首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 438 毫秒
1.
 The paleoceanography in the Nordic seas was characterized by apparently repeated switching on and off of Atlantic water advection. In contrast, a continous influx of Atlantic waters probably occurred along the northern Barents Sea margin during the last 150 ka. Temporary ice-free conditions enhanced by subsurface Atlantic water advection and coastal polynyas accelerated the final ice sheet build-up during glacial times. The virtually complete dissolution of biogenic calcite during interglacial intervals was controlled mainly by CO2-rich bottom waters and oxidation of higher levels of marine organic carbon and indicates intensive Atlantic water inflow and a stable ice margin. Received: 25 February 1997 / Revision received: 4 March 1998  相似文献   

2.
Many of the changes observed during the last two decades in the Arctic Ocean and adjacent seas have been linked to the concomitant abrupt decrease of the sea level pressure in the central Arctic at the end of the 1980s. The decrease was associated with a shift of the Arctic Oscillation (AO) to a positive phase, which persisted throughout the mid 1990s. The Arctic salinity distribution is expected to respond to these dramatic changes via modifications in the ocean circulation and in the fresh water storage and transport by sea ice. The present study investigates these different contributions in the context of idealized ice-ocean experiments forced by atmospheric surface wind-stress or temperature anomalies representative of a positive AO index.Wind stress anomalies representative of a positive AO index generate a decrease of the fresh water content of the upper Arctic Ocean, which is mainly concentrated in the eastern Arctic with almost no compensation from the western Arctic. Sea ice contributes to about two-third of this salinification, another third being provided by an increased supply of salt by the Atlantic inflow and increased fresh water export through the Canadian Archipelago and Fram Strait. The signature of a saltier Atlantic Current in the Norwegian Sea is not found further north in both the Barents Sea and the Fram Strait branches of the Atlantic inflow where instead a widespread freshening is observed. The latter is the result of import of fresh anomalies from the subpolar North Atlantic through the Iceland-Scotland Passage and enhanced advection of low salinity waters via the East Icelandic Current. The volume of ice exported through Fram Strait increases by 20% primarily due to thicker ice advected into the strait from the northern Greenland sector, the increase of ice drift velocities having comparatively less influence. The export anomaly is comparable to those observed during events of Great Salinity Anomalies and induces substantial freshening in the Greenland Sea, which in turn contributes to increasing the fresh water export to the North Atlantic via Denmark Strait. With a fresh water export anomaly of 7 mSv, the latter is the main fresh water supplier to the subpolar North Atlantic, the Canadian Archipelago contributing to 4.4 mSv.The removal of fresh water by sea ice under a positive winter AO index mainly occurs through enhanced thin ice growth in the eastern Arctic. Winter SAT anomalies have little impact on the thermodynamic sea ice response, which is rather dictated by wind driven ice deformation changes. The global sea ice mass balance of the western Arctic indicates almost no net sea ice melt due to competing seasonal thermodynamic processes. The surface freshening and likely enhanced sea ice melt observed in the western Arctic during the 1990s should therefore be attributed to extra-winter atmospheric effects, such as the noticeable recent spring-summer warming in the Canada-Alaska sector, or to other modes of atmospheric circulations than the AO, especially in relation to the North Pacific variability.  相似文献   

3.
R. Stein  U. Bleil   《Marine Geology》1986,70(3-4):191-209
Oxygen and carbon stable isotope data of Pyrgo murrhina and flux rates of calcium carbonate in the bio- and magnetostratigraphically dated sediment sequence at DSDP Site 141 were used for a reconstruction of the deep-water circulation in the Northeast Atlantic during Late Miocene and Pliocene times. A distinct change towards reduced advection of deep water recorded near 5.4 Ma is contemporaneous with the cessation of the outflow of the saline Mediterranean water into the Atlantic. During the Pliocene, between 4.5 and 2.75 Ma and between 2.1 and 1.8 Ma, North Atlantic Deep Water (NADW) circulation was sluggish and Site 141 possibly influenced by Antarctic Bottom Water (AABW). Near 2.75 Ma, the advection of well-oxidized NADW was strongly intensified. This change is related to an onset of major Arctic ice growth and/or a major cooling of NADW.  相似文献   

