperature, or both. Sanidine/glass distribution coefficients are close to unity in rocks ranging in composition from quartz latite to rhyolite. The variation in Pb contents in a natural magma series from Craters of the Moon National Monument, Idaho, indicates that minerals (olivine, plagioclase, magnetite, apatite and clinopyroxene) fractionated from these magmas all have very low crystal/liquid distribution coefficients for Pb.  相似文献   

14.
This investigation describes five Mesozoic dolerite dikes which intrude Paleozoic metamorphic and igneous rocks of the Inner Piedmont of western South Carolina. The dikes are vertical or nearly so and strike approximately N40° W. Three major northeast-trending faults also occur in the study area. Left lateral displacement of one dolerite is documented at a locality near Cleveland, South Carolina. Elsewhere, several of the dolerite dikes appear to terminate at or near the faults. — The dolerite dikes have subophitic to microporphyritic textures and consist principally of plagioclase (generally An70–80), olivine (dominantly Fo80–90) and augite with subordinate pigeonite, titanomagnetite, chromite and brown, partly glassy mesostasis. In one dike pyroxene compositions trend from augite to ferroaugite in contrast to an augitesubcalcic augitepigeonite trend characteristic of the other dolerites. The contrasting trends primarily result from differences in SiO2 abundance in the dolerite magmas. — Major and trace element analyses indicate the presence of two different olivine-normative dolerite magma types. The two magma types are not related by near surface crystal fractionation. Models for genesis of the olivine-normative dolerite magmas by partial melting of a plagioclase peridotite upper mantle source region are presented. The models require that the source region be enriched in LREE and incompatible elements such as Rb, Ba, Hf and Th relative to Cl chondritic abundances. One magma type appears to represent a primary dolerite magma that ascended from the source region with little subsequent compositional change. The second magma type most likely experienced assimilation of clinopyroxene-garnet (eclogite) during ascent, thereby acquiring a REE pattern with a less steep negative slope for the LREE and a slight positive slope in the HREE.  相似文献   

15.
Rabaul caldera is a large volcanic depression at the north-east tip of New Britain, Papua New Guinea. The lavas range in composition from basalt to rhyolite and have a calc-alkalic affinity but also display features typical of tholeiites, including moderate absolute iron enrichment in flows cropping out around the caldera. The basalts contain phenocrysts of plagioclase and clinopyroxene with less abundant olivine and titanomagnetite. In the basaltic andesites olivine is rare, while orthopyroxene and titanomagnetite are common along with plagioclase and clinopyroxene. Orthopyroxene is also found mantling olivine in some of the basalts while in both rock types pigeonitic augite is a fairly common constituent of the groundmass. Plagioclase in both basalt and basaltic andesite often exhibits sieve texture and analysis of the glass blebs show them to be of similar composition to the bulk rock. Phenocrystic clinopyroxene is a diopsidic augite in both basalt and basaltic andesite. Al2O3 content of the clinopyroxene is moderately high (4%) and often shows considerable variation in any one grain. Calculations show that the microphenocrysts probably crystallised near the surface, while phenocrysts crystallised at around 7 kb (21 km). Neither the basalts nor the basaltic andesites would have been in equilibrium at any geologically reasonable P and T with quartz eclogite. Equilibration between mantle peridotite and a. typical Rabaul basaltic liquid could have occurred around 35 kb and 1270 °C. A basaltic andesite liquid yields a temperature of 1263 °C and a pressure of 28 kb for equilibration with mantle peridotite.Partial melting of sufficient volumes of mantle peridotite at these P's and T's requires about 15% H2O, but there is no evidence that these magmas ever contained large amounts of water. It is proposed that the Rabaul magmas were initially generated by partial melting of subducted lithosphere and subsequently modified by minor partial melting as they passed through the overlying mantle peridotite.  相似文献   

