首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   

2.
The 2011 eruption of Nabro volcano, Eritrea, produced one of the largest volcanic sulphur inputs to the atmosphere since the 1991 eruption of Mt. Pinatubo, yet has received comparatively little scientific attention. Nabro forms part of an off-axis alignment, broadly perpendicular to the Afar Rift, and has a history of large-magnitude explosive silicic eruptions, as well as smaller more mafic ones. Here, we present and analyse extensive petrological data obtained from samples of trachybasaltic tephra erupted during the 2011 eruption to assess the pre-eruptive magma storage system and explain the large sulphur emission. We show that the eruption involved two texturally distinct batches of magma, one of which was more primitive and richer in sulphur than the other, which was higher in water (up to 2.5 wt%). Modelling of the degassing and crystallisation histories demonstrates that the more primitive magma rose rapidly from depth and experienced degassing crystallisation, while the other experienced isobaric cooling in the crust at around 5 km depth. Interaction between the two batches occurred shortly before the eruption. The eruption itself was likely triggered by recharge-induced destabilisation of vertically extensive mush zone under the volcano. This could potentially account for the large volume of sulphur released. Some of the melt inclusions are volatile undersaturated, and suggest that the original water content of the magma was around 1.3 wt%, which is relatively high for an intraplate setting, but consistent with seismic studies of the Afar plume. This eruption was smaller than some geological eruptions at Nabro, but provides important insights into the plumbing systems and dynamics of off-axis volcanoes in Afar.  相似文献   

3.
The Tengchong volcanic field comprises numerous Quaternary volcanoes in SW China. The volcanic rocks are grouped into Units 1–4 from the oldest to youngest. Units 1, 3 and 4 are composed of trachybasalt, basaltic trachyandesite and trachyandesite, respectively, and Unit 2 consists of hornblende-bearing dacite. This rock assemblage resembles those of arc volcanic sequences related to oceanic slab subduction. Rocks of Units 1 and 3 contain olivine phenocrysts with Fo contents ranging from 65 to 85 mole%, indicating early fractionation of olivine and chromite prior to the eruption of magma. All the rocks from Units 1, 3 and 4 have very low PGE concentrations, with <0.05 ppb Ru and Rh, <0.2 ppb Pt and Pd, and Ir that is commonly close to, or slightly higher than detection limits (0.001 ppb). The small variations of Pt/Pd ratios (0.4–2.2) are explained by fractionation of silicate and oxide minerals. The 5-fold variations in Cu/Pd ratios (200,000–1,000,000) for the lavas at Tengchong, which do not vary systematically with fractionation, likely reflect retention of variable amounts of residual sulfide in the mantle source. In addition, all the rocks from Units 1, 3 and 4 have primitive mantle-normalized chalcophile element patterns depleted in PGE relative to Cu. Together with very low Cu/Zr ratios (0.06–0.24), these rocks are considered to have undergone variable degrees of sulfide-saturated differentiation in shallow crustal staging magma chambers. Large amounts of olivine and chromite crystallization probably triggered sulfide saturation of magma at depth for Units 1 and 3, whereas crustal contamination was responsible for sulfide saturation during ascent of magma for Unit 4.  相似文献   