4.
《Marine Geology》1999,153(1-4):29-39
During Ocean Drilling Program (ODP) Legs 160 and 161, sapropels were recovered both in the western and eastern Mediterranean. This obliges to a reassessment of the previous studies focused on sapropels from only the eastern Mediterranean, and to consider the changes which occurred in the Mediterranean climate but also in the water characteristics both in the Atlantic and in the western Mediterranean. In the North Atlantic, the position of the polar front which migrated southwards during glacial times and the melting of northern ice caps during interglacial periods, together with the convection in the Labrador and Norwegian Seas, appear essential to control the salinities of the waters facing the Strait of Gibraltar. The salinities of the surface and intermediate layers constitute the first driving force of the Mediterranean dynamics, the second driving force being the Mediterranean climate. The stagnation of deep waters leading to sapropel deposition in the western Mediterranean may be explained by a drastic weakening of the density difference between Mediterranean outflow and Atlantic intermediate waters facing the Strait of Gibraltar. This weakening was induced primarily by the salinity decrease of Atlantic surface water and secondly by a rather high salinity in the Atlantic intermediate layer, rather than by a drastic deterioration of the Mediterranean climate. This scenario probably concerns most of the sapropel events and it may be used for the knowledge of Atlantic and Mediterranean functioning over climatic changes.  相似文献   

5.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

6.
A combination of δ~(18)O and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008.The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members.The fractions of total river water,including the Arctic and Pacific river water,were high in the upper 50 m and decreased with depth as well as increasing latitude.In contrast,the fraction of Pacific river water increased gradually with depth but decreased toward north.The inventory of total river water in the Canada Basin was higher than other arctic seas,indicating that Canada Basin was a main storage region for river water in the Arctic Ocean.The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m.As a result,the inventories of Pacific river water were higher than those of Arctic river water,demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin.Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted.The fractions of total river water,Arctic river water,Pacific river water increased northward to the north of 82°N,indicating an additional source of river water in the permanent ice zone of the northern Canada Basin.A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift.The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin,while it extended to 125 m in the northern Canada Basin.The inventory of seaice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone,attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.  相似文献   

7.
8.
西格陵兰位于北极—北大西洋地区,其海洋环境演变受西格陵兰洋流中冷、暖水团的显著影响。本文运用主成分分析方法对西格陵兰Disko湾DA06-139G孔沉积物中主要硅藻属种进行研究,试图揭示5000a BP以来西格陵兰洋流中冷、暖水团强度变化对研究区海洋环境的影响。5000—3800a BP期间,东格陵兰寒流携带的极地冷水团强度较弱,而北大西洋暖水团势力较强,Disko湾地区海洋环境较为温暖。3800—2000a BP期间,西格陵兰洋流中极地冷水团势力呈现阶段性增强,此时Disko湾地区气候缓慢转冷,海冰覆盖面积逐渐增加。2000a BP以后,特别是650a BP之后,样品在主成分轴一上的得分显著增高,表明Disko湾气候明显变冷,来自东格陵兰寒流的极地冷水团强度显著增强。Disko湾中晚全新世以来的硅藻记录及样品在主成分轴一上的得分所指示的极地冷水团的强度变化与格陵兰冰芯温度及海冰变化等具有较好的一致性,说明研究区海流特征与大气温度、海冰等环境要素密切相关。  相似文献   

9.
Total (unfiltered) silver concentrations in higher latitudes of the North Atlantic (52–68°N) are reported for the second Intergovernmental Oceanographic Commission (IOC) Global Investigation of Pollutants in the Marine Environment (GIPME) baseline survey of 1993. These silver concentrations (0.69–7.2 pM) are oceanographically consistent with those (0.24–9.6 pM) previously reported for lower latitudes in the eastern North and South Atlantic (Flegal et al., 1995). However, surface (⩽200 m) water concentrations of silver (0.69–4.6 pM) in the northern North Atlantic waters are, on average, ten-fold larger than those (0.25 pM) considered natural background concentrations in surface waters of the central Atlantic. In contrast, variations in deep far North Atlantic silver concentrations are associated with discrete water masses. Consequently, the cycling of silver in the far North Atlantic appears to be predominantly controlled by external inputs and the advection of distinct water masses, in contrast to the nutrient-like biogeochemical cycling of silver observed in the central Atlantic and Pacific oceans.  相似文献   