16.
We use comprehensive geochemical and petrological records from whole-rock samples, crystals, matrix glasses and melt inclusions to derive an integrated picture of the generation, accumulation and evacuation of 530 km3 of crystal-poor rhyolite in the 25.4 ka Oruanui supereruption (New Zealand). New data from plagioclase, orthopyroxene, amphibole, quartz, Fe–Ti oxides, matrix glasses, and plagioclase- and quartz-hosted melt inclusions, in samples spanning different phases of the eruption, are integrated with existing data to build a history of the magma system prior to and during eruption. A thermally and compositionally zoned, parental crystal-rich (mush) body was developed during two periods of intensive crystallisation, 70 and 10–15 kyr before the eruption. The mush top was quartz-bearing and as shallow as ~3.5 km deep, and the roots quartz-free and extending to >10 km depth. Less than 600 year prior to the eruption, extraction of large volumes of ~840 °C low-silica rhyolite melt with some crystal cargo (between 1 and 10%), began from this mush to form a melt-dominant (eruptible) body that eventually extended from 3.5 to 6 km depth. Crystals from all levels of the mush were entrained into the eruptible magma, as seen in mineral zonation and amphibole model pressures. Rapid translation of crystals from the mush to the eruptible magma is reflected in textural and compositional diversity in crystal cores and melt inclusion compositions, versus uniformity in the outermost rims. Prior to eruption the assembled eruptible magma body was not thermally or compositionally zoned and at temperatures of ~790 °C, reflecting rapid cooling from the ~840 °C low-silica rhyolite feedstock magma. A subordinate but significant volume (3–5 km3) of contrasting tholeiitic and calc-alkaline mafic material was co-erupted with the dominant rhyolite. These mafic clasts host crystals with compositions which demonstrate that there was some limited pre-eruptive physical interaction of mafic magmas with the mush and melt-dominant body. However, the mafic magmas do not appear to have triggered the eruption or controlled magmatic temperatures in the erupted rhyolite. Integration of textural and compositional data from all available crystal types, across all dominant and subordinate magmatic components, allow the history of the Oruanui magma body to be reconstructed over a wide range of temporal scales using multiple techniques. This history spans the tens of millennia required to grow the parental magma system (U–Th disequilibrium dating in zircon), through the centuries and decades required to assemble the eruptible magma body (textural and diffusion modelling in orthopyroxene), to the months, days, hours and minutes over which individual phases of the eruption occurred, identified through field observations tied to diffusion modelling in magnetite, olivine, quartz and feldspar. Tectonic processes, rather than any inherent characteristics of the magmatic system, were a principal factor acting to drive the rapid accumulation of magma and control its release episodically during the eruption. This work highlights the richness of information that can be gained by integrating multiple lines of petrologic evidence into a holistic timeline of field-verifiable processes.  相似文献   

17.
Diffuse streaks in diffraction patterns of synthetic pyroxene single crystals at elevated temperatures are used to determine which reactions are initiated and how they proceed. The samples investigated are a) a host orthopyroxene (Wo4En83Fs13) containing oriented pigeonite (Wo6En78Fs16) parallel to (100) and b) a pigeonite (Wo8En75Fs17). The maximum temperatures were 820° C and 1,015° C, respectively. No partial melting occurs at these temperatures, all reactions are in the subsolidus. In case a) augite is formed parallel to the (001) plane of pigeonite, but the augite is not exsolved by the pigeonite. This is proved by the absence of the obligatory streaks between corresponding reflections in highly resolved precession photographs. Instead, there are streaks from augite to the corresponding reflections of the host orthopyroxene. Example b) demonstrates that the temperature of the high-low transformation of pigeonite is very sensitive to the Ca content and clearly depends on the exsolution of augite. This augite is oriented parallel to (100) of pigeonite, not to (001). Both the high and the low pigeonite are present over a range of ~150° C, while the exsolution of augite continues. Simultaneously, orthopyroxene is also formed sharing (100) of pigeonite. There seems to be an indication that only low pigeonite inverts to orthopyroxene.  相似文献   

18.
The products of the 1974 eruption of Fuego, a subduction zone volcano in Guatemala, have been investigated through study of silicate melt inclusions in olivine. The melt inclusions sampled liquids in regions where olivine, plagioclase, magnetite, and augite were precipitating. Comparisons of the erupted ash, groundmass, and melt inclusion compositions suggest that the inclusions represent samples of liquids present in a thermal boundary layer of the magma body. The concentrations of H2O and CO2 in glass inclusions were determined by a vacuum fusion manometric technique using individual olivine crystals (Fo77 to Fo71) with glass inclusion compositions that ranged from high-alumina basalt to basaltic andesite. Water, Cl, and K2O concentrations increased by a factor of two as the olivine crystals became more iron-rich (Fo77 to Fo71) and as the glass inclusions increased in SiO2 from 51 to 54 wt.% SiO2. The concentration of H2O in the melt increased from 1.6 wt.% in the least differentiated liquid to about 3.5% in a more differentiated liquid. Carbon dioxide is about an order of magnitude less abundant than H2O in these inclusions. The gas saturation pressures for pure H2O in equilibrium with the melt inclusions, which were calculated from the glass inclusion compositions using the solubility model of Burnham (1979), are given approximately by P(H2O)(Pa)=(SiO2−48.5 wt.%) × 1.45 × 107. The concentrations of water in the melt and the gas saturation pressures increased from about 1.5% to 3.5% and from 300 to 850 bars, respectively, during pre-eruption crystallization.  相似文献   

