首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volcán Popocatépetl has been the site of voluminousdegassing accompanied by minor eruptive activity from late 1994until the time of writing (August 2002). This contribution presentspetrological investigations of magma erupted in 1997 and 1998,including major-element and volatile (S, Cl, F, and H2O) datafrom glass inclusions and matrix glasses. Magma erupted fromPopocatépetl is a mixture of dacite (65 wt % SiO2, two-pyroxenes+ plagioclase + Fe–Ti oxides + apatite, 3 wt % H2O, P= 1·5 kbar, fO2 = NNO + 0·5 log units) and basalticandesite (53 wt % SiO2, olivine + two-pyroxenes, 3 wt % H2O,P = 1–4 kbar). Magma mixed at 4–6 km depth in proportionsbetween 45:55 and 85:15 wt % silicic:mafic magma. The pre-eruptivevolatile content of the basaltic andesite is 1980 ppm S, 1060ppm Cl, 950 ppm F, and 3·3 wt % H2O. The pre-eruptivevolatile content of the dacite is 130 ± 50 ppm S, 880± 70 ppm Cl, 570 ± 100 ppm F, and 2·9 ±0·2 wt % H2O. Degassing from 0·031 km3 of eruptedmagma accounts for only 0·7 wt % of the observed SO2emission. Circulation of magma in the volcanic conduit in thepresence of a modest bubble phase is a possible mechanism toexplain the high rates of degassing and limited magma productionat Popocatépetl. KEY WORDS: glass inclusions; igneous petrology; Mexico; Popocatépetl; volatiles  相似文献   

2.
The Juqui circular intrusion, which is Cretaceous in age (130–135Ma), crops out in the Precambrian gneissic basement in Brazilover an area of 14 km2. It consists of olivine clinopyroxen-itecumulates (with minor olivine gabbros) in the northeastern sector(74 vol.%), whereas ijolites-melteigites-urtites (4%) and nephelinesyenites with minor essexites and syenodiorites (21%) outlinesubannular concentric patterns with an Mg-carbonatite core (1%), in the southwestern part of the complex. Petrographical, bulk rock, and mineral compositional trendsindicate that the origin of the complex can be largely accountedfor by shallow-level fractional crystallization of a carbonatedbasanitic parental magma. Such a magma was generated deep inthe subcontinental lithosphere by low-degree partial meltingof a garnet-phlogopite peridotite source. Mass-balance calculations in agreement with field volume estimatespermit definition of several fractionation stages of the magmaticevolution under nearly closed-system conditions, with inwarddevelopment of zonally arranged side-wall cumulates. These stagesinvolved: (1) fractionation from basanite to essexite magma(liquid fraction F = 33–5%) by crystallization of olivineclinopyroxenite plus minor olivine alkali gabbro cumulates;(2) derivation of the least differentiated mafic nepheline syenite(F = 5–5 %) from essexitic magma by subtraction of a syenodioriteassemblage; (3) exsolution of a carbonatite liquid (5%) froma CO2-enriched mafic nepheline syenite magma, which also underwentcontinuous fractionation giving rise to ijolite-melteigite-urtitecumulates. The proportion of cumulus clinopyroxene and biotiteand intercumulus nepheline and alkali feldspar in these lastrocks, as well as the absence of alkalis in carbonatite, maybe attributed, at least in part, to loss of alkali-rich hydrousfluids released during and after the unmixing formation of thetwo conjugate liquids. The KD values determined for Mg-carbonatite/nepheline syeniteare lower (1–4–2–9) for light rare earth elements(LREE) than for REE from Eu to Yb (4–6–7–8),in contrast to recent experimental results (Hamilton et al.,1989). A possible explanation is that Juquia Mg-carbonatiterepresents an alreadydifferentiated magma, which underwent extensivefractionation of LREE-enriched calcite. In this way, the highvariability of K0 REE patterns observed in several alkaline-carbonatitecomplexes can also be accounted for. The remarkably constant initial 87Sr/86Sr ratios (mostly between0–7052 and 0–7057) support the interpretation ofthe intrusion as having been generated by fractrional crystallizationand liquid immiscibility from a common parental magma. Iligherisotopic ratios (0–7060–0–7078), found mainlyin dykes and in the border facies of the intrusion, may be dueto contamination by the gecissic basement.  相似文献   