10.
Physical evidence on the dimensions of icebergs released from the mouth of Hudson Strait into the northwest Atlantic during the last Heinrich event (H-0) is presented. Side-scan sonar imagery shows scour marks up to 700 m wide and longer than 28 km. These scour marks were carved by gigantic icebergs (megabergs) with keel drafts possibly as great as 660 m capable of scouring trenches 20 to 25 m deep into the seabed. These icebergs were likely calved from the grounding margin of a thick (possibly as thick as 640 m) rapidly-flowing glacial margin during the H-0 Heinrich event (11 ka BP). Along with the relatively few megabergs released were large numbers of smaller icebergs that calved from the ice margin at the same time and were also produced from break-up of the megabergs. Scouring of the seabed by the large and smaller icebergs happened at the same time, with megabergs scouring only in the deep waters of Hatton Basin, and the smaller bergs scouring only on the eastern, shallow margin of the Basin at the continental shelf break.  相似文献   

11.
Land—ocean transfer of sediment and organic matter along the Moroccan Atlantic margin (NW Africa) seems to have been very effective during the last 130 ka. In a marine core from this region, we found total organic carbon (TOC) values ranging from 0.3 to 1.7 dry wt% of bulk sediments. These relatively high values are fairly unusual, as the core was recovered from an open-ocean environment that is currently oligotrophic. In order to explain this trend, more typical of an upwelling eutrophic setting, three processes were evaluated: (1) in situ primary production associated with the extension of the Cape Ghir upwelling filament, (2) bottom water conditions that may favour organic carbon preservation and (3) lateral organic carbon advection. The site occasionally experienced more eutrophic conditions, especially during termination I; here, we recorded a relative high abundance of the planktonic foraminifer Globigerina bulloides, suggesting high primary production. However, given the absence of correlation between TOC and G. bulloides records, high TOC storage cannot be attributed exclusively to primary production. Preservation factors such as bottom water ventilation are also ruled out. Lateral TOC advection seems to be the most plausible process. Today, lateral advection and offshore transport of nutrients and organic matter characterize the study region. However, the triggering mechanisms deserve further investigation. Different controlling factors influencing the mobilization and advection of organic carbon from coastal upwelling sites to the deep basin are discussed. The correlation found between down-core TOC and sea-level changes suggests sea-level fluctuations as the most effective mechanism driving nepheloid layer detachment and seaward material transport.  相似文献   

12.
《Marine Chemistry》2002,79(1):1-26
This study investigates the relative importance of processes that affect trace metal (TM) cycling in the upper water column at the shelf edge of the Celtic Sea on the western European continental margin. The examined processes include external inputs (by atmosphere and river), physical factors (upwelling, winter mixing and water mass advection) and biological processes (in situ uptake, regeneration and export to deep waters). The concentrations of dissolved Cd, Cu, Ni and Pb were measured with this aim in January 1994 and June 1995 at vertical stations across slope, including stations with upwelling, and in the surface waters along the Celtic Sea shelf. Additionally, deep sea (from sediment trap data) and atmospheric fluxes were estimated. The metal profiles over the slope off the Celtic Sea are quite similar to open ocean profiles already described in the northeast Atlantic, and the concentrations in surface waters are only slightly enriched compared to the nearby open ocean (1.2–1.3× for Cd and Ni). The external sources to the system appear to be of weak influence: the fluvial input is locally strong at the coast and then “diluted” along the large continental shelf; the atmospheric deposition is not significant at the annual scale in comparison to the metal content in the upper waters of the shelf edge (at least for Cd, Ni and Cu). In the upwelling zone, a significant increase in concentrations was observed in the summer surface mixed layer (×2 for nitrate and Cd and ×1.5 for Ni) in comparison to the non-upwelling zone. In winter, concentrations of bioreactive metals increased significantly in the surface waters in comparison to the low summer levels (×5 for nitrate and Cd). Our results suggest that upwelling and winter mixing act as regenerated sources that lead to the resupply of the bioreactive elements above the permanent thermocline with a low export to deeper waters. The tracing of the Mediterranean intermediate waters (MIW) from Gibraltar to the studied area shows indeed that its elemental content at the Celtic shelf edge is mainly due to the conservative mixing of the three “end-member” component waters which are thought to make up the MIW. The remineralization of organic matter within this water mass during its transport to the north would contribute only 20% of the nutrients and Cd concentrations recorded at the Celtic Sea shelf edge. According to the correlation found with nutrients in the 10–200-m layer, dissolved Pb would also be subjected to biological uptake and regeneration within the seasonal thermocline. Particulate scavenging removal of Pb would take place below the permanent thermocline throughout the water column.  相似文献   