19.
Basaltic andesites are the dominant Tongan magma type, and are characterized by phenocrysts of augite, orthopyroxene (or rarely pigeonite), and calcic plagioclase (modally most abundant phase, and interpreted as the liquidus phase). The plagioclase phenocrysts exhibit slight oscillatory reverse zoning except for abrupt and thin more sodic rims, which are interpreted to develop during eruptive quenching. These rim compositions overlap those of the groundmass plagioclase. The pyroxene phenocrysts also exhibit only slight compositional zoning except for the outermost rim zones; the compositions of these rims, together with the groundmass pyroxenes, vary throughout the compositional range of subcalcic augite to ferroaugite through pigeonite to ferropigeonite, and are interpreted in terms of quench-controlled crystallization. This is supported, for example, by the random distribution of Al solid solution in the groundmass pyroxenes, compared to the more regular behaviour of Al in the phenocryst pyroxenes. The analysed Niua Fo'ou olivine tholeiites are aphyric; groundmass phases are plagioclase (An17–88), olivine (Fa18–63), titanomagnetite (usp. 59–73), and augite-ferroaugite which does not extend to subcalcic compositions; this is interpreted to be due to higher quenching temperatures and lower viscosities of these tholeiites compared to the basaltic andesites.Application of various geothermometers to the basaltic andesites suggest initial eruptive quenching temperatures of 1,008–1,124 ° C, plagioclase liquidus temperatures (1 bar) of 1,210–1,277 ° C, and orthopyroxene-clinopyroxene equilibration of 990–1,150 ° C. These calculated temperatures, together with supporting evidence (e.g. absence of olivine and amphibole, liquidus plagioclase, and plagioclase zoning patterns) are interpreted in terms of phenocryst crystallization from magmas that were either strongly water undersaturated, nearly anhydrous, or at best, water saturated at very low pressures (< 0.5 kb). This interpretation implies that these Tongan basaltic andesites did not originate by any of the currently proposed mechanisms involving hydrous melting within or above the Benioff zone.  相似文献   

20.
Zagami consists of a series of increasingly evolved magmatic lithologies. The bulk of the rock is a basaltic lithology dominated by pigeonite (Fs28.7–54.3), augite (Fs19.5–35.0) and maskelynite (Ab42–53). Approximately 20 vol.% of Zagami is a basaltic lithology containing FeO-enriched pyroxene (pigeonite, Fs27.0–80.8) and mm- to cm-sized late-stage melt pockets. The melt pockets are highly enriched in olivine-bearing intergrowths, mesostases, phosphates (both whitlockite and water-bearing apatite), Fe,Ti-oxides and sulfides. The systematic increases in abundances of late-stage phases, Fs and incompatible element (e.g., Y and the REEs) contents of pigeonite, Ab contents of maskelynite, and FeO concentrations of whitlockite all point to a fractional crystallization sequence.The crystallization order in Zagami and the formation of these various lithologies was controlled by the abundances of iron, phosphorus, and calcium. During fractional crystallization, iron and phosphorus enrichment occurred, ultimately forcing the crystallization of calcium phosphates and olivine-bearing intergrowths. The limited amount of calcium in the melt and its partitioning between phosphates and silicates controlled the crystallization of phosphates, plagioclase, pigeonite, and augite. The presence of these FeO-enriched, water-poor late-stage lithologies has important implications. Discrepancies between experimental and petrologic studies to infer the history of basaltic shergottites may be partially explained by the use of starting compositions which are too FeO-poor in the experimental studies. The water-poor nature of the late-stage melt pockets suggests crystallization from a very dry magma, although whether this magma was always dry or experienced significant near-surface degassing remains an open question. Finally, the presence of fractional crystallization products within Zagami suggests that this may be a relatively common process on Mars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号