首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为了解鱼卵、仔稚鱼的种群动态以及生物多样性的变化规律,2014?2015年利用大型浮游生物网对莱州湾海域20个站位进行表层水平拖网调查。4个航次共采获鱼卵135 275粒,仔稚鱼2 456尾,隶属于9目16科20属。鱼卵、仔稚鱼主要种类变化依次从春季的鳀(Engraulis japonicus)和鰉(Liza haematocheilus),到夏季的赤鼻棱鳀(Thryssa kammalensis)和布氏银汉鱼(Allanetta bleekeri),到秋季的大银鱼(Protosalanx hyalocranius),再到冬季的长绵鳚(Zoarces elongatus)。鱼卵、仔稚鱼的种类组成、数量分布以及群落多样性随季节变化,其中,夏季的丰富度指数(D)和多样性指数(H′)最高,秋季均匀度指数(J′)最高。鱼卵、仔稚鱼从春季到夏季的种类更替率最小。利用R语言聚类树的融合水平值定义划分水平,选择具有最大跳跃的分组水平,将鱼卵、仔稚鱼分为春组、夏秋组和冬组3个组群,春组和夏秋组、春组和冬组主要分歧种均为鳀,夏秋组和冬组主要分歧种为长绵鳚和赤鼻棱鳀。本研究补充了莱州湾海域鱼类早期补充资源的基础数据,旨在为莱州湾渔业资源评估和养护提供依据。  相似文献   

2.
分别于2018年冬季(1月)和夏季(9月)对胶州湾进行了2个航次20个相同站位的大型底栖动物调查.共鉴定出大型底栖动物287种.大型底栖动物的总平均丰度和生物量分别为2026个/m2和378.0 g/m2,2航次的丰度和生物量均呈现由胶州湾中部向南北两侧增大的趋势.调查水域优势种主要为多毛类,但相对重要性指数(IRI)...  相似文献   

3.
Macrobenthic fauna in an estuarine Gwangyang Bay, southern Korean coast, were investigated to uncover recent variations in their community structures. In the study area, macrobenthic faunal communities were mainly composed of polychaete worms which were the most abundant faunal group with the highest values in species number and density, while mollusks accounted for the highest proportion in total biomass. There was no clear seasonal difference in species richness during the two year period of the investigation, but the mean density and biomass increased every spring and summer due to the mass recruitment of Theora fragilis. The Shannon’s diversity index (H') was more than 2.0 during most sampling seasons and did not show any significant seasonal difference except for the data in August, 2011 when azoic conditions occurred. The community structures of macrobenthos in Gwangyang Bay did not show any remarkable change in the dominance of the two top dominant species, Scoletoma longifolia and Heteromastus filiformis, which abundantly occurred in all seasons, except for the abundance peaks associated with high occurrence of T. fragilis and Paraprionospio cordifolia, especially in spring and summer and in autumn, respectively. These fauna changes reflected the changes in the macrobenthic community health status in Gwangyang Bay, where stable conditions and a healthy status prevailed in winter, but a slightly disturbed status prevailed from spring to autumn.  相似文献   

4.
岱衢洋拖网甲壳动物多样性的季节变化   总被引:2,自引:0,他引:2  
根据2010年春季(5月)、夏季(8月)、秋季(11月)与2011年冬季(2月)对岱衢洋进行的共4个航次的底拖网渔业资源调查资料,对该海域的甲壳动物多样性进行了分析。结果表明,共捕获甲壳动物21种,其中虾类13种、蟹类7种、虾蛄类1种,隶属于2目14科18属;甲壳动物的生物量与尾数密度均以秋季为最高,春季则正好相反,且该两季的生物量与尾数密度间差异均显著(P<0.05);广温广盐种在种类数量、生物量与尾数密度方面均居主导地位;Margalef丰富度指数(D)、Shannon-Wiener多样性指数(H′)和Pielou均匀度指数(J′)的最小值均出现在冬季,表明该季甲壳动物群落的丰富度、多样性与均匀性都较低,另外,D值、H′值夏、秋两季高,冬、春两季低,与较外海域的情况正好相反,这主要是其对底层水温季节变化的一种响应。  相似文献   

