首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
地球物理   1篇
地质学   19篇
海洋学   1篇
天文学   7篇
自然地理   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   1篇
  2014年   3篇
  2012年   5篇
  2011年   1篇
  2010年   4篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   2篇
  2004年   1篇
  1985年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有29条查询结果,搜索用时 109 毫秒
1.
R.T Clancy  B.J Sandor 《Icarus》2004,168(1):116-121
The 362.156 GHz absorption spectrum of H2O2 in the Mars atmosphere was observed on September 4 of 2003, employing the James Clerk Maxwell Telescope (JCMT) sub-millimeter facility on Mauna Kea, Hawaii. Radiative transfer analysis of this line absorption yields an average volume mixing ratio of 18±0.4 ppbv within the lower (0-30 km) Mars atmosphere, in general accordance with standard photochemical models (e.g., Nair et al., 1994, Icarus 111, 124-150). Our derived H2O2 abundance is roughly three times greater than the upper limit retrieved by Encrenaz et al. (2002, Astron. Astrophys. 396, 1037-1044) from infrared spectroscopy, although part of this discrepancy may result from the different solar longitudes (Ls) of observation. Aphelion-to-perihelion thermal forcing of the global Mars hygropause generates substantial (>200%) increases in HOx abundances above ∼10 km altitudes between the Ls=112° period of the Encrenaz et al. upper limit measurement and the current Ls=250° period of detection (Clancy and Nair, 1996, J. Geophys. Res. 101, 12785-12590). The observed H2O2 line absorption weakens arguments for non-standard homogeneous (Encrenaz et al., 2002, Astron. Astrophys. 396, 1037-1044) or heterogeneous (Krasnopolsky, 2003a, J. Geophys. Res. 108; 2003b, Icarus 165, 315-325) chemistry, which have been advocated partly on the basis of infrared (8 μm) non-detections for Mars H2O2. Observation of Mars H2O2 also represents the first measurement of a key catalytic specie in a planetary atmosphere other than our own.  相似文献   
2.
A sequential fractionation procedure employing a series of selected mild organic solvents of different polarity has been applied for the isolation of chemically different organic fractions from a brown coal humic acid. Elemental composition, molecular weight distribution, i.r. and electron spin resonance analysis were carried out on the isolated humic fractions. They were characterized by: (a) a low polydispersity, (b) a decreasing aliphatic and increasing aromatic character along the series, (c) very different molecular weight which significantly correlated with E4/E6 ratios (particle aggregation and molecular association) and free radical concentrations (chemical and biochemical activity). Significant correlations were found between physico-chemical parameters of the isolated humic fractions, i.e. Mn, Mw, E4/E6 ratios, spins/g contents and the dielectric constants of the solvents used. This suggested the efficiency of the applied procedure in isolating chemically different organic fractions from the bulk, original humic acid.  相似文献   
3.
First measurements of SO2 and SO in the Venus mesosphere (70-100 km) are reported. This altitude range is distinctly above the ∼60-70 km range to which nadir-sounding IR and UV investigations are sensitive. Since July 2004, use of ground-based sub-mm spectroscopy has yielded multiple discoveries. Abundance of each molecule varies strongly on many timescales over the entire sub-Earth Venus hemisphere. Diurnal behavior is evident, with more SO2, and less SO, at night than during the day. Non-diurnal variability is also present, with measured SO2 and SO abundances each changing by up to 2× or more between observations conducted on different dates, but at fixed phase, hence identical sub-Earth Venus local times. Change as large and rapid as a 5σ doubling of SO on a one-week timescale is seen. The sum of SO2 and SO abundances varies by an order of magnitude or more, indicating at least one additional sulfur reservoir must be present, and that it must function as both a sink and source for these molecules. The ratio SO2/SO varies by nearly two orders of magnitude, with both diurnal and non-diurnal components. In contrast to the strong time dependence of molecular abundances, their altitude distributions are temporally invariant, with far more SO2 and SO at 85-100 km than at 70-85 km. The observed increase of SO2 mixing ratio with altitude requires that the primary SO2 source be upper mesospheric photochemistry, contrary to atmospheric models which assert upward transport as the only source of above-cloud SO2. Abundance of upper mesospheric aerosol, with assumption that it is composed primarily of sulfuric acid, is at least sufficient to provide the maximum gas phase (SO + SO2) sulfur reported in this study. Sulfate aerosol is thus a plausible source of upper mesospheric SO2.  相似文献   
4.