4.
Changbaishan, an intraplate volcano, is characterized by an approximately 6 km wide summit caldera and last erupted in 1903. Changbaishan experienced a period of unrest between 2002 and 2006. The activity developed in three main stages, including shield volcano(basalts), cone-construction(trachyandesites to trachytes with minor basalts), and caldera-forming stages(trachytes to comendites). This last stage is associated with one of the more energetic eruptions of the last millennium on Earth, the 946 CE, VEI 7 Millennium Eruption(ME),which emitted over 100 km3 of pyroclastics. Compared to other active calderas, the plumbing system of Changbaishan and its evolution mechanisms remain poorly constrained. Here, we merge new whole-rock,glass, mineral, isotopic, and geobarometry data with geophysical data and present a model of the plumbing system. The results show that the volcano is characterized by at least three main magma reservoirs at different depths: a basaltic reservoir at the Moho/lower crust depth, an intermediate reservoir at 10–15 km depth, and a shallower reservoir at 0.5–3 km depth. The shallower reservoir was involved in the ME eruption, which was triggered by a fresh trachytic melt entering a shallower reservoir where a comenditic magma was stored. The trachytes and comendites originate from fractional crystallization processes and minor assimilation of upper crust material, while the less evolved melts assimilate lower crust material. Syn-eruptive magma mingling occurred during the ME eruption phase. The magma reservoirs of the caldera-forming stage partly reactivate those of the cone-construction stage. The depth of the magma storage zones is controlled by the layering of the crust.The plumbing system of Changbaishan is vertically extensive, with crystal mush reservoirs renewed by the replenishment of new trachytic to trachyandesitic magma from depth. Unlike other volcanoes, evidence of a basaltic recharge is lacking. The interpretation of the signals preceding possible future eruptions should consider the multi-level nature of the Changbaishan plumbing system. A new arrival of magma may destabilize a part of or the entire system, thus triggering eruptions of different sizes and styles. The reference model proposed here for Changbaishan represents a prerequisite to properly understand periods of unrest to potentially anticipate future volcanic eruptions and to identify the mechanisms controlling the evolution of the crust below volcanoes.  相似文献   

5.
In this article, we summarize some recent results of measurements of temporal changes of active volcanoes using seismic noise cross-correlations. We first present a novel approach to estimate volcano interior temporal seismic velocity changes. The proposed method allows to measure very small velocity changes (≈ 0.1%) with a time resolution as small as one day. The application of that method to Piton de la Fournaise Volcano (La Réunion Island) shows velocity decreases preceding eruptions. Moreover, velocity changes from noise cross-correlations over 10 years allow to detect transient velocity changes that could be due to long-lasting intrusions of magma without eruptive activity or to pressure buildup associated to the replenishing of the magma reservoir. We also present preliminary results of noise cross-correlation waveform perturbation associated with the occurrence of dike injection and volcanic eruption. We show that such an analysis leads us to locate the areas of dike injection and eruptive fissures at Piton de la Fournaise Volcano. These recent results suggest that monitoring volcanoes using seismic noise correlations should improve our ability to forecast eruptions, their intensity and thus potential environmental impact.  相似文献   

6.
In study of plagioclases, amphiboles, and melt inclusions, we have determined the physicochemical parameters of crystallization of melts in the intermediate suprasubduction chambers of volcanoes representing different types of subduction magmatism on the Kamchatka Peninsula: the young basaltic systems of Tolbachik Volcano (Klyuchevskaya group) and ancient Ichinskii Volcano (Sredinnyi Ridge) with alternating basaltic and felsic eruptions. For Tolbachik Volcano, we have found that plagioclase lapilli formed from basaltic melts at 1075-1115 °C and low (< 1 kbar) pressures at depths of 2-3 km. Andesite minerals crystallized within a wider range of temperatures and pressures (1220-1020 °C and 3.3-1.6 kbar) in an intermediate chamber at depths of < 10 km. The melts were generated in basaltic magma chambers (detected well by geophysical methods at depths of 18-20 km) with minimum temperatures of ~ 1290 °C. For Ichinskii Volcano, three levels of intermediate chambers are distinguished. Andesites formed at depths of < 23 km at < 1225 °C. Dacitic melts were generated from an intermediate chamber (14 km) at 1135-1045 °C as a result of differentiation of andesitic magmas. Dacites formed in the uppermost horizons (9-3 km) at 1130-1030 °C. Despite the similarity between differentiation processes in the intermediate chambers of the Kamchatka volcanoes, each volcano is characterized by specific magmatism. The lavas of basaltic volcanoes (Tolbachik) and those of andesitic volcanoes (Ichinskii) differ in genesis and differentiation.  相似文献   

