首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three Australian brown coals have been separated into humin and humic acid fractions and studied by high resolution solid state 13C NMR spectroscopy and Fourier transform IR spectroscopy. The aromatic rings of the humic acids are highly substituted showing that extensive cross linking must have occurred during formation from wood lignin and tannin. However, the humins contain more aliphatic carbon and hydrogen than the corresponding humic acids. This shows that little cross linking has occurred with other components of the brown coal such as resins, waxes cutin and algal detritus, and cross linking has not rendered the aromatics alkali insoluble. The kinetics of extraction are complex and not simple first order. This is reflected in the chemical composition of the humic acid which is extraction temperature dependent. We also observed that there is a conversion of aromatic carbon to aliphatic carbon and gas during extraction, probably by alkaline oxidation, resulting in ring opening. A range of suitable model compounds have been studied to confirm this finding. Such a mechanism may account for the modification of lignin in oxidising environments such as those occurring in the initial stages of coalification (lignite or brown coal formation) and in soils.  相似文献   

2.
Humic matter fractions from modern sediments of Lake Huron and Lake Michigan have been compared. Large yields of saccharinic acids from alkaline hydrolysis suggest that these fractions contain large portions of carbohydrate materials. Evidence for contributions of aquatic lipid (C-16 fatty acids) and of liginin (phenolic acids) to these sediments is also present in the hydrolysis products. Qualitative differences among fulvic acid, humic acid and humin from the same lake are minor, suggesting common (or similar) organic sources for these fractions. The lability of sedimentary humic matter to alkaline hydrolysis is inversely related to its degree of exposure to oxidative weathering. Lability may also be related to diagenetic state as fulvic acids generally yield greater quantities of hydrolysis components than humic acids which in turn yield more than humin.  相似文献   

3.
13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra.  相似文献   

4.
CPMAS 13C NMR spectra of two estuarine sedimentary humic acids were recorded on a Bruker WP-SY 200 spectrometer. Both samples were found to contain similar aromatic and aliphatic carbon fractions. The sedimentary humic acids have unusually high methoxyl contents and more than one type of methoxyl is indicated. The high methoxyl content may be related to relatively low values for estuarine sedimentary humic acid-metal complexes. Carbohydrate contents of the humic acid samples were also found to be low.  相似文献   

5.
To obtain information on the contribution of aromatic fragments to the chemical structure of humic substances, we carried out a study on the [1H]NMR and [13C]NMR spectra of humic and fulvic acids and their oxidative degradation products extracted from an Andosol soil.[1H]NMR spectra of all organic fractions present considerable adsorption between 7.4 and 8.8 ppm, due to the presence of aromatic protons.The percentages of aromatic protons in respect to the total amount of protons are as follows: FA 20%, HA 19%, degraded FA < 12%, degraded HA 14%. The values indicate that the contribution of aromatic structures to the humic substances is significant, also considering that they are highly substituted.The degraded fractions contain smaller amounts of aromatic protons, because degradation causes the opening of the aromatic rings. Thus results obtained from the degradation do not seem to be reliable for defining the importance of aromatic structures in humic substances.Also the [13C]NMR spectra show signals in the aromatic region which derive from unsubstituted carbon atoms, while signals originating from tertiary carbon atoms merge with the noise. We believe that, at present, [1H]NMR spectroscopy is more suited for studying the role played by aromatic compounds in organic soil fractions.  相似文献   

6.
A South Australian Tertiary brown coal is fractionated into humic acid and kerogen fractions. These related samples are then subjected to a number of different analytical techniques including infrared and13C-Nuclear Magnetic Resonance spectroscopies and pertrifluoroacetic acid oxidation. Structural conclusions are drawn from an integrated consideration of the data. Brown coal aliphatic structure is concentrated in the kerogen and the solvent soluble polar acid fractions. The humic acids are the most aromatic and contain a high degree of hydrogen bonding. Only very minor amounts of long polymethylene chain structures are observed in the humic acids, in complete contrast to the kerogen fraction. Different organic detrital origins are proposed for the coal fractions.  相似文献   