3.
La Pacana is one of the largest known calderas on Earth, andis the source of at least two major ignimbrite eruptions witha combined volume of some 2700 km3. These ignimbrites have stronglycontrasting compositions, raising the question of whether theyare genetically related. The Toconao ignimbrite is crystal poor,and contains rhyolitic (76–77 wt % SiO2) tube pumices.The overlying Atana ignimbrite is a homogeneous tuff whose pumiceis dacitic (66–70 wt % SiO2), dense (40–60% vesicularity)and crystal rich (30–40 % crystals). Phase equilibriaindicate that the Atana magma equilibrated at temperatures of770–790°C with melt water contents of 3·1–4·4wt %. The pre-eruptive Toconao magma was cooler (730–750°C)and its melt more water rich (6·3–6·8 wt% H2O). A pressure of 200 MPa is inferred from mineral barometryfor the Atana magma chamber. Isotope compositions are variablebut overlapping for both units (87Sr/86Sri 0·7094–0·7131;143Nd/144Nd 0·51222–0·51230) and are consistentwith a dominantly crustal origin. Glass analyses from Atanapumices are similar in composition to those in Toconao tubepumices, demonstrating that the Toconao magma could representa differentiated melt of the Atana magma. Fractional crystallizationmodelling suggests that the Toconao magma can be produced by30% crystallization of the observed Atana mineral phases. Toconaomelt characteristics and intensive parameters are consistentwith a volatile oversaturation-driven eruption. However, thelow H2O content, high viscosity and high crystal content ofthe Atana magma imply an external eruption trigger. KEY WORDS: Central Andes; crystal-rich dacite; eruption trigger; high-silica rhyolite; zoned magma chamber  相似文献   

4.
Silicate--Carbonate Immiscibility at Oldoinyo Lengai   总被引:5,自引:0,他引:5  
For approximately the last 50 years eruptions at Oldoinyo Lengaihave produced passive natrocarbonatite lavas interspersed withmixed silicate-natrocarbonatite events approximately every 15–25years. In 1993 an unusual blocky lava erupted and preserveddetailed mixed silicate-natrocarbonatite textures clearly indicatingan immiscible origin. The 1993 blocky flow consists of natrocarbonatitewith small silicate crystal aggregates which constitute 2–5%of the rock. These inclusions are composed of nepheline, melanite,clinopyroxene and wollastonite occurring both as isolated crystalsand ijolite micro-xenoliths. Most significantly, these ijoliticinclusions are surrounded by ‘globules’ of a fine-grainedintergrowth of nepheline, wollastonite and gregoryite, interpretedas quenched melt. Petrographic textures are characteristic ofliquid immiscibility between coexisting natrocarbonatite andsilicate melts. The presence of gregoryite within the silicatemelt globules is particularly important as it represents thecommon liquidus phase between the silicate and natrocarbonatitemelts theoretically required to demonstrate immiscibility betweentwo conjugate liquids. This is the first time that liquid immiscibilityhas been so clearly demonstrated in natural rock samples fromOldoinyo Lengai and agrees very closely with recent experimentalwork. Our detailed model for the petrogenesis of the natrocarbonatitesat Oldoinyo Lengai involves extensive fractionation of a carbonate-richalkaline silicate magma followed by immiscible separation ofnatrocarbonatite at low pressures. KEY WORDS: Oldoinyo Lengai; natrocarbonatite; silicate-carbonate immiscibility; East Africa *Corresponding author. Present address: Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK  相似文献   