7.
The Longgang volcanic field, located in northeastern China, is volcanically active with a number of eruptions during the Quaternary but the chronology of the eruptions is poorly defined. Some tephra layers are well preserved in the annually laminated sediments of maar lakes in the region, and facilitate the construction of a much improved chronological framework for the volcanic history of the area. The results of our investigations reveal that three basaltic explosive eruptions occurred at AD 460, 11460 cal yr BP and 14000 cal yr BP, respectively. The largest explosive basaltic eruption (AD 460) produced a thick black scoria layer in the Longgang volcanic field, including lakes. The tephra distribution and chronological data suggest that this eruption is likely to be from the Jinlongdingzi volcano. Two basaltic flood eruptions occurred at Jinlongdingzi. The earlier basaltic eruption produced a lava flow that spread over a forest and encased standing trees. Two radiocarbon ages obtained from charcoal samples collected from the burned remains of these trees are 1828–1989 cal yr BP and 2164–2359 cal yr BP. In the most recent stage of volcanism, the lava flow extended only ca. 2 km, and flowed into Lake Dalongwan. From the present status of the forest ecosystem, which has not yet reached the fully mature successional stage, we estimate that this lava is very young (ca. a few hundreds years old). Jinlongdingzi is a potentially dangerous volcano. Monitoring and assessment of the potential hazards in the Longgang volcanic field should be carried out in the future.  相似文献   

8.
In order to identify the mud diapirs and mud volcanoes off SW Taiwan, we have examined ∼1500 km long MCS profiles and related marine geophysical data. Our results show ten quasi-linear mud diapirs, oriented NNE–SSW to N–S directions. Thirteen mud volcanoes are identified from the multibeam bathymetric data. These mud volcanoes generally occur on tops of the diapiric structures. Moreover, the active mud flow tracks out of mud volcanoes MV1, MV3 and MV6 are observed through the high backscatter intensity stripes on the sidescan sonar images. The heights of the cone-shaped mud volcanoes range from 65 m to 345 m, and the diameters at base from 680 m to 4100 m. These mud volcanoes have abrupt slopes between 5.3° and 13.6°, implying the mudflow is active and highly viscous. In contrast, the flat crests of mud volcanoes are due to relative lower-viscosity flows. The larger cone-shaped mud volcanoes located at deeper water depths could be related to a longer eruption history. The formation of mud diapirs and volcanoes in the study area are ascribed to the overpressure in sedimentary layers, compressional tectonic forces and gas-bearing fluids. Especially, the gas-bearing fluid plays an important role in enhancing the intrusion after the diapirism as a large amount of gas expulsions is observed. The morphology of the upper Kaoping Slope is mainly controlled by mud diapiric intrusions.  相似文献   

9.
The volume and style of volcanism change periodically, with cycles of three main scales, which have different causes and effects. Short cycles of volcanic activity last from tens to thousands of years and are associated with periodic accumulation of magma in shallow chambers and its subsequent eruptions. The eruptions either have internal causes or are triggered externally by variations in solar activity, tidal friction, and Earth’s rotation speed. Medium-scale cycles, hundreds of thousands to millions of years long, are due to changes in spreading and subduction rates. Long cycles (30–120 Ma) are related to ascent of mantle plumes, which take away material and heat from the core-mantle boundary and change the convection rate. These appear to be the major controls of the average periodicity. Acceleration of asthenospheric convection caused by periodic plume activity pulses can change spreading rates and, correspondingly, the relative positions of moving plates. The medium-scale periodicity of volcanism is illustrated by the examples of Kamchatka and Japan, where the intensity of subduction magmatism changes periodically in response to the opening of back-arc basins (Shikoku, Sea of Japan, and South Kurile basin).  相似文献   

10.
The size distributions of crystals of olivine, plagioclase and oxides of the 1991/93 eruption at Mt. Etna (Italy) are analyzed. The simultaneous collection of this information for different minerals gives precious insight into the cooling history of lavas. Three distinct episodes are detectable: a storage of the magma in a deep reservoir, characterized by nearly constant and low nucleation and growth rates (near to equilibrium); an ascent phase, with an ever increasing nucleation rate related to volatile exsolution; and finally a quenching phase. In addition to geochemical and geophysical evidence, the similarity of the crystal size distributions of the present eruption with those of previous ones of this century makes it possible to exclude that crystal size distributions of Etnean lavas are due to mixing of different populations. This strongly suggests that the main features of the volcano feeding system have not changed despite observed variations in the magma output rates.  相似文献   