5.
荣成湾毗邻海域浮游动物群落季节分布特征   总被引:2,自引:0,他引:2  
利用2009年度4个季度月的现场调查资料研究了荣成湾毗邻海域浮游动物群落的季节分布特征。研究表明, 在荣成湾毗邻海域出现的浮游动物共59个种类, 秋季、夏季和春季浮游动物均为30种以上(依次为38种、35种和32种), 而冬季种类数相对较少(22种)。浮游动物优势种主要为强壮箭虫(Aidanosagitta crassa)、中华哲水蚤(Calanus sinicus)、小拟哲水蚤(Paracalanus parvus)和拟长腹剑水蚤(Oithona similis)等种类, 其个体丰度的空间和季节分布特征差异较大。浮游动物湿重生物量冬季最高(433.8 mg/m3), 春季(220.7 mg/m3)和秋季(162.4 mg/m3)次之, 而夏季(52.5 mg/m3)相对较低。浮游动物群落物种多样性指数H′年平均值为2.50, 均匀性指数J′年平均值为0.65, 季节比较上, 夏季浮游动物多样性和均匀度均较高, 而春季多样性和均匀性平均值为低值, 且最大值和最小值之间波动范围较大。进一步分析显示, 湾内的筏架养殖对浮游动物群落的分布有显著影响。  相似文献   

6.
The soft sediment fish communities below 20 m depth were studied at two sites on the west coast of Scotland (Irvine Bay, Firth of Clyde and the Lynn of Lorne) using small meshed beam trawls. In both cases the emphasis was on the small demersal fish (<15 cm) within these communities. The Irvine Bay community was studied between May 1978 and December 1979 and the Lynn of Lorne community between February 1975 and October 1976.Twenty-seven fish species were recorded in Irvine Bay and 32 in the Lynn of Lorne. In both communities four species constituted more than 78% of the total annual abundance, two gobies (Lesueurigobius friesii and Pomatoschistus norvegicus) were high in the dominance ranking for both sites. The species abundance lists were similar for both sites (0·62 level of similarity) but the species lists for each site were different (0·36 level of similarity). The overall mean density of small demersal fish was similar for both sites (Irvine Bay = 0·045 individuals m?2 and the Lynn of Lorne = 0·047 individuals m?2). There were two periods of high abundance for both communities (late autumn to winter and late spring). There was, however, a low repeatability between successive years. The species richness (D) was relatively high (Irvine Bay = 1·5-3·08, Lynn of Lorne = 1·4-3·34) as was the species diversity (H′) (Irvine Bay = 1·17-1·97, Lynn of Lorne = 1·23-1·95). The proportional representation (J′) of each species within the community was greater in Irvine Bay (J′ = 0·57-0·77) than in the Lynn of Lorne (J′ = 0·50-0·72). Therefore these two communities of small demersal fish appeared to be similar at the community level but the way in which this was achieved was different.  相似文献   

7.
The changes in the concentrations of silicate, phosphate and inorganic nitrogen in Elefsis Bay, an intermittently anoxic basin, are described and related to the changes in the physical properties of the water for two seasonal cycles. Winter convection resulted in a very small vertical gradient of temperature, salinity, oxygen and nutrients. Stratification started to develop in May and persisted for about 6 months. In Elefsis Bay, high values of silicate, phosphate and ammonia occurred during the anoxic conditions prevailing in summer. The consumption of oxygen in the lower water column was directly related to density differences in it. The regeneration of nutrients was related to the consumption of oxygen, with seasonal differences in the regeneration of nitrate and silicate. A stoichiometric model indicates that plankton organisms in Elefsis Bay have approximate ratios for C:N:P of 105:14:1, whereas the ratio for nitrogen and phosphorus in the water is only 2:1. The water/plankton relationship in Elefsis Bay appears to be very similar to that in the Baltic Sea.  相似文献   

8.
Macrobenthic fauna were collected seasonally at 44 sites in Deukryang Bay from February to November, 2012. The species number of macrobenthic fauna was in the range of 140 to 181, and polychaetes comprised 41.4% of them. The average density of the whole study area changed seasonally from 755 to 1,507 ind. m?2, and the most abundant fauna group was crustaceans which accounted for 55.1% of total abundance. An amphipod species Nippopisella nagatai was the most dominant species and a decapod species Xenophthalmus pinnotheroides, an amphipod species Photis longicaudata, and a polychaete species Paralacydonia paradoxa were also dominant in all seasons. The mean seasonal values of Shannon’s diversity index (H′) were in the range of 2.2–2.4, and those values for the evenness index and richness index were 0.7–0.7 and 4.6–5.7, respectively. From the cluster analysis, Deukryang Bay could be divided into 3 or 4 station groups with its specific fauna composition. The cluster analysis and an nMDS ordination revealed that local environmental factors such as water depth were related to the spatial delineation of macrobenthic fauna communities in Deukryang Bay.  相似文献   