5.
We present mineralogical, petrological and geochemical datato constrain the origin of the Harzburg mafic–ultramaficintrusion. The intrusion is composed mainly of mafic rocks rangingfrom gabbronorite to quartz diorite. Ultramafic rocks are veryrare in surface outcrops. Dunite is observed only in deepersections of the Flora I drill core. Microgranitic (fine-grainedquartz-feldspathic) veins found in the mafic and ultramaficrocks result from contamination of the ultramafic magmas bycrustal melts. In ultramafic and mafic compositions cumulatetextures are widespread and filter pressing phenomena are obvious.The order of crystallization is olivine pargasite, phlogopite,spinel plagioclase, orthopyroxene plagioclase, clinopyroxene.Hydrous minerals such as phlogopite and pargasite are essentialconstituents of the ultramafic cumulates. The most primitiveolivine composition is Fo89·5 with 0·4 wt % NiO,which indicates that the olivine may have been in equilibriumwith primitive mantle melts. Coexisting melt compositions estimatedfrom this olivine have mg-number = 71. The chemical varietyof the rocks constituting the intrusion and the mg-number ofthe most primitive melt allow an estimation of the approximatecomposition of the mantle-derived primary magma. The geochemicalcharacteristics of the estimated magma are similar to thoseof an island-arc tholeiite, characterized by low TiO2 and alkalisand high Al2O3. Geochemical and Pb, Sr and Nd isotope data demonstratethat even the most primitive rocks have assimilated crustalmaterial. The decoupling of Sr from Nd in some samples demonstratesthe influence of a fluid that transported radiogenic Sr. Leadof crustal origin from two isotopically distinct reservoirsdominates the Pb of all samples. The ultramafic rocks and thecumulates best reflect the initial isotopic and geochemicalsignature of the parent magma. Magma that crystallized in theupper part of the chamber was more strongly affected by assimilatedmaterial. Petrographic, geochemical and isotope evidence demonstratesthat during a late stage of crystallization, hybrid rocks formedthrough the mechanical mixing of early cumulates and melts withstrong crustal contamination from the upper levels of the magmachamber. KEY WORDS: Harzburg mafic–ultramafic intrusion; Sr–Nd–Pb isotopes; magma evolution; crustal contamination  相似文献   

6.
Geochemical data from back-arc volcanic zones in the Manus Basinare used to define five magma types. Closest to the New Britainarc are medium-K lavas of the island arc association and back-arcbasin basalts (BABB). Mid-ocean ridge basalts (MORB), BABB andmildly enriched T-MORB (transitional MORB) occur along the ManusSpreading Center (MSC) and Extensional Transform Zone (ETZ).The MSC also erupted extreme back-arc basin basalts (XBABB),enriched in light rare earth elements, P, and Zr. Compared withnormal MORB, Manus MORB are even more depleted in high fieldstrength elements and slightly enriched in fluid-mobile elements,indicating slight, prior enrichment of their source with subduction-relatedcomponents. Chemical variations and modeling suggest systematic,coupled relationships between extent of mantle melting, priordepletion of the mantle source, and enrichment in subduction-relatedcomponents. Closest to the arc, the greatest addition of subduction-relatedcomponents has occurred in the mantle with the greatest amountof prior depletion, which has melted the most. Variations inK2O/H2O indicate that the subduction-related component is bestdescribed as a phlogopite and/or K-amphibole-bearing hybridizedperidotite. Magmas from the East Manus Rifts are enriched inNa and Zr with radiogenic 87Sr/86Sr, possibly indicating crustalinteraction in a zone of incipient rifting. The source for XBABBand lavas from the Witu Islands requires a mantle componentsimilar to carbonatite melt. KEY WORDS: Manus back-arc basin, mantle metasomatism, magma generation  相似文献   