11.
活火山是指1万年来有过喷发历史的全新世火山。火山的高分辨年代学对火山灾害评估和火山分类具有重要意义。对于缺乏历史记载的全新世火山,直接对火山岩进行同位素定年很困难。本文利用具有高时间分辨率的镭-钍-铀非平衡确定中国东部年轻火山的年龄。根据镭-钍-铀同位素,海南岛的马鞍岭和雷虎岭是全新世火山(马鞍岭:4.3ka;雷虎岭:4.7ka);镜泊湖火山(4.9ka)也是全新世火山;龙岗火山存在晚更新世和全新世活动(7.0ka,15.0ka);大兴安岭阿尔山和诺敏河Ra/Th非平衡消失但~(230)Th/~(238)U非平衡显著,属于晚更新世喷发(阿尔山:63ka;诺敏河:71ka)。海南岛的马鞍岭火山、雷虎岭火山和东北地区的龙岗火山、镜泊湖火山,是4座活火山。至于东北地区的阿尔山和诺敏河火山是否是活火山,有待测试更多样品的Ra/Th同位素。五大连池老黑山和火烧山有历史喷发记录,这与它们都存在显著Ra/Th非平衡一致。五大连池老黑山和火烧山的岩浆滞留年龄分别小于4.2ka和3.2ka,岩浆上升速率 18~23m/y。  相似文献   

12.
Haibo Zou  Qicheng Fan  Hongfu Zhang 《Lithos》2010,119(3-4):289-296
The Changbaishan (Tianchi) volcano extending across the border of northeast China and North Korea erupted ~ 100 km3 peralkaline rhyolites around 1000 AD. This Millennium eruption of the Changbaishan volcano is one of the two largest explosive eruptions in the past 2000 years. Here we report the results of uranium–thorium dating of zircons from the Changbaishan volcanic rocks. Our data indicate that the rhyolitic magmas were stored in the crust for only 8.2 ± 1.2 ka prior to eruption. Based on titanium-in-zircon geothermometer and alkali feldspar-glass geothermometer, the rhyolitic magmas were formed at a relatively low temperature (~ 740 ± 40 °C). This storage time is very short compared with other large volume catastrophic silicic eruptions. This work demonstrates that peralkaline rhyolitic magmas from the Changbaishan volcano can develop into a catastrophic eruptive phase quite quickly.  相似文献   

13.
Sanshui basin is one of the typical Mesozoic–Cenozoic intra-continental rift basins with voluminous Cenozoic volcanic rocks in southeastern China. Thirteen cycles of volcanic eruptions and two dominant types of volcanic rocks, basalt and trachyte–rhyolite, have been identified within the basin. Both basalt and trachyte–rhyolite members of this bimodal suit have high values of εNd (+2.3 to +6.2) and different Sr isotopic compositions (initial 87Sr/86Sr ratios are 0.70461–0.70625 and 0.70688–0.71266 for basalts and trachyte–rhyolite, respectively), reflecting distinct magma evolution processes or different magma sources. The results presented in this study indicate that both of the trachyte–rhyolite and basaltic magmas were derived from similar independent primitive mantle, but experienced different evolution processes. The trachyte-rhyolitic magma experienced significant clinopyroxene and plagioclase fractionational crystallization from deeper magma chamber with significant crustal contamination, while the basaltic magmas experienced significant olivine and clinopyroxene fractionational crystallization in shallower magma chamber with minor crustal contamination. New zircon U–Pb dating confirms an initial volcanic eruption at 60 Ma and the last activity at 43 Ma. Geologic, geochemical, and geochronological data suggest that the inception of the Sanshui basin was resulted from upwelling of a mantle plume. The Sanshui basin widened due to subsequent east–west extension and the subsequent volcanism constantly occurred in the center of the basin. Evidence also supports a temporal and spatial association with other rift basins in southeastern China. The upwelling mantle plume became more active during late Cenozoic time and most likely triggered opening of other basins, including the young South China Sea basin.  相似文献   