9.
于2006年冬至2007年秋分四个季度对海南万宁小海近岸表层海水的弧菌种类分布及数量变化进行了调查.共分离到27种弧菌属细菌,其中副溶血弧菌、创伤弧菌、溶藻弧菌、霍乱弧菌、河流弧菌和拟态弧菌6种弧菌为主要弧菌.在6种主要弧菌中,溶藻弧菌、副溶血弧菌和霍乱弧菌在夏季和秋季检出率较高;河流弧菌在春季和夏季的检出率较高;拟态...  相似文献   

10.
A new water quality index for evaluating the water quality of Jinhae Bay and Gwangyang Bay was developed. Four water quality parameters were selected as water quality indicators for the water quality index: dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), chlorophyll-a (Chl-a), and dissolved oxygen (DO). Reference levels of DIN, DIP, and Chl-a were determined as 6.22 μmol L?1, 0.38 μmol L?1, and 2.32 μmol L?1, respectively, on the basis of a long-term dataset that was collected monthly in the Korea Strait over a period of seven years (2006–2012). The water quality index established for Jinhae Bay and Gwangyang Bay is (bottom DO grade × 0.33) + (surface Chl-a grade × 0.33) + (surface DIN grade × 0.17) + (surface DIP grade × 0.17). On the basis of a three-year observation, the water quality of Jinhae Bay was classified as “good” in winter and spring, “poor” in summer, and “fair” in autumn and exhibited large spatial variation, with the lowest-quality water observed in Masan Bay. The water quality of Gwangyang Bay was classified as “good” in winter, “fair” in spring, “poor” in summer, and “fair” in autumn. Unlike Jinhae Bay, the water quality of Gwangyang Bay exhibited minimal spatial variation. In both bays, water quality among the four seasons was worse during summer. It is essential that a survey for water quality evaluation be conducted during summer.  相似文献   

11.
2009年8,10,12月及2010年3月分别对烟台四十里湾的12个站位开展了四个航次的季节调查.研究发现浮游植物3门45属73种,其中硅藻46种,甲藻24种,褐胞藻3种.硅藻是构成调查区域浮游植物群落的主要类群.浮游植物种类与数量呈现出明显的季节变化特征.夏季(8月)物种数最多(57种),秋季(10月)次之(40种)...  相似文献   

12.
The species composition and seasonal dynamics of the population density and biomass of the prasinophycean algae of the genus Pyramimonas were investigated in the Russian waters of the East/Japan Sea. According to literature data and the results of our observations, eight species of the prasinophycean algae were identified, and some of them were new for the Russian waters of the East/Japan Sea as follows: P. aff. amylifera Ñonrad, P. aff. cordata McFadden, Hill et Wetherbee, and P. nansenii Braarud. An analysis of their seasonal dynamics showed that the most conspicuous winter peak of the population density of Pyramimonas species in the Amurskii Bay was clearly distinguishable in February. In winter and early spring, the prasinophycean algae made a considerable contribution of 28 to 60% into the total population density on the background of a relatively low biomass, 1.1–14.4% of the total phytoplankton biomass in the Amurskii Bay. In the Golden Horn Bay, the summer peak of the population density of Pyramimonas species was most intensive in June. In summer, during the period of mass development of the algae of the genus Pyramimonas in the Golden Horn Bay, the prasinophycean algae contributed up to 71% of the total population density and up to 84% of the total microalgal biomass. An increase was noted in the density and biomass of the Pyramimonas species in the polluted waters near the sewage water outlets in the Amurskii and Golden Horn bays.  相似文献   

13.
Abstract. The occurrence of pianktonic stages of the scyphomedusa Aurelia aurita LAM. in monthly samples, from May 1983 to July 1985, was studied in Elefsis Bay (Saronikos Gulf, Greece). Results showed that the medusae biomass had its maximum value during summer, followed by a sharp drop during fall and winter. The major peak for the ephyrae liberation was during January-February, when zooplankton biomass reached its maximum. The vertical distribution of A. aurita in relation to light intensity is discussed.  相似文献   