13.
The results of model calculations aimed at reproducing climate changes in the Arctic Ocean due to variations in the atmospheric circulation are presented. The combined ocean-ice numerical model is based on NCAR/NCEP reanalysis data and its modified version of CIAF on the state of the lower atmosphere, radiative fluxes, and precipitation from 1948 to the present. The numerical experiments reveal the effect of the ice cover, water circulation, and thermohaline structure of the Arctic Ocean on variations in the state of the atmosphere. We found the heating and cooling periods in the Atlantic water layer, as well as the freshwater accumulation regimes in the Canadian Basin and freshwater flow through the Fram Strait and Canadian Archipelago straits. The numerical model reproduces a reconfiguration of the water circulation of the surface and intermediate layers of the ocean, a shift in the boundary between Atlantic and Pacific waters, and a significant reduction of the ice area.  相似文献   

14.
Few basins in the world exhibit such a wide range of water properties as those of the Nordic Seas with cold freshwaters from the Arctic in the western basins and warm saline waters from the Atlantic in the eastern basins. In this study we present a 50-year hydrographic climatology of the Nordic Seas in terms of depth and temperature patterns on four upper ocean specific volume anomaly surfaces. This approach allows us to better distinguish between change due to variations along such surfaces and change due to depth variations of the stratified water column. Depth variations indicate changes in the mass field while property variations along isopycnals give insight into isopycnal advection and mixing, as well as diapycnal processes. We find that the warmest waters on each surface are found in the north, close to where the isopycnal outcrops, a clear indication of downward mixing of the warmer, more saline waters on shallower isopycnals due to convective cooling at the surface. These saline waters come from the Norwegian Atlantic Slope Current by means of a very high level of eddy activity in the Lofoten Basin.The isopycnal analyses further show that the principal water mass boundary between the waters of Arctic origin in the west and Atlantic waters in the east aligns quite tightly with the Jan Mayen, Mohn, Knipovich Ridge system suggesting little cross-ridge exchange. Instead, the main routes of exchange between the eastern and western basins appear to be limited to the northern and southern ends of ridge system: Atlantic waters into the Greenland Sea in the Fram St and Artic waters into the southern Norwegian Sea just north of the Iceland-Faroe Ridge.Analysis of a representative isopycnal in the main pycnocline shows it to be stable over time with only small variations with season (except where it outcrops in winter in the Greenland and Iceland Seas). However, two very cold winters, 1968–1969, led to greater than average heat losses across the entire Lofoten Basin that eroded away much of the Lofoten eddy and induced the greatest temperature anomaly in the entire 50-year record. Interannual variations in isopycnal layer temperature correlate with the NAO index such that waters in the Iceland Sea become warmer than average with warming air temperatures and conversely in the Lofoten Basin.  相似文献   

15.
利用我国第6~9次北极科学考察期间获取的大气探空资料,分析了北极季节冰区边界层逆温的时空变化特征及其成因。分析发现:(1)边界层逆温具有较强的年际变化和空间变化,高纬度密集冰区观测到更多的强逆温现象,逆温厚度与逆温层温差呈显著的对数关系;(2)不同年份边界层逆温的主要成因有所差别:海冰分布的差异导致不同年份的边界层逆温特征不同;表面融化、辐射冷却、多层云的结构和暖平流对不同冰情年份边界层逆温的贡献程度不同;(3)开阔水域和冰区边界层逆温的成因不同。表面融化和空气平流对冰区边界层逆温的形成起着非常重要的作用,而辐射冷却是开阔水域边界层逆温的主要成因之一。  相似文献   