14.
Summary Reheated silicate melt inclusions in volcanic rock samples from Mt. Somma-Vesuvius, Italy, have been analyzed for 29 constituents including H2O, S, Cl, F, B, and P2O5. This composite volcano consists of the older Mt. Somma caldera, formed between 14 and 3.55 ka before present, and the younger Vesuvius cone. The melt inclusion compositions provide important constraints on pre-eruptive magma geochemistry, identify relationships that relate to eruption behavior and magma evolution, and provide extensive evidence for magmatic fluid exsolution well before eruption. The melt inclusion data have been categorized by groups that reflect magma compositions, age, and style of eruptions. The data show distinct differences in composition for eruptive products older than 14.0 ka (pre-caldera rocks) versus eruptive products younger than 3.55 ka. Moreover, pre-caldera eruptions were associated with magmas relatively enriched in SiO2, whereas eruptions younger than 3.55 ka (i.e., the syn- and post-caldera magmas which generated the Somma caldera and the Vesuvius cone) were derived from magmas comparatively enriched in S, Cl, CaO, MgO, P2O5, F, and many lithophile trace elements. Melt inclusion data indicate that eruptive behavior at Vesuvius correlates with pre-eruptive volatile enrichments. Most magmas associated with explosive plinian and subplinian events younger than 3.55 ka contained more H2O, contained significantly more S, and exhibited higher (S/Cl) ratios than syn- and post-caldera magmas which erupted during relatively passive interplinian volcanic phenomena. Received January 10, 2000 Revised version accepted July 17, 2000  相似文献   

15.
Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo–Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard map presented by INGEOMINAS (Geological Survey of Colombia) in 2002. The composite map of the simulated flow deposits suggests that after major explosive events such as these, the generation of lahars is probable.  相似文献   

16.
The Hercynian Köse composite pluton (KCP) is located in the Eastern Pontides, Turkey, and consists of two units of high-K calc-alkaline, primarily peraluminous granites: (i) the internal body, and (ii) the external body. The internal body, which was emplaced at 322–318 Ma (40Ar/39Ar ages on biotite and hornblende, respectively), displays a wide compositional range (49–71 wt.% SiO2) and contains several lithologies: hybrid equigranular rocks, microgranular magmatic enclaves, mafic dikes, porphyry dikes and mylonites. The external body, which was emplaced at 306.7 Ma (40Ar/39Ar age on K-feldspar), consists exclusively of monzogranite (> 71 wt.% SiO2). Field relationships, mineralogy, major- and trace element geochemistry, and initial Sr–Nd isotope values (ISr = 0.70821 to 0.71002, eNd(t) = ?6.6 to ?8.0) show that the internal body was differentiated and evolved by crystal fractionation and magma mixing processes. The end-members of the mixing process were a mafic rock and a felsic rock. Mafic magma was derived from a relatively deep-seated (25–30 km) crustal storage reservoir, not directly from the mantle, and underwent significant differentiation by fractional crystallization and crustal contamination before mixing. In addition, these magma storages probably supplied the additional heat necessary to initiate crustal melting. Some of the additional heat may have also been released by the radiogenic decay of heat producing elements. Eventually, the existing felsic magma from the melting of K-bearing meta-greywackes was raised to its emplacement level at a depth of ~ 10–16 km. After partial crystallization, it was sporadically intruded by modified mafic magma from the deeper crustal reservoir to generate hybrid rocks. The hybrid rocks were then elevated to a shallower depth by normal faults during the collapse of the orogen and erosion. Mylonites that were later overprinted by pseudotachylites are typically constrained to the internal body and are regarded as markers of this event. The external body is characterized by a significantly less radiogenic and limited range of Sr–Nd isotope values (ISr = 0.70639 to 0. 70792, eNd(t) = ?4.4 to ?6.5) than those of the internal body and a lack of rocks documenting the open system differentiation processes. Fractional crystallization is the exclusive process responsible for the elemental range within the body. The rocks also contain less biotite relative to those of the internal body. All these involve less K-bearing mid-crustal rocks (orthogneisses) in their source, which was probably located at depths near the lower crust. The absence of purely lower crustal-derived melts can be explained by the removal of this type of material during the formation of the parental melt. This melt later ascended to its emplacement level at a depth of around ~ 5–10 km and cut the hybrid rocks of the internal body and regional metamorphic rocks that had been raised previously due to ongoing erosion. The melt that injected into the cracks of the internal body crystallized into porphyries because there was not enough time for the entire crystallization of magma. The data presented here indicate that late Early Carboniferous and Late Carboniferous magmatism occurred in a collisional setting. Slab detachment and subsequent delamination seem to be the most plausible mechanisms for the generation of the Hercynian high-K calc-alkaline magmatism in the Eastern Pontides, Turkey.  相似文献   

