首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
 Sedimentary processes in the Stromboli Canyon and in the Marsili Basin are studied on the basis of side-scan sonographs. The basin margins are characterized by slump scars, gullies, channels, and large debrites on the Calabrian slope and by straight chutes of fast downslope sediment transport and blocky–hummocky avalanche deposits on the flanks of the Stromboli volcano. In the Stromboli Canyon and in minor deep-sea channels, sediment transport by turbidity currents generates sediment waves. Between the basin margins and the abyssal plain, the outcropping volcanic basement traps part of the sediment coming from the marginal areas. The abyssal plain is characterized by low relief lobes and ponded sediments.  相似文献   

2.
 The De Gerlache Seamounts actually consist of two medium-sized guyots, with summits at depths of 350–600 m. Acoustic profiler data show no significant sediment on these guyots. Alkaline basalts dredged from the summit of the eastern guyot yield K/Ar ages between 20.1±1.0 and 23.2±1.2 Ma. Basement ridges and sediment-filled troughs between the guyots are associated with the prominent gravity anomaly extending north from the Antarctic margin. This structure possibly played a role in the guyot formation, however, the question of how the De Gerlache Seamounts are related to this gravity anomaly remains uncertain. Received: 13 February 1997 / Revision received: 30 September 1997  相似文献   

3.
The Mississippi Fan is a Quarternary accumulation composed of more than seven elongated fan lobes. Isopach and structure maps show frequent shifting of these lobes. The Mississippi Canyon, formed by retrogressive slumping, connects to the youngest fan lobe. The upper fan-lobe is characterized by a large, incised, partially infilled, leveed channel. The middle fan-lobe is aggradational, convex in cross section, with a channel-levee complex on its apex. The lower fan-lobe contains a recently active small channel and several abandoned ones. Depositional patterns can be explained by several processes: “fluvial,” debris flows, and turbidity currents. Margin setting represents fan and/or source area  相似文献   

4.
 Near-surface sediment geoacoustic and physical properties were measured from a variety of unconsolidated carbonate sediments in the Lower Florida Keys. Surficial values of compressional and shear speed correlate with sediment physical properties and near-surface acoustic reflectivity. Highest speeds (shear 125–150 m s-1; compressional 1670–1725 m s-1) are from sandy sediments near Rebecca Shoal and lowest speeds (shear 40–65 m s-1; compressional 1520–1570 m s-1) are found in soft, silty sediments which collect in sediment ponds in the Southeast Channel of the Dry Tortugas. High compressional wave attenuation is attributed to scattering of acoustic waves from heterogeneity caused by accumulation of abundant shell material and other impedance discontinuities rather than high intrinsic attenuation. Compared to siliciclastic sediments, carbonate sediment shear wave speed is high for comparable values of sediment physical properties. Sediment fabric, rather than changes due to the effects of biogeochemical processes, is responsible for these differences.  相似文献   

5.
 Acoustic reflection signatures of four hydro-carbon seeps were classified using near-bottom 25-kHz echosounder profiles. Echo patterns were compared with ground-truth data obtained by submersible observations and shallow coring. Six echo types were distinguished: strong reflections from (1) exposed or (2) buried hard substrates, such as authigenic carbonate or gas hydrate; acoustic scattering in (3) unlayered or (4) layered sediments owing to gas, shells, or disseminated carbonates; (5) attenuation caused by gas; and (6) undisturbed sediments. Echo type distributions suggest that high spatial variability indicates a younger, vigorous seep, whereas extensive hard substrate implies an older, encrusted seep. Received: 29 May 1998 / Revision received: 7 October 1998  相似文献   

6.
 Numerous small (50- to 300-m-diameter) strong-backscatter objects were imaged on the 1200- to 1350-m deep crest of Vestnesa Ridge (Fram Strait) and along the 900- to 1000-m deep northeast margin of the Storegga slide valley. Ground-truthing identified most of these objects as 2- to 10-m-deep pockmarks, developed within soft, acoustically stratified silty clays (typical wet bulk density: 1400–1600 kg m-3; sound speed: 1480– 1505 m s-1; porosity, 65–75%; shear strength: 5–10 kPa; water content: 80–120%; and thermal conductivity: 0.8–0.9 W m-1 deg C-1 in the top 3 m). Gas wipeouts, enhanced reflectors, and reflector discontinuities indicate recent or ongoing activity, but the absence of local heat flow anomalies suggests that any upward fluid flows are modest and/or local.  相似文献   