14.
Siphonophores were sampled using stratified 1.67-m2-mouth 330-μm mesh nets during both day- and nighttime in Sagami Bay (35°0.50′N, 139°20′E), off south-eastern Japan during a 9-day period in March 2006, when the Kuroshio Current was in an offshore non-large meander phase. The samples were collected at 50-m intervals spanning from 1,000 m depth to the surface. Fifty-eight species and 11 eudoxid forms of unknown parentage were collected, of which 5 represent first-time records from Japanese waters, and Clausophyes laetmata Pugh and Pagès 1993, Eudoxia cf. galathea Moser 1925 and Lensia panikkari Daniel 1970 were recorded for the first time not only from Japan but from the entire Pacific Ocean. The highest abundance and diversity was found below the thermocline during the day, and above it at night. A second peak in abundance, around 400 m depth, associated with a decrease in diversity, could be linked to the increase in abundance of a single species—Dimophyes arctica (Chun 1897). The siphonophore communities could be related to the different water masses in the Bay, with an important influence of lateral transport of both tropical and subarctic species into the Bay by the different water masses.  相似文献   

15.
Pronounced seasonality is a characteristic feature of polar ecosystems, but seasonal studies in the high-Arctic pack-ice zone are still scarce because of logistical constraints. During six expeditions (1994–2003) to the Fram Strait area between Greenland and Svalbard in winter, spring, early summer, late summer and autumn, the sub-ice habitat and fauna below the pack ice (0–1 m depth) were analyzed for seasonal patterns. Both environmental variables such as ice cover, temperature, salinity and chlorophyll a (chl a), as well as species composition, abundance and biomass of the sub-ice fauna showed distinct seasonal dynamics. Most species of the sub-ice fauna were found in early summer, followed by autumn, spring and late summer; the lowest number occurred in winter. The sub-ice fauna was dominated by copepod nauplii during all seasons. Next numerous was the small pelagic copepod Oithona similis, followed by occassional swarms of Pseudocalanus minutus and Calanus spp. Abundances of the sympagic fauna in the sub-ice water layer were much lower, with ectinosomatid copepods being usually the most numerous sympagic group. In the course of the year, total abundances of the sub-ice fauna showed a steep increase from the earliest sampling dates towards the end of winter/beginning of spring reaching maximum numbers then, and a decrease to minimum numbers in early summer. A second peak occurred in late summer, followed by a decrease towards autumn. This significant trend was due to the abundances of copepod nauplii and Oithona similis. Sympagic species were virtually absent during winter, and increased significantly in spring and early and late summer. A factor analysis revealed the variables ice cover and thickness, water temperature and salinity, as well as chl a as the major controlling factors for the seasonal patterns in different groups and species of the sub-ice fauna. Because of the special environmental conditions in the sub-ice habitat, and the unique species composition characterized by small taxa, young stages, and sympagic species, the seasonal dynamics of the Arctic sub-ice fauna differ substantially from those of the epipelagic zooplankton community in the Arctic Ocean.  相似文献   

16.
Seasonal variations in zooplankton abundance,biomass,species diversity and community structure were investigated in the Sanmen Bay,China.Samples were collected from 15 stations,on the seasonal basis,in April(spring),July(summer) and October 2005(autumn) and January 2006(winter),respectively.The results show that zooplankton species number,abundance and biomass varied widely and had distinct spatial heterogeneity in the Sanmen Bay.A total of 72 species of zooplankton belonging to 56 genera and 17 groups of pelagic larvae were identified.The zooplankton species richness was strongly related to salinity.Based on hierarchical cluster analysis,zooplankton in this study area were classified into three groups:coastal,neritic and pelagic groups,which corresponded to the upper,middle and lower portion of the Sanmen Bay,respectively.The coastal low-saline species were dominant in the study area.The zooplankton abundance and biomass reached a peak in summer,moderate in spring and autumn,and the lowest in winter.Zooplankton abundance decreased from the upper to lower portion of the bay in April,when the highest biomass occurred in the middle portion of the bay.There were the same spatial distribution patterns for the biomass and abundance in July,with the maximum in the middle of the bay.However,zooplankton abundance was the highest in the middle of the bay in October,when maximum biomass occurred near the lower of the bay.Zooplankton abundance and biomass were evenly distributed in the Sanmen Bay in January.Spatial and temporal variations in zooplankton and their relationship with environmental factors were also analyzed.The BIOENV results indicate that the combination of chlorophyll a(Chl-a),salinity,dissolved inorganic nitrogen(DIN),dissolved oxygen(DO) and silicate(SiO3) was responsible for the variations in zooplankton community structure in the Sanmen Bay.The environmental changes played an important role in changes in the zooplankton community structure in the Sanmen Bay.  相似文献   