7.
1H NMR spectra of humic (HA) and fulvic (FA) acids and their oxidative degradation products are reported. The HA shows the presence of -(CH2)n - CH3 (n > 6) chemical fragments belonging to n-alkanes and/or n-fatty acids physically adsorbed onto the macromolecule structure. These fragments are absent in the FA fraction. Both humic fractions reveal the presence of similar amounts of aromatic protons which partly undergo exchange phenomena. The importance of this experimental observation is discussed. Oxidative degradation seems to cause partial cleavage of aromatic rings, more pronounced in the FA than in the HA. The degraded FA shows a higher total acidity and a higher phenolic OH content than the degraded HA. Both degraded fractions display some sharp singlet signals at 1.9 and 3.9 ppm arising from protons belonging to repetitive chemical fragments probably formed during the oxidation reaction. Tentative assignments of these signals are given. A general analysis of the HA and FA degraded spectra seems to indicate that the chemical fragments which undergo peracetic oxidation are substantially similar. The extent of oxidation of the two humic fractions is different. The HA degradation products reveal the presence of oligomeric structures, whereas the degraded FA appears less resistant to the oxidizing agent.  相似文献   

8.
Peptides were released from organic matter fractions of three Italian soils (humin, humic and fulvic acids), when the samples were hydrolyzed in Ba(ON)2-saturated solution at 105°C for 2 hr. The peptides obtained were separated using electrophoresis and paper chromatography. The presence of polypeptides in the soil organic matter was indicated by: (1) their hydrolysis by pronase; (2) the amino acids released by 6 N HCl hydrolysis; (3) The comparison of i.r. spectra of humic fractions before and after hydrolysis with 6 N HCl.Attempts at isolating the native proteinaceous compounds using electrophoresis in polyacrylamide gel failed; additionally, our attempts to hydrolyze proteinaceous components enzymatically in unfractionated soil organic matter, as well as in its fractions, before and after methylation, with pepsin, papain and pronase, were unsuccessful. Pronase demonstrated a weak proteolytic activity only at very low substrate-enzyme ratios (20 : 1) in humic and fulvic fractions and in whole phyrophosphate extract. Deproteinated substrates treated with pronase also released free amino acids, suggesting autodigestion.In humin, humic and fulvic fractions we found a total amino acid content of 40–45%, 12–24% or 1–85, respectively. Amino acid recovery from single fractions was about 70–80% of the total content in the unfractionated soil.  相似文献   

9.
《Applied Geochemistry》2006,21(7):1226-1239
Natural organic matter (NOM) from the Han River, Korea was fractionated into humic and non-humic fractions by absorbing onto XAD-7HP, and these fractions were analyzed using UV-absorption, and for dissolved organic C (DOC). The humic fraction (i.e. humic substances; HS) was extracted and its characteristics were compared to commercial humic materials using various spectroscopic methods such as Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR) and fluorescence spectroscopy. The humic fraction as organic C was 47.0% on the average, however, a rainfall event brought a higher humic fraction into Han River water. The molar ratios of H/C and O/C in the HS from Han River water (HRHS) were 1.40 and 0.76, respectively, and the ratio of aliphatic to aromatic protons in the HS (PAl/PAr ratio) was 5.8. Aromaticity and humification degree (i.e., degree of condensation) of HRHS were relatively lower than those from other humic materials, while the portion of oxygenated functional groups was relatively higher. FT-IR, 1H-NMR and fluorescence spectroscopy showed distinct differences between HRHS and the commercial humic materials. Commercial humic materials are not representative of HS extracted from Han River water. The fluorescence spectra, relatively simple measurements, were found to be most useful as fingerprints for humic materials from particular sources.  相似文献   