7.
Horizontal and meridional volume transports on timescales from intra-seasonal to interannual in the North Pacific subarctic region were investigated using a reanalysis dataset for 1993–2001 that was constructed from an assimilation of the TOPEX altimeter and in situ data into an eddy-permitting North Pacific ocean general circulation model. The barotropic flow is excited along east of the Emperor Seamounts by the western intensification dynamics. The volume transport of this flow compensates for that across the interior region east of the Seamounts below the summit depth of the Seamounts. The Oyashio, which is also considered as a compensation flow for the transport in the whole interior region, includes baroclinic as well as barotropic components. Baroclinic transports in the whole interior region exceed those in the western boundary region in the upper (200–1000 m) and lower (2000–5000 m) layers, and the total transport is northward (southward) in the upper (lower) layer. These excesses of the baroclinic transport are balanced by a vertical transport of the meridional overturn. The meridional overturn has a complementary relation to the basin-scale baroclinic circulation in the North Pacific subactic region. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Located in the south-eastern part of the Bay of Biscay, the Capbreton Canyon incises the continental shelf up to the 30 m isobath contour, and acts as a natural conduit for continental and shelf-derived sediments. EM1000 multibeam bathymetry shows two main features characterising the canyon — a deeply entrenched meandering channel, bordered by fluvial-like terraces constituting large sediment traps. A dataset of cores and seismic profiles together with a multibeam bathymetry map has enabled the characterisation of recent sedimentary activity in the axial channel and on the terraces. Data analysis evidenced the major role of the canyon head in recent sediment dynamics. This part of the canyon is a temporary reservoir for sediments, accumulated by coastal hydrodynamic processes. Exceptional climatic, tectonic or hydrodynamic events can mobilise the sediments and generate gravity-driven flows. Under the present-day sea-level highstand conditions, these flows are not powerful enough to bring their bedload to the deep sea, and are confined mainly to the upper part of the canyon. Turbidity currents model the axial channel pathway and are at the origin of terrace formation. Terraces in the Capbreton Canyon are not typical but rather are reduced to confined levees. Three factors control the vertical growth of a terrace: (1) the amount of overspilled sediments brought by turbidity currents, (2) hemipelagic sedimentation and (3) terrace height. The amount of sediment spilling over a terrace decreases with increased terrace elevation. Concurrently, the proportion of hemipelagic fallout depositing on a terrace increases. Terraces are considered to be fossil when the height of the terrace prevents further deposition by overspilling. The terraces studied in this paper are interpreted as having formed during the Holocene, implying that the sediment dynamics of the Capbreton Canyon is continuous through time. Highstand periods differ from lowstand periods because they show a decrease in the energy of erosive processes. Temporal variations in erosive and depositional processes in the canyon are controlled by the Adour River, which delivers large amounts of sediment to the system.  相似文献   

9.
 Recent sediment accumulation rates are 18–230 mg cm-2 yr-1 (0.02–0.2 cm yr-1) based on excess 210Pb activity profiles in the southwestern part of the East Sea (Sea of Japan). Assuming no mixing beneath surface mixed layers, 210Pb-derived sediment accumulation rates are 18–32 mg cm-2 yr-1 in the northern part of the Yamato Ridge and the Ulleung Basin, 29–136 mg cm-2 yr-1 in the Korea Plateau, and 230 mg cm-2 yr-1 in the southern shelf. These values generally agree with long-term sedimentation rates estimated from dated ash layers. Received: 6 October 1995 / Revision received: 31 May 1996  相似文献   

10.
 Major variations in type and rate of tectonic movement in the southwestern margin of the Ulleung Basin coincide in time with changes in stratal patterns at succession boundaries, suggesting that the effect of tectonism was dominant for the development of sequence architecture. During the back-arc opening (16–12 Ma), the rise of relative sea level and the high rate of sediment supply gave rise to sequences with sigmoid progradational patterns. During the back-arc closing (12–6.5 Ma), fall- and rise-dominated relative sea-level fluctuations resulted in sequences with varying stratal patterns depending upon changes in deposition rate. The rise-dominated relative sea level has been prevalent during the later stage (6.5 Ma–Present) with low sedimentation rate. Received: 16 January 1996 / Revision received: 7 February 1997  相似文献   