17.
The Baima layered intrusion is located in the central part of the Emeishan Large Igneous Province (ELIP). The N–S striking intrusion is ~ 24 km long and ~ 2 km thick and dips to the west. Based on variations in modal proportions and cumulus mineral assemblages, the intrusion from the base to the top is simply subdivided into a lower zone (LZ) with most of the economic magnetite layers, and an upper zone (UZ) with apatite-bearing troctolite and gabbro. The rock textures suggest crystallization of the Fe–Ti oxide slightly later than plagioclase (An67-54) but relatively earlier than olivine (Fo74-55), followed by clinopyroxene and finally apatite.Relatively low olivine forsterite content and abundant ilmenite exsolution lamellae in clinopyroxene indicate that the Baima parental magma is a highly evolved Fe–Ti-rich magma. Via MELTS model, it demonstrates that under a closed oxygen system, extensive silicate mineral fractionation of a picritic magma might lead to Fe and Ti enrichment and oxygen fugacity elevation in the residual magma. When such Fe–Ti-rich magma ascends to the shallower Baima intrusion, the Fe–Ti oxides may become an early liquidus phase. Well-matched olivine and plagioclase microprobe data with the results of MELTS calculation, combined with relatively low CaO content in olivine (0.02–0.08 wt.%) indicate that wall-rock contamination probably plays a weak role on oxygen fugacity elevation and the early crystallization of Fe–Ti oxides. Several reversals in whole-rock chromium and plagioclase anorthite contents illustrate that multiple recharges of such Fe–Ti-rich magma mainly occurred along the lower part of the Baima magma chamber. Frequent Fe–Ti-rich magma replenishment and gravitational sorting and settling are crucial for the development of thick Fe–Ti oxide layers at the base of the Baima layered intrusion.  相似文献   

18.
Intrusion of magma of contrasting composition into a magma chamber often triggers eruptions of arc volcanoes. Application of the diffusion chronometry method allowed us to determine the time when fresh magma was supplied to the shallow chamber of Bezymianny volcano in the case of six eruptions in 2006–2012 and to compare them to the recorded seismic activity of this volcano. Two types of eruptions of Bezymianny volcano were distinguished, with a contrasting orthopyroxene rim being formed in the respective magmas (a) up to 3 years and (b) up to 2 months before the beginning of an eruption. It was shown that these differences are caused by two different paths of magma supply to the shallow chamber of Bezymianny volcano.  相似文献   