10.
《Applied Geochemistry》2006,21(9):1455-1468
Cyclic base extraction is a commonly used method for the isolation of humic acids from soils and sediments. However, every extract may differ in chemical composition due to the complex nature of humic acids. To better understand the chemical composition of each extract, the heterogeneous property of humic acids and their speciation in environmental samples, eight fractions of humic acids were obtained in the present work by progressive base-extraction of Pahokee peat, and their chemical composition was characterized using two complementary pyrolytic techniques, namely conventional pyrolysis and methylation pyrolysis (TMAH) GC/MS. These quick and effective procedures provide an insight into the structure of macromolecules. The work shows that the lignin-derived aromatic compounds are major components of pyrolysates in both pyrolytic techniques, while aliphatic compounds originating from microorganisms and plants are minor components. Other compounds derived from proteins and carbohydrates at lower concentrations were also detected. Fatty acids were found in the pyrolysis without methylation, indicating their association with humic acid in a free state. These compounds are different from those formed during pyrolysis with in situ methylation, where fatty acids are generally believed to be the cleavage products of carboxylic groups bound to humic acids. A relative decreasing abundance of aromatic components and increasing abundance of aliphatic components in the pyrolysates as the peat was progressively extracted was also observed in this work, suggesting that the extraction of more hydrophobic aliphatics may be delayed in comparison to the aromatic components. Speciation and origin differences may also be important particularly considering that the contribution from lignin organic matter decreased with extraction number, as the contribution of microbial organic matter increased. The observed change in chemical composition with the extracted fractions indicates again that the humic acid distribution and their speciation are complex, and complete extractions are necessary to obtain a representative humic acid sample.  相似文献   

11.
The peat-forming systems of the Okefenokee Swamp are viewed as modern progenitors of coal. Taxodium and Nymphaea-derived peat-forming systems were characterized in terms of (1) organic fractions and (2) the distribution of organic/inorganic sulfur in each organic fraction (water soluble, benzene/methanol soluble, humin, humic acid, fulvic acid). The humin fraction is the largest organic fraction in both environments, approaching 70% of the total organic matter in the Nymphaea-derived environment. Humin origins are discussed in terms of a humic acid precursor, and undecomposed plant material. It is suggested that each depth of peat represents a diagenetic history of events which the authors believe occurred primarily when the currently buried peat was at the surface. The sulfur content of both peat-forming areas is low (0.23–0.27%); organic sulfur is the dominant sulfur form. Humin contains 50–80% of the total sulfur and of this, 80% is organic sulfur. Ester-sulfate appears to be especially prevalent in the fulvic acid fraction. The sulfur content of freshwater-derived peats is similar in quantity and distribution to that found in low sulfur coals.  相似文献   

12.
超滤分级研究腐殖酸的结构组成   总被引:12,自引:0,他引:12  
利用切面流超滤技术将Pahokee泥炭腐殖酸分为相对分子质量不同的8个级分,并综合应用元素分析和傅立叶变换红外光谱(FT-IR)、固体13C核磁共振(13C NMR)和裂解-气相色谱-质谱(Py-GC-MS)技术详细研究了分级前后腐殖酸分子的结构组成特征.研究表明,随相对分子质量的增加,腐殖酸分子中的元素碳、元素氢含量增加;而元素氧和含氧官能团含量减少;并且低相对分子质量级分中含有相对较多的木本植物来源的芳香结构,而高相对分子质量级分中含相对较多微生物和植物来源的聚脂肪结构.本研究结果不仅说明环境中的腐殖酸分子是由许多相对分子质量不同、结构性质各异的腐殖酸分子组成,而且这些腐殖酸分子可能与腐殖酸形成过程中各种来源的物质在不同阶段的腐殖化产物有关,表明了腐殖酸类地质大分子物质的非均一性和复杂性.  相似文献   

13.
A sequential fractionation procedure employing a series of selected mild organic solvents of different polarity has been applied for the isolation of chemically different organic fractions from a brown coal humic acid. Elemental composition, molecular weight distribution, i.r. and electron spin resonance analysis were carried out on the isolated humic fractions. They were characterized by: (a) a low polydispersity, (b) a decreasing aliphatic and increasing aromatic character along the series, (c) very different molecular weight which significantly correlated with E4/E6 ratios (particle aggregation and molecular association) and free radical concentrations (chemical and biochemical activity). Significant correlations were found between physico-chemical parameters of the isolated humic fractions, i.e. Mn, Mw, E4/E6 ratios, spins/g contents and the dielectric constants of the solvents used. This suggested the efficiency of the applied procedure in isolating chemically different organic fractions from the bulk, original humic acid.  相似文献   