11.
 Hydrothermal vent fields south of the Garret Fracture zone were sampled for the isotope composition of helium and oxygen ([18O]H2O/[16OH2O). The helium isotopes end-member (3He / 4He=8.3×R a and [4He]≈1.2–2.4×10-5 cm3 STP g-1) is quite similar to other known hydrothermal sites pointing to the homogeneous helium composition of the upper mantle. The δ18O end-member value (δ18O≈0.5–0.6‰) confirms previous suggestions from other sites and from isotope modeling, that hydrothermal fluids are slightly enriched in 18O relative to the ocean as a result of water–rock interactions at high temperature. Received: 11 December 1995/Revision received: 20 December 1996  相似文献   

12.
 Debris lobes with characteristic lengths, widths, and thickness of 30–200 km, 2–10 km, and 10–50 m, respectively, represent the main building blocks of deep-sea fans along the Norwegian–Barents Sea continental margin. Their formation is closely related to the input of clay-rich sediments to the upper continental slope by glaciers during periods of maximum ice advance. It is likely that slide release was a consequence of an instability arising from high sedimentation rates on the upper continental slope. The flow behavior of the debris lobes can be described by a Bingham flow model. Received: 17 November 1995 / Revision received: 24 June 1996  相似文献   

13.
The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E–W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky–hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N–S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E–W fan channel was probably affected by the E–W fault and the basement morphology.  相似文献   

14.
 Measurements of physical and acoustic properties within the top 40 cm of sediment indicate that there are three classes of parameter variability relevant to acoustic bottom scattering at the Marquesas Keys and Dry Tortugas sites. The three classes of variability, spatially and temporally different in terms of scale, are generated by biological and physical processes acting on sediments. Interplay of bioturbation, trawling and storm events create fine laminations of sand–silt–clay and high gravel-size mollusk shell content at the Marquesas Keys site; the predominance of biological processes creates strong surficial gradients and lateral variability in sediment properties at the Dry Tortugas site.  相似文献   

15.
Based on the interpretation of high resolution 2D/3D seismic data,sedimentary filling characteristics and fullfilled time of the Central Canyon in different segments in the Qiongdongnan Basin of northwestern South China Sea have been studied.The research results indicate that the initial formation age of the Central Canyon is traced back to 11.6 Ma(T40),at which the canyon began to develop due to the scouring of turbidity currents from west to east.During the period of 11.6–8.2 Ma(T40–T31),strong downcutting by gravity flow occurred,which led to the formation of the canyon.The canyon fillings began to form since 8.2 Ma(T31) and were dominated by turbidite deposits,which constituted of lateral migration and vertical superposition of turbidity channels during the time of8.2–5.5 Ma.The interbeds of turbidity currents deposits and mass transport deposits(MTDs) were developed in the period of 5.5–3.8 Ma(T30–T28).After then,the canyon fillings were primarily made up of large scale MTDs,interrupted by small scale turbidity channels and thin pelagic mudstones.The Central Canyon can be divided into three types according to the main controlling factors,geomorphology-controlled,fault-controlled and intrusionmodified canyons.Among them,the geomorphology-controlled canyon is developed at the Ledong,Lingshui,Songnan and western Baodao Depressions,situated in a confined basin center between the northern slope and the South Uplift Belt along the Central Depression Belt.The fault-controlled canyon is developed mainly along the deep-seated faults in the Changchang Depression and eastern Baodao Depression.Intrusion-modified canyon is only occurred in the Songnan Low Uplift,which is still mainly controlled by geomorphology,the intrusion just modified seabed morphology.The full-filled time of the Central Canyon differs from west to east,displaying a tendency of being successively late eastward.The geomorphology-controlled canyon was completely filled before3.8 Ma(T28),but that in intrusion-modified canyon was delayed to 2.4 Ma(T27) because of the uplifted southern canyon wall.To the Changchang Depression,the complete filling time was successively late eastward,and the canyon in eastern Changchang Depression is still not fully filled up to today.Difference in full-filled time in the Central Canyon is mainly governed by multiple sediment supplies and regional tectonic activities.Due to sufficient supply of turbidity currents and MTDs from west and north respectively,western segment of the Central Canyon is entirely filled up earlier.Owing to slower sediment supply rate,together with differential subsidence by deep-seated faults,the full-filled time of the canyon is put off eastwards gradually.  相似文献   