19.
The Darongshan granitic suite (~ 10,000 km2) consists of five major units (Taima, Nadong and Jiuzhou plutons, and Pubei and Darongshan batholiths) typical of peraluminous S-type granitoids containing abundant granulite inclusions in the Cathaysia block, South China. Six samples from these plutons and batholiths have been investigated using both LA-ICPMS U–Pb age dating on zircon cores and EMP U–Th–Pb chemical age dating on monazite cores and rims. LA-ICPMS zircon results give similar major age populations ranging between 260 ± 3 and 250 ± 3 Ma for all units, with apparent older age peaks concentrated at 1020, 800, 430 and 330 Ma. On the other hand, EMP monazite results yield younger ages of 231–229 Ma for Nadong, Taima, Pubei and Darongshan and 224 Ma for Jiuzhou samples, with older age groups of 264 Ma for Taima and 256–250 Ma for Pubei units. Since the older monazite ages are similar to the majority of zircon ages, the latter are considered as inherited ages. Further because such zircon ages are similar with the emplacement time of the Emeishan large igneous province in western South China, they likely reflect the timing of metamorphism for the included fragments of granulitic crusts that had been formed by invasion of the Emeishan plume. The younger monazite ages, as present for all plutons and batholiths in the entire Darongshan area, are taken as the formation age of the host granites. Combining U–Pb zircon and EMP monazite ages known for Permo-Triassic high temperature and high pressure metamorphic rocks and granites in the Indochina block (e.g., the Kannack Complex of the Kontum massif), it is suggested that the Indosinian thermal activity had set records over both the Indochina (plus Simao) and South China blocks in two main episodes, one is 260–250 Ma and the other is 231–229 Ma. One plausible explanation is that these two blocks were one united continent before the Emeishan plume activity and an opening was triggered by this plume at ~ 260 Ma. Due to forces of the approaching Sibumasu block, both the South China and Indochina blocks were amalgamated again at ~ 230 Ma. We, therefore, advocate that double subduction of the plume-triggered oceanic crusts in opposite directions is responsible for the generation of the Darongshan granitic suite in the South China block and its counterpart in the Indochina block.  相似文献   

20.
In this study potential iron isotope fractionation by magmatic processes in the Earth's crust was systematically investigated. High precision iron isotope analyses by MC-ICP-MS were performed on a suite of rock samples representative for the volcanic evolution of the Hekla volcano, Iceland. The whole series of Hekla's rocks results from several processes. (i) Basaltic magmas rise and induce partial melting of meta-basalts in the lower part of the Icelandic crust. The resulting dacitic magma evolves to rhyolitic composition through crystal fractionation. During this differentiation the δ56/54FeIRMM-014 values increase successively from 0.051 ± 0.021‰ for the primitive dacites to 0.168 ± 0.021‰ for the rhyolites. This increase can be described by a Rayleigh fractionation model using a constant bulk fractionation factor between all mineral phases (M) and the silicate liquid (L) of Δ56/54FeM–L = ? 0.1‰. (ii) The basaltic magma itself differentiates by crystal fractionation to basaltic andesite composition. No Fe isotope fractionation was found in this series. All basalts and basaltic andesites have an average δ56/54FeIRMM-014 value of 0.062 ± 0.042‰ (2SD, n = 9), identical to mean terrestrial basaltic values reported in previous studies. This observation is consistent with the limited removal of iron from the remaining silicate melt through crystal fractionation and small mineral-melt Fe isotope fractionation factors expected at temperatures in excess of 1050 °C. (iii) Andesites are produced by mixing of basaltic andesite with dacitic melts. The iron isotope composition of the andesites is matching that of the basaltic andesites and the less evolved dacites, in agreement with a mixing process. In the Hekla volcanic suite Li concentrations are positively correlated with indicators of magma differentiation. All Hekla rocks have δ7Li values typical for the upper mantle and demonstrate the absence of resolvable Li isotope fractionation during crystal fractionation. As a fluid-mobile trace element, Li concentrations and isotopes are a potential tracer of magma/fluid interaction. At Hekla, Li concentrations and isotope compositions do not indicate any extensive fluid exsolution. Hence, the heavy Fe isotope composition of the dacites and rhyolites can be predominately attributed to fractional crystallisation. Iron isotope analyses on single samples from other Icelandic volcanoes (Torfajökull, Vestmannaeyjar) confirm heavy Fe isotope enrichment in evolving magmas. Our results suggest that the iron isotope composition of highly evolved crust can be slightly modified by magmatic processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号