14.
13C and 1H NMR spectra were obtained for humic acids isolated from marine sediments. NMR shows great promise in identifying structural components of humic acids as some new and interesting structural features are identified. Aliphatic structures were found to constitute a much larger fraction of humic acids than previously thought, and they appeared to be highly branched. Although the aromatic content of terrestrial humic acid was found to be lower than expected, the aromaticity appears to be a specific discriminator of terrestrial/aquatic source types. A humic acid isolated from an anoxic algal sapropel was found to be composed predominantly of polyuronic acids and different than other aquatic sedimentary humic substances.  相似文献   

15.
Freshwater humic substances from Lake Celyn, Gwynedd, N. Wales have been investigated by 13C-NMR spectroscopy. Carboxyl, aromatic, o-alkyl and alkyl resonances can be recognised. Varying pulse delay from 0.43 s to 2.5 sec has little effect on the magnitude of the signal ascribed to aromatic carbon, but there is a small nuclear Overhauser effect (1.45 at a pulse delay of 0.8 sec).The results show-that 24% of the Lake Celyn humic acid carbon is carboxyl and 40% is aromatic. The high proportion of aromatic carbon suggests the Lake Celyn humic acid is largely formed from terrestrial humic substances from the surrounding peaty watershed.  相似文献   

16.
In 65 samples, we got values (unusually replicable and consistent for this type of work) of concentration, 14C/13C (AMS) age, and δ13C for: peat, dissolved organic carbon (DOC), peat fractions, and dissolved CO2 and CH4 at 50-cm intervals down to 700 cm in Ellergower Moss, a rainwater-dependent raised (domed) bog in southwest Scotland. (1) We attribute the consistency of the results to Ellergower Moss being unusually homogeneous, with unusually low hydraulic conductivity, and containing only a few gas spaces; and to the sampling methods including 18-month equilibration of in situ samplers. (2) The dissolved gas concentration depth profiles are convex and very similar to each other, though CO2 is 5-10 times more concentrated than CH4, while the profile of DOC is concave. (3) The age profile of peat is near linearly proportional to depth; that for DOC is about 500-1000 yr younger than the peat at the same depth; the dissolved gases are 500-4300 years younger than the peat. The age of the operational peat fractions humic acid and humin is similar to that of whole peat. (4) The δ13C profile for deep peat is almost constant; δ13C-CO2 is more enriched than the peat (δ13C-CO2 35‰ more); δ13C-CH4 is the same amount more depleted. Nearer the surface both dissolved gases become steadily more depleted, δ13C is about 20‰ less at the surface. (5) A simulation shows that mass flow can account for the concentration and age profiles of DOC, but for the gases diffusion and an additional source near the surface are needed as well, and diffusion accounts for over 99% of the dissolved gas movements. (6) The same processes must operate in other peatlands but the results for Ellergower should not be extrapolated uncritically to them.  相似文献   

17.
Studies were conducted to characterize soil humin by acid hydrolysis.Two humin samples collected from two different types of soil,namely chernozem and laterite,which are widespread over a vast area from the north to south of China,were hyrolyzed under reflux with 0.5M H2SO4or 3M H2SO4for 4h.The results showed that 25%-29% of organic carbon and 46%-54%of organic nitrogen could be hydrolyzed by 0.5M H2SO4;36%-40%of organic carbon and 93%-97% of organic nitrogen hydrolyzed by 3M H2SO4.The C/N ration in hydrolyzed organic matter is lower than that in soil humin and that in organic matter hydrolyzed by 3M H2SO4 is lower than that in organic matter hydrolyzed by 0.5M H2SO4.The proportion of nitrogen hydrolyzed from humin is markedly larger than that from the original soil and also markedly larger than that from humic acid fraction.Only 3%-7% of nitrogen in humin exists in a relatively stable from,which is not easy to hydrolyze.There in little nitrogen that occurs in the form of heterocyclic rings in humin.Incubation experiments showed that the newly formed organic matter can be hydrolyzed more easily.  相似文献   