16.
 Swath bathymetric, gravity, and magnetic studies were carried out over a 55 km long segment of the Central Indian Ridge. The ridge is characterized by 12 to 15 km wide rift valley bounded by steep walls and prominent volcanic constructional ridges on either side of the central rift valley. A transform fault at 7°45′S displaces the ridge axis. A mantle Bouguer anomaly low of −14 mGals and shallowing of rift valley over the middle of the ridge segment indicate along axis crustal thickness variations. A poorly developed neovolcanic zone on the inner rift valley floor indicate dominance of tectonic extension. The off-axis volcanic ridgs suggest enhanced magmatic activity during the recent past. Received: 24 May 1996 / Rivision received: 13 January 1997  相似文献   

17.
 An instrumented tetrapod was deployed for three weeks on the Dry Tortugas Bank at a depth of 26 m in February 1995. Bottom roughness was dominated by shrimp burrows and worm mounds with rms roughness amplitudes ranging from 0.47 to 1.75 cm. Logarithmic velocity profiles show apparent total roughness heights ranging from 0.30 to 1.45 cm, values consistent with observed biological roughness. The bed sediments were weakly bound by an algal crust at the sediment–water interface. When this bound layer was scraped away by a mooring that was accidentally dragged, sharp-crested wave-induced ripples appeared within the resulting swath. We conclude that physically induced roughness is biologically suppressed, but if dominant, would be significantly higher than the prevailing biological roughness.  相似文献   

18.
Bonanza Canyon is a complex canyon system on the slope from the intermittently glaciated Grand Bank on the south side of Orphan Basin. A 3D seismic reflection volume, 2D high-resolution seismic reflection profiles and ten piston cores were acquired to study the evolution of this canyon system in relation to glacial processes on the continental shelf and the effects of different types of turbidity currents on the development of deep water channels. Mapped reflector surfaces from the 3D seismic volume show that the Bonanza Canyons developed in a depression created by a large submarine slide of middle Pleistocene age, coincident with the onset of glacigenic debris flows entering western Orphan Basin. Two 3–5 km wide, flat-floored channels were cut into the resulting mass-transport deposit and resemble catastrophic glacial meltwater channels elsewhere on the margin. Both channels subsequently aggraded. The eastern channel A became narrower but maintained a sandy channel floor. The western channel, B, heads at a spur on the continental slope and appears to have been rather passively draped by muds and minor sands that have built 1500-m wave length sediment waves.Muddy turbidites recorded by piston cores in the channel and on the inter-channel ridges are restricted to marine isotope stage (MIS) 2 and were deposited from thick, sheet-like, and sluggish turbidity current derived from western Orphan Basin that resulted in aggradation of the channels and inter-channel ridges. Sandy turbidites in channels and on inner levees were deposited throughout MIS 2–3 and were restricted to the channels, locally causing erosion. Some coincide with Heinrich events. Channels with well-developed distributaries on the upper slope more readily trap the sediments on Grand Bank to form sandy turbidity currents. Channel B dominated by muddy turbidity currents has wide and relatively smooth floor whereas channel A dominated by sandy turbidity currents has a sharp geometry.  相似文献   

19.
 Much of the modern upper (proximal) Monterey fan is a channel–levee complex, the Upper Turbidite Sequence (UTS), that was deeply eroded after the channel breached a volcanic ridge to reach a deeper base level. Ages of sediment samples collected with the ALVIN submersible from the deepest outcrop within the channel–levee system, 390 m below the adjacent western levee crest, indicate that the UTS deposits accumulated at ≥1 m ka-1 during the last 500 ka. Neogene and Early Pleistocene sediment accumulation on the fan prior to the UTS was much slower (<0.03 m ka-1), and underlying turbidite systems(?) had substantially different morphologic expression(s). Received: 10 February 1998 / Revision received: 6 July 1998  相似文献   

20.
 Multibeam bathymetric data collected in St. George’s Bay, Newfoundland, show glacial and postglacial landforms in a 100-m-deep basin offshore from a barrier. Back-scatter data provide information on sediment lithology. Features undetected by previous conventional surveys include large bedforms on the surface of a barrier platform and submarine fans on its flanks. The data demonstrate that sediment transport processes are more complex than was previously believed. Multibeam bathymetric images are the sea-floor equivalents of air photographs. They can be used effectively to plan conventional acoustic surveys. Received: 16 February 1996 / Revision received: 4 September 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号