In order to examine the extent of the As enrichment and the factors influencing this enrichment in the groundwater of Eastern Croatia, groundwater samples were collected from 56 production wells in two counties, Osijek-Baranja and Vukovar-Srijem, suspected to be more affected. Hydrochemical analyses were performed at all locations including in situ As speciation at 32 locations. Arsenic was detected in 46 out of 56 groundwater samples with total As concentrations up to 491 μg/L. Thirty-six of the studied wells yielded groundwater with total As concentrations that exceeded the WHO Maximum Contaminant Level for arsenic in drinking water of 10 μg/L. Only inorganic As species were detected with arsenite As(III) as the predominant form. The spatial distribution of As in the groundwater was significantly linked with geological, geomorphological and hydrogeological development of the alluvial basin of the Drava and Sava rivers. The most probable groundwater As sources are deeper sediments from the Middle and Upper Pleistocene. The results obtained suggest that biogeochemical processes controlling As concentration in the groundwater are complex and location-specific. Reductive dissolution of Fe oxides, desorption of As from Fe oxides and/or clay minerals as well as competition for the sorption sites with organic matter and phosphate could be the principal mechanisms that control As mobilization. The extent of those processes vary in the different parts of the Drava and Sava depressions and could be linked to different site related parameters, such as lithology, mineralogy, local hydrology and hydrogeology; thus different processes of As mobilization have been proposed for the different types of water in relation to groundwater evolution.  相似文献   
5.
Sub-millimeter 12CO (346 GHz) and 13CO (330 GHz) line absorptions, formed in the mesosphere and lower thermosphere of Venus (70–120 km), have been mapped across the nightside Venus disk during 2001–2009 inferior conjunctions, employing the James Clerk Maxwell Telescope (JCMT). Radiative transfer analysis of these thermal line absorptions supports temperature and CO mixing profile retrievals, as well as Doppler wind fields (described in the companion paper, Clancy et al., 2012). Temporal sampling over the hourly, daily, weekly and interannual timescales was obtained over 2001–2009. On timescales inferred as several weeks, we observe changes between very distinctive CO and temperature nightside distributions. Retrieved nightside CO, temperature distributions for January 2006 and August 2007 observations display strong local time, latitudinal gradients consistent with early morning (2–3 am), low-to-mid latitude (0–40NS) peaks of 100–200% in CO and 20–30 K in temperature. The temperature increases are most pronounced above 100 km altitudes, whereas CO variations extend from 105 km (top altitude of retrieval) down to below 80 km in the mesosphere. In contrast, the 2004 and 2009 periods of observation display modest temperature (5–10 K) and CO (30–60%) increases, that are centered on antisolar (midnight) local times and equatorial latitudes. Doppler wind derived global (zonal and should be SSAS) circulations from the same data do not exhibit variations correlated with these CO, temperature short-term variations. However, large-scale residual wind fields not fit by the zonal, SSAS circulations are observed in concert with the strong temperature, CO gradients observed in 2006 and 2007 (Clancy et al., 2010). These short term variations in nightside CO, temperature distributions may also be related to observed nightside variations in O2 airglow (Hueso, H., Sánchez-Lavega, A., Piccioni, G., Drossart, P., Gérard, J.C., Khatuntsev, I., Zasova, L., Migliorini, A. [2008]. J. Geophys. Res. 113, E00B02. doi:10.1029/2008JE003081) and upper mesospheric SO and SO2 layers (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49–60).The retrieved temperature profiles also exhibit 20 K long-term (2001–2009) variations in nightside (whole disk) average mesospheric (80–95 km) temperatures, similar to 1982–1991 variations identified in previous millimeter CO line observations (Clancy et al., 1991). Global average diurnal variations in lower thermospheric temperatures and mesospheric CO abundances decreased by a factor-of-two between 2000–2002 versus 2007–2009 periods of combined dayside and nightside observations. The infrequency and still limited temporal extent of the observations make it difficult to assign specific timescales to such longer term variations, which may be associated with longer term variations observed for cloud top SO2 (Esposito, L.W., Bertaux, J.-L., Krasnopolsky, V., Moroz, V.I., Zasova, L.V. [1997]. Chemistry of lower atmosphere and clouds. In: Bougher, S.W., Hunten, D.M., Phillips, R.J. (Eds.), VENUS II, 1362pp) and mesospheric water vapor (Sandor, B.J., Clancy, R.T. [2005]. Icarus 177, 129–143) abundances.  相似文献   
6.