18.
Humic substances were isolated from ocean, estuarine water and fresh water using a two column array of XAD-8 and XAD-4 resins in series. The extracted fulvic acids and XAD-4 fraction from different origins were characterized using UV–vis., molecular fluorescence, Fourier transform infrared (FTIR) spectroscopy and cross polarization magic angle spinning (CPMAS)-13C nuclear magnetic resonance (NMR) spectroscopy. The isolation procedure allowed us to obtain the necessary amount of sample for characterization, even in the case of open ocean water, which has a very low amount of dissolved organic carbon (DOC). Humic substances from the open ocean showed the lowest chromophore and fluorophore contents and showed relatively greater fluorescence at lower wavelengths than those from fresh water. FTIR and 13C NMR spectra highlighted the idea that humic substances from a marine environment have a more branched aliphatic structure and less aromatic structure than those highly influenced by terrestrial sources. The spectra also suggest that the open ocean humic substances have a higher content of olefinic carbons than aromatic- or alkyl-substituted carbons.  相似文献   

19.
Aqueous solutions of increasing pH (7.0, 10.6 and 12.6) were used to extract exhaustively the organic matter (OM) from a pelo-stagnogley (heavy clay) soil in long term cultivation. OM yield was 1.7 times greater when the extracts were processed using an XAD-8 and XAD-4 resin-in-tandem procedure than that from the procedure of the International Humic Substances Society (IHSS). The substantial difference can be attributed to the amount retained by the XAD-4 resin, which is lost in the IHSS process. Elemental, δ13C, δ15N, cation exchange capacity, neutral sugars, amino acids and solid state CPMAS 13C NMR analyses indicated significant, but rational similarities and differences between the various fractions isolated. There was strong NMR evidence for material derived from lignin in all the humic and fulvic acid isolates. The signals were attenuated in the more transformed/oxidized fractions isolated at lower pH. Novel humic acid fractions enriched in carbohydrate/peptide functionalities were isolated from the more hydrophobic extracts at pH 10.6 and 12.6. Isolates from XAD-4, of microbial origin, were enriched in neutral sugars but not in amino acids, and had minimal aromaticity. Components isolated from the cultivated soil were broadly similar to those from a comparable soil in long term grassland. The compositions of fractions isolated from the drainage water were similar to those extracted from the soil but had higher carboxyl content. The amount and composition of the various organic fractions in grassland and the continuously cropped soil are discussed in terms of their potential to contribute to carbon sequestration by soil under similar management regimes.  相似文献   

20.
Different studies have already pointed out the influence of clays during the analysis of pure organic compounds (especially alkanols, alkanoic acids) as well as macromolecules (humic acids) by flash pyrolysis-gas chromatography–mass spectrometry (PyGC–MS). Especially, the occurrence of clay minerals favors the generation of aromatic units such as alkylbenzenes and polycyclic aromatic hydrocarbons. So as to better identify the nature of the organic compounds which are sensitive to the presence of clays during flash pyrolysis, a humic acid mixed in variable proportions of a Na-homoionic clay was tested. The smectite/humic acid mixtures containing from 10% to 100% humic acid allowed us to identify the progressive disappearance or appearance of specific compounds after PyGC–MS.n-Alk-1-enes disappear when the clay proportion is higher than 67%. For higher contents of Na-smectite, n-alkanes become less and less abundant with a preferential consumption of high molecular weight n-alkanes, whereas the aromatic hydrocarbon proportion increases. Moreover, the distribution of each aromatic hydrocarbon family (alkylbenzenes and alkylnaphthalenes) has been investigated. The pyrogram of pure humic acid exhibits a specific distribution of alkylbenzenes and alkylnaphthalenes reflecting the structure of the organic macromolecule. With the increase in clay proportion, these distributions are modified and lead to other distributions with a preferential predominance of thermally stable isomers.Pyrograms of humic acid and undecanoic acid in the presence of 90% of Na-smectite are similar, especially concerning alkylbenzene and alkylnaphthalene distributions. Therefore, clays (Na-smectite in our experiments) in high proportion modify initial organic products by recombination reactions and lead to the generation of new compounds of very similar distribution, whatever the nature of the initial organic matter. Such results underline the very important catalytic properties of clay minerals on functionalized organic matter during flash pyrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号