17.
本研究分别于2019年7月(夏季)和12月(冬季)对澄迈马袅湾网箱养殖区及周边海域的大型底栖生物进行调查。结果表明,两次调查共采集鉴定到55种生物,其中夏季31种,主要分布在邻近区;冬季33种,主要分布在养殖区和邻近区。夏季航次,底栖生物在养殖区、邻近区和对照区的栖息密度分别为30.55 ind/m2、40.74 ind/m2和29.63 ind/m2,生物量分别为14.36 g/m2、6.28 g/m2、6.58 g/m2;冬季航次,三个海区底栖生物栖息密度分别为55.56 ind/m2、46.67 ind/m2和27.78 ind/m2,生物量分别为7.29 g/m2、6.20 g/m2和0.22 g/m2。夏季优势种主要为绒毛细足瓷蟹和纽虫;冬季优势种主要为豆形短眼蟹、梳鳃虫、纽虫和哈氏美人虾。夏季养殖区、邻近区和对照区大型底栖生物多样性指数(H′)分别为1.40、2.06和1.46;冬季分别为2.16、1.59和0.94。综上分析,网箱养殖产生的残饵和鱼类粪便,对养殖区及邻近海域底栖生物分布产生一定影响,且其群落结构与区域和季节存在较强相关性。  相似文献   

18.
2010-2011年胶州湾叶绿素a与环境因子的时空变化特征   总被引:2,自引:1,他引:1  
王玉珏  刘哲  张永  汪岷  刘东艳 《海洋学报》2015,37(4):103-116
2010年4、6、8、10月和2011年1、3月在胶州湾开展了6个航次的综合调查,研究了表层海水温度、盐度、营养盐和叶绿素a浓度的时空变化特征。调查期间,总无机氮(DIN)、磷酸盐(PO4)和硅酸盐(SiO3)多呈现东北部湾边缘高,而湾内和湾口低的空间分布特征。季节变化表明,DIN和PO4主要受养殖排放、河流径流输入和浮游植物生长消耗的影响,呈现初夏和秋季高,夏末和冬季低的特点;而SiO3主要受河流径流输入和浮游植物消耗的影响,呈现夏、秋高,而冬、春低的特点。营养盐浓度和结构分析表明,胶州湾存在PO4和SiO3的绝对和相对限制;SiO3限制尤其严重,是控制胶州湾浮游植物生长的主要环境因子。SiO3和PO4的限制主要表现在冬季,几乎遍布整个海湾;夏季降水可有效缓解海域的SiO3限制。叶绿素a浓度呈现春、夏季高,秋、冬季低的季节分布,温度、营养盐浓度与结构和季节性贝类养殖活动是控制胶州湾叶绿素a浓度时空分布的关键因素。  相似文献   

19.
The phenology of the introduced Sargassum muticum and two native species Bifurcaria bifurcata and Cystoseira baccata were monitored during eighteen months at two sites in Brittany. Density and length varied seasonally only in Sargassum. Larger individuals of Sargassum were observed in summer whereas in Cystoseira, they appeared almost in autumn. Peaks in maturity were delayed: in summer for Sargassum and in winter for Cystoseira and Bifurcaria. Phenolic contents increased before their respective reproductive period as a chemical defence. Moreover, size composition varied with site and season depending on species. In Sargassum, the quantity of small compounds decreased in summer together with an increase of 2000/5000 Da compounds. In Bifurcaria 2000/5000 Da compounds increased in summer (photoprotection) while in Cystoseira it increased in winter (protection for reproduction). Sargassum presented then a phenological plasticity not observed in native species. Moreover the three species possessed different chemical strategies to succeed in partitioning their vital space.  相似文献   

20.
南海北部上层鱼类浮游生物多样性和丰度的季节变化   总被引:1,自引:0,他引:1  
The objective of this study was to investigate the seasonal variations of ichthyoplankton diversity and abun-dance in the northern South China Sea based on the data collected during summer, winter and spring. In total, 95 taxa of larval fishes were identified. The greatest number of species was recorded in spring, followed by summer and winter. The number of species was distributed mainly in the coastal waters from the east of Leizhou Peninsula to the southeast of Hainan Island during the surveyed periods of summer and spring, but in the offshore waters during winter. The abundance of larval fish was lowest in winter, increased in spring, and reached the maximum in summer. High abundance of larval fish was generally restricted to coastal waters with the isobaths less than 50 m. Seasonal variations of larval fish richness, abundance and diversity index were significant (P〈0.001). Carangidae was the most common and abundant taxon in summer and winter, whileSardinella sp.,Thrissa mystax andLeiognathus sp. were dominant in spring. High diversity and abundance of larval fish might be attributed to increased temperature and coastal upwelling in spring and summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号