The Venus mesosphere constitutes a highly variable transition region between the zonal rotation of the lower atmosphere and the diurnal circulation of the upper atmosphere. It further serves as the primary photochemical region of the Venus atmosphere. We obtained James Clerk Maxwell Telescope (JCMT, Mauna Kea Hawaii) sub-millimeter line observations of mesospheric 12CO and 13CO during coordinated space (MESSENGER and Venus Express) and ground-based observations of Venus in June of 2007. Such CO spectra line measurements support temperature, CO mixing ratio, and wind retrievals over the 80-110 km altitude range, encompassing the upper mesosphere and lower thermosphere of Venus. Five-point beam integrations were obtained across the observed Venus disk, allowing distinction of afternoon (noon to 6 p.m.) versus evening (6 p.m. to midnight) local times and northern (0-60N) versus southern (0-60S) latitudes. Distinctive diurnal variations (noon to midnight) are retrieved for both temperatures above 95 km and CO mixing ratios above 85 km altitudes. Separate CO line maps obtained on (UT) June 2, 3, 6, and 11 indicate moderate daily variability in afternoon and evening CO mixing ratios (20-50%) and temperatures (5-10 K). Average Venus mesospheric temperatures over this period were 10 K warmer than returned from 1978 to 1979 Pioneer Venus or 2000-01 sub-millimeter measurements, without evidence for the very large temperature inversions indicated by Venus Express SPICAV measurements at 90-100 km altitudes (Bertaux, J.L., Vandaele, A.-C., Korablev, O., Villard, E., Fedorova, A., Fussen, D., Quémerais, E., Belyaev, D., Mahieux, A., Montmessin, F., Muller, C., Neefs, E., Nevejans, D., Wilquet, V., Dubois, J.P. Hauchecorne, A., Stepanov, A., Vinogradov, I., Rodin, A., Bertaux, J.-L., Nevejans, D., Korablev, O., Montmessin, F., Vandaele, A.-C., Fedorova, A., Cabane, M., Chassefière, E., Chaufray, J.Y., Dimarellis, E., Dubois, J.P., Hauchecorne, A., Leblanc, F., Lefèvre, F., Rannou, P., Quémerais, E., Villard, E., Fussen, D., Muller, C., Neefs, E., Van Ransbeeck, E., Wilquet, V., Rodin, A., Stepanov, A., Vinogradov, I., Zasova, L., Forget, F., Lebonnois, S., Titov, D., Rafkin, S., Durry, G., Gérard, J.C., Sandel, B., 2007. A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646-649). Measured Doppler shifts associated with June 2 and 11 12CO line center absorptions indicate nearly supersonic (200 m/s, Mach 1) afternoon-to-evening (retrograde) circulation; composed of additive subsolar-to-antisolar (SSAS) and zonal retrograde wind components, which are not separable due to the particular observational geometry.  相似文献   
7.
The loess sequence preserved in the Požarevac brickyard in north-eastern Serbia comprises eight loess units separated by seven paleosols. Geochronological investigation using amino acid racemization and luminescence dating support stratigraphic correlations of loess units L3, S2LL1 and L1 at the Požarevac section with loess of glacial cycles E [Marine Isotope Stage (MIS) 10], D (MIS 9–8), C (MIS 7–6) and B (MIS 5–2) across central Europe. Correlation with the marine oxygen-isotope stratigraphy and associated paleoclimatic inferences are further supported by magnetic susceptibility, particle size and carbonate content measured in Požarevac sediments. Malacological investigations at the Požarevac section reveal the continuous presence of the Chondrula tridens and Helicopsis striata faunal assemblages throughout the last 350 ka. The loess malacological fauna, which is characterized by the complete absence of cold-resistant and cold-preferring species, suggests a stable, dry and relatively warm glacial and interglacial climate, compared with other central European loess localities. Together these data suggest that the south-eastern part of the Carpathian (Pannonian, Middle Danube) Basin was a refugium for warm-preferring and xerophilous land-snails during the generally unfavorable glacial climates of the late Middle and Late Pleistocene.  相似文献   
8.
The competition for anions between the cations of the alkali and alkaline earth metals (to form ion pairs) and the cations of heavy metals (to form complexes) is investigated. The interaction is shown to affect the stability constants of the heavy metal complexes and the nature of the ionic species present in aqueous media of high salinity. The theory is discussed with special reference to NaCl-NaClO4 solutions, seawater and the labile complexes of lead and cadmium.  相似文献   
9.
We use a simple, collision-based, discrete, random abrasion model to compute the profiles for the stoss faces in a bedrock abrasion process. The model is the discrete equivalent of the generalized version of a classical, collision based model of abrasion. Three control parameters (which describe the average size of the colliding objects, the expected direction of the impacts and the average volume removed from the body due to one collision) are sufficient for realistic predictions.  相似文献   
10.
Models of moving interfaces, especially those with stable soliton-like behavior, are of central importance in many areas of physics, for example, surface growth models, chemical waves, and more. Here described for the first time in a realistic geophysical context is a partial differential equation model of bedrock abrasion by unidirectional impacts generalizing earlier pioneering work on pebble shapes by Bloore who treated isotropic impacts (Bloore in Math. Geol. 9:113–122, 1977). The result is a simple geometrical partial differential equation exhibiting circular arcs as solitary wave profiles. The latter seem to be the first known analytic solutions on Bloore-type models. Solitonic behavior, although familiar in many areas of physics, appears not to have been encountered in the geophysical literature. Not only are the existence and stability of these stationary, traveling shapes demonstrated here by numerical experiments based on finite difference approximations, but it is also shown that the results received here are consistent with recent laboratory experiments. The simulations within show that, depending on initial profile shape and other parameters, these circular profiles may evolve via long transients, which in a geological setting, may appear as noncircular stationary profiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号