7.
K-feldspar megacrysts (Kfm) are used to investigate the magmaticevolution of the 7 Ma Monte Capanne (MC) monzogranite (Elba,Italy). Dissolution and regrowth of Kfm during magma mixingor mingling events produce indented resorption surfaces associatedwith high Ba contents. Diffusion calculations demonstrate thatKfm chemical zoning is primary. Core-to-rim variations in Ba,Rb, Sr, Li and P support magma mixing (i.e. high Ba and P andlow Rb/Sr at rims), but more complex variations require othermechanisms. In particular, we show that disequilibrium growth(related to variations in diffusion rates in the melt) may haveoccurred as a result of thermal disturbance following influxof mafic magma in the magma chamber. Initial 87Sr/86Sr ratios(ISr) (obtained by microdrilling) decrease from core to rim.Inner core analyses define a mixing trend extending towardsa high ISr–Rb/Sr melt component, whereas the outer coresand rims display a more restricted range of ISr, but a largerrange of Rb/Sr. Lower ISr at the rim of one megacryst suggestsmixing with high-K calc-alkaline mantle-derived volcanics ofsimilar age on Capraia. Trace element and isotopic profilessuggest (1) early megacryst growth in magmas contaminated bycrust and refreshed by high ISr silicic melts (as seen in theinner cores) and (2) later recharge with mafic magmas (as seenin the outer cores) followed by (3) crystal fractionation, withpossible interaction with hydrothermal fluids (as seen in therim). The model is compatible with the field occurrence of maficenclaves and xenoliths. KEY WORDS: Elba; monzogranite; K-feldspar megacrysts; zoning; magma mixing; trace element; Sr isotopes; petrogenesis  相似文献   

8.
The southeastern margin of the anorthositic Kunene IntrusiveComplex, NW Namibia, has been subsequently invaded by Mesoproterozoicsyenite, nepheline syenite and ferrocarbonatite dykes alongNE- and SE-trending faults. The first generation of carbonatiteintrusions frequently contains fenitized anorthositic wall-rockfragments set in a ferrocarbonatite matrix; later, subordinateveins of massive ferrocarbonatite are almost xenolith-free andcut through the main carbonatite dykes. A mantle source forboth carbonatite generations is constrained by their respectiveoxygen and carbon isotope compositions of ankerite (18OSMOW8·91–9·73; 13CPDB –6·98 to–6·76). Na-rich fluids, released from the meltparental to the ferrocarbonatites, caused the fenitization ofboth the incorporated anorthosite xenoliths and the borderinganorthosite, syenite and nepheline syenite. This process ismainly characterized by the progressive transformation of Ca-richplagioclase, K-feldspar and nepheline into albite and/or sodalite.The changing mineral modes indicate that the fenitizing fluidswere sodium-rich and strongly Si-deficient solutions, whichalso contained significant amounts of Sr, Ba, Nb and the lightrare earth elements. On the basis of mineral equilibria studies,it is possible to reconstruct the temperature conditions forcarbonatite emplacement (c. 830 ± 200°C) and recrystallization(c. 480 ± 130°C), and for the metasomatic formationof sodalite (c. 700 ± 70°C). KEY WORDS: anorthosite; fenitization; ferrocarbonatite; sodalite; stable isotopes  相似文献   