16.
Pelagic-Benthic Coupling in the Nordic Seas: The Role of Episodic Events   总被引:3,自引:0,他引:3  
Abstract. The consequences of the following episodic phenomena for the pelagic-benthic coupling in the Nordic Seas are illustrated: (1) Advection of water masses between fjords and shelf environments, (2) freshwater run-off and vertical stability, (3) dynamics of the marginal ice zone in the central and northern Barents Sea and the Polar Ocean, (4) drift patterns of sinking particles along the North Norwegian coast, (5) advection of zooplankton into subarctic fjords and the southern Barents Sea, zooplankton overwintering and composition, and (6) transport of organic particulate matter from the Barents Sea shelf. It is shown that physical processes in the north-eastern North Atlantic and Polar Ocean can be strongly variable on time scales of days to decades. They have a significant influence on the dynamics of pelagic-benthic coupling. The physical oceanography influences the vertical and horizontal particle flux not only directly (mixing, advection, up- and down-welling), but also indirectly through its impact on the biota (for example radiation, wind, ice cover, freshwater run-off and overwintering, advection and retention of zooplankton). Understanding pelagic-benthic coupling at high latitudes depends even more on a best possible understanding of the physical oceanography and the time scales involved than elsewhere.  相似文献   

17.
T Wagner  R Henrich 《Marine Geology》1994,120(3-4):335-364
Based on a multiparameter approach a combined litho- and organofacies concept was developed for glacial and interglacial sediment sections along an E-W transect through the central part of the Norwegian-Greenland Sea (NGS).

Modern and past surface water regimes are clearly displayed by specific litho- and organofacies patterns. Interglacial conditions reveal specific Atlantic water associated lithofacies (A and B3) in the eastern and central sector of the Norwegian-Greenland Sea (NGS). Corresponding interglacial organofacies in general are not well correlated to lithofacies due to strong diagenetic degradation of labile, e.g. autochthonous organic matter (OM). While in near-surface sediments a marine-dominated organofacies (I-1) is preserved under Atlantic water masses, this correlation is not evident for lower Holocene and Isotope Stage 5 deposits. However, during Isotopic Event 5.5.1 increased proportions of marine OM are recorded in a high accumulating core on the Vøring Plateau. Glaciomarine background lithofacies (B and C) indicate minor input of ice rafted debris (IRD) and seasonal variable sea-ice cover. Corresponding organofacies (II-1, non-oxidized and II-2, oxidized) are dominated by allochthonous OM. Most spectacular are glacial diamictons (Lithofacies E and F) evidencing short-term sediment pulses due to a sudden disintegration of far advanced tide water ice margins on the outer shelves. These diamictons bear specific organofacies (III-1 and III-2) with a clear predominance of terrigenous and reworked OM.

Some of the diamictons seem to occur contemporaneous with the so called “Heinrich-layers” H1 and H2, suggesting a common trigger-mechanism for the almost simultaneous disintegration of huge continental ice masses along the shelves of North America and the eastern margin of the NGS.

Application of a combined organo- and lithofacies concept provides essential information on spatial and temporal variations of water mass characteristics, the oceanic effects of ice sheet dynamics and circulation models.  相似文献   


18.
Based on the long-term surveys in 1995?C2010, the influence of the variability of the winter conditions on the interannual dynamics of the content of dissolved oxygen was studied concerning the deep waters (the 40 m isobath line) of the eastern part of the Gulf of Finland. The content of oxygen varied within a wide range with a low-pronounced trend to a decrease during the considered period. All the processes affecting the aeration of deep waters, i.e., the advection of oxygen-depleted saline waters from the Baltic Sea and the intensity of the autumnal and winter mixing, correlated with the North Atlantic oscillation index, which determined the close positive correlation between this parameter and the oxygen content (r = +0.87). The hypoxic effects in the gulf were registered in the years of negative anomalies of the North Atlantic oscillation. The conclusion is reached that the deterioration of the oxygen conditions at the inner part of the Gulf of Finland during the late 20th-early 21st century is mainly caused by the large-scale variations in the atmospheric processes.  相似文献   