9.
Blue Mountain is a central-type alkali ultrabasic-gabbro ringcomplex (1?1?5 km) introducing Upper Jurassic sediments, Marlborough,New Zealand. The ultrabasic-gabbroic rocks contain lenses ofkaersutite pegmatite and sodic syenite pegmatite and are intrudedby ring dykes of titanaugite-ilmenite gabbro and lamprophyre.The margin of the intrusion is defined by a ring dyke of alkaligabbro. The plutonic rocks are cut by a swarm of hornblende-biotite-richlamprophyre dykes. Thermal metamorphism has converted the sedimentsto a hornfels ranging in grade from the albite-epidote hornfelsfacies to the upper limit of the hornblende hornfels facies. The rocks are nepheline normative and consist of olivine (Fo82-74),endiopside (Ca45Mg48Fe7-Ca36Mg55Fe9), titanaugite (Ca40Mg50Fe10-Ca44Mg39Fe17),plagioclase (An73-18), and ilmenitetitaniferous magnetite, withvarious amounts of titaniferous hornblende and titanbiotite.There is a complete gradation between end-iopside and titanaugitewith the coupled substitution Ry+z+Si(Ti+4+Fe+3)+Al+3 and asympathetic increase in CaAl2SiO6 (0?2-10?2 percent) and CaTiAl2O6(2?1-8?1 per cent) with fractionation. Endiopside shows a small,progressive Mg enrichment along a trend subparallel to the CaMgSi2O6-Mg2Si2O6boundary, and titanaugite is enriched in Ca and Fe+2+Fe+3 withdifferentiation. Oscillatory zoning between endiopside and titanaugiteis common. Exsolved ilmenite needles occur in the most Fe-richtitanaugites. The amphiboles show the trend: titaniferous hornblende(1?0–5?7 per cent TiO2)kaersutite (6?4 per cent TiO2)Fe-richhastingsite (18?0–19?1 per cent FeO as total Fe). Biotiteis high in TiO2 (6?6–7?8 per cent). Ilmenite and titaniferousmagnetite (3?5–10?6 per cent TiO2) are typically homogeneousgrains; their composition can be expressed in terms of R+2RO3:R+2O:R2+3O4. The intrusion of igneous rocks was probably controlled by subterraneanring fracturing. Subsidence of the country rock within the ringfracture provided space for periodic injections of magma froma lower reservoir up the initial ring fracture to form the BlueMountain rocks at a higher level. Downward movement of the floorof the intrusion during crystallization caused inward slumpingof the cumulates which affected the textural, mineralogical,and chemical evolution of the rocks in different parts of theintrusion. The order of mineral fractionation is reflected by the chemicalvariation in the in situ ultrabasic-gabbroic rocks and the successiveintrusions of titanaugite-ilmenite gabbro and lamprophyre ringdykes, marginal alkali gabbro and lamprophyre dyke swarm. Aninitial decrease, then increase in SiO2; a steady decrease inMgO, CaO, Ni, and Cr: an initial increase, then decrease inFeO+Fe2O3, TiO2, MnO, and V; almost linear increase in Al2O3and late stage increase in alkalis and P2O3, implies fractionationof olivine and endiopside, followed by titanaugite and Fe-Tioxides, followed by plagioclase, hornblende, biotite, and apatite.Reversals in the composition of cumulus olivine and endiopsideand Solidification Index, indicate that the ultrabasic-gabbroicsequence is composed of four main injections of magma. The ultrabasic rocks crystallized under conditions of high PH2Oand fairly high, constant PO2; PH2 and PO2 increased duringthe formation of the gabbroic rocks until fracturing of thechamber roof occurred. The abundance of euhedral amphibole inthe latter injection phases suggests that amphibole accumulatedfrom a hydrous SiO2 undersaturated magma when an increase inPO2, stabilized its crystallization. Plutonic complexes similar to Blue Mountain are found withinand beneath the volcanic piles of many oceanic islands, e.g.Canaries, Reunion, and Tahiti, and those intruding thick sedimentarysequences, as at Blue Mountain, e.g. the pipe-like intrusionsof the Monteregian Hills, Quebec.  相似文献   

10.
The Bixiling mafic-ultramafic metamorphic complex is a 1•5km2 tectonic block within biotite gneiss in the southern Dabieultrahigh-pressure terrane, central China. The complex consistsof banded eclogites that contain thin layers of garnet-bearingcumulate ultramafic rock. Except for common eclogitic phases(garnet, omphacite, kyanite, phengite, zoisite and rutilc),banded eclogites contain additional talc and abundant coesiteinclusions in omphacite, zoisite, kyanite and garnet. Some metaultramaficrocks contain magnesite and Ti-clinohumite. Both eclogites andmeta-ultramafic rocks have undergone multi-stage metamorphism.Eclogite facies metamorphisrn occurred at 610–700C andP>27 kbar, whereas amphibolite facies retrograde metamorphismis characterized by symplectites of plagioclase and hornblendeafter omphacite and replacement of tremolite after talc at P<6–15kbar and T <600C. The meta-ultramafic assemblages such asolivine + enstatite + diopside + garnet and Ti-clinohumite +diopside + enstatite + garnet + magnesite olivine formed at700–800C and 47–67 kbar. Investigation of the phaserelations for the system CaO-MgO-SiO2-H2O-CO2 and the experimentallydetermined stabilities of talc, magnesite and Ti-clinohumiteindicate that (1) UHP talc assemblages are restricted to Mg-Algabbro composition and cannot be an important water-bearingphase in the ultramafic mantle, and (2) Ti-clinohumite and magnesiteare stable H2O-bearing and CO2-bearing phases at depths >100km. The mafic-ultramafic cumulates were initially emplaced atcrustal levels, then subducted to great depths during the Triassiccollision of the Sine-Korean and Yangtze cratons. KEY WORDS: eclogite; magnesite; meta-ultramafics; talc; ultrahigh-P metamorphism *Corresponding author  相似文献   

11.
The 1·13 Ga Ilímaussaq intrusive complex, SouthGreenland, is composed of various types of alkali granite andsilica-undersaturated alkaline to agpaitic nepheline syenitesrelated to three subsequently intruded magma batches. Mineralchemistry indicates continuous fractionation trends within eachrock type, but with distinct differences among them. The last,peralkaline magma batch is the most fractionated in terms ofXFemafic mineral, feldspar composition and mineral assemblage.This indicates that an evolving magma chamber at depth discontinuouslyreleased more highly fractionated alkaline melts. Fluid inclusionsin some sodalites record a pressure drop from 3·5 to1 kbar indicating that crystallization started during magmaascent and continued in the high-level magma chamber. On thebasis of phase equilibria and preliminary fluid inclusion data,crystallization temperature drops from >1000°C (augitesyenite liquidus) to <500°C (lujavrite solidus) and silicaactivity decreases from  相似文献   

12.
Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basalt–dacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (‘r value’). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t–1/2), and was about 3 x 10–2m/year at t = 10 years and 1 x 10–2 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope  相似文献   

13.
A detailed study of the pyroclastic deposits of the AD 79 ‘Pompei’Plinian eruption of Vesuvius has allowed: (1) reconstructionof the thermal, compositional and isotopic (87Sr/86Sr) pre-eruptivelayering of the shallow magma chamber; (2) quantitative definitionof the syn-eruptive mixing between the different magmas occupyingthe chamber, and its relationships with eruption dynamics; (3)recognition of the variability of mafic magma batches supplyingthe chamber. During the different phases of the eruption 25–30%of the magma was ejected as white K-phonolitic pumice, and 70–75%as grey K-tephri-phonolitic pumice. The white pumice resultsfrom the tapping of progressively deeper magma from a body (T= 850–900%C) consisting of two distinct layers mainlyformed by crystal fractionation. The grey pumice results fromsyn-eruptive mixing involving three main end-members: the phonolitic‘white’ magmas (salic end-member, SEM), mafic cumulates(cumulate end-member, CEM) and a crystal-poor ‘grey’phono-tephritic magma (mafic end-member, MEM), which was nevererupted without first being mixed with ‘white’ magma.Evidence is provided that mixing occurred within the chamberand was characterized by a transition with time from physicalmixing at a microscopic scale to chemical hybridization. TheMEM magma had a homogeneous composition and constant 87Sr86Srisotopic ratio, possibly as a result of sustained convection.No unambiguous liquidus phases were found, suggesting that theMEM magma was superheated (T = 1000–1100C); its verylow viscosity was a main cause in the establishment of a physicaldiscontinuity separating the white and the grey magmas. Thewhite-grey boundary layer possibly consisted of a multiply diffusiveinterface, periodically broken and recreated, supplying thephonolitic body through mixing of moderate amounts of fractionatedgrey melts with the overlying white magma. The presence of alarge overheated mass indicates the young, growing stage ofthe AD 