19.
Sensitivity of a global ocean model to increased run-off from Greenland   总被引:2,自引:0,他引:2  
We study the reaction of a global ocean–sea ice model to an increase of fresh water input into the northern North Atlantic under different surface boundary conditions, ranging from simple restoring of surface salinity to the use of an energy balance model (EBM) for the atmosphere. The anomalous fresh water flux is distributed around Greenland, reflecting increased melting of the Greenland ice sheet and increasing fresh water export from the Arctic Ocean. Depending on the type of surface boundary condition, the large circulation reacts with a slow-down of overturning and gyre circulations. Restoring of the total or mean surface salinity prevents a large scale redistribution of the salinity field that is apparent under mixed boundary conditions and with the EBM. The control run under mixed boundary conditions exhibits large and unrealistic oscillations of the meridional overturning. Although the reaction to the fresh water flux anomaly is similar to the response with the EBM, mixed boundary conditions must thus be considered unreliable. With the EBM, the waters in the deep western boundary current initially become saltier and a new fresh water mass forms in the north-eastern North Atlantic in response to the fresh water flux anomaly around Greenland. After an accumulation period of several decades duration, this new North East Atlantic Intermediate Water spreads towards the western boundary and opens a new southward pathway at intermediate depths along the western boundary for the fresh waters of high northern latitudes.  相似文献   

20.
The ratio of oxygen-18 to oxygen-16 (expressed as per mille deviations from Vienna Standard Mean Ocean Water, δ18O) is reported for seawater samples collected from seven full-depth CTD casts in the northern North Atlantic between 20° and 41°W, 52° and 60°N. Water masses in the study region are distinguished by their δ18O composition, as are the processes involved in their formation. The isotopically heaviest surface waters occur in the eastern region where values of δ18O and salinity (S) lie on an evaporation–precipitation line with slope of 0.6 in δ18O–S space. Surface isotopic values become progressively lighter to the west of the region due to the addition of 18O-depleted precipitation. This appears to be mainly the meteoric water outflow from the Arctic rather than local precipitation. Surface samples near the southwest of the survey area (close to the Charlie Gibbs Fracture Zone) show a deviation in δ18O–S space from the precipitation mixing line due to the influence of sea ice meltwater. We speculate that this is the effect of the sea ice meltwater efflux from the Labrador Sea. Subpolar Mode Water (SPMW) is modified en route to the Labrador Sea where it forms Labrador Sea Water (LSW). LSW lies to the right (saline) side of the precipitation mixing line, indicating that there is a positive net sea ice formation from its source waters. We estimate that a sea ice deficit of ≈250 km3 is incorporated annually into LSW. This ice forms further north from the Labrador Sea, but its effect is transferred to the Labrador Sea via, e.g. the East Greenland Current. East Greenland Current waters are relatively fresh due to dilution with a large amount of meteoric water, but also contain waters that have had a significant amount of sea ice formed from them. The Northeast Atlantic Deep Water (NEADW, δ18O=0.22‰) and Northwest Atlantic Bottom Waters (NWABW, δ18O=0.13‰) are isotopically distinct reflecting different formation and mixing processes. NEADW lies on the North Atlantic precipitation mixing line in δ18O–salinity space, whereas NWABW lies between NEADW and LSW on δ18O–salinity plots. The offset of NWABW relative to the North Atlantic precipitation mixing line is partially due to entrainment of LSW by the Denmark Strait overflow water during its overflow of the Denmark Strait sill. In the eastern basin, lower deep water (LDW, modified Antarctic bottom water) is identified as far north as 55°N. This LDW has δ18O of 0.13‰, making it quite distinct from NEADW. It is also warmer than NWABW, despite having a similar isotopic composition to this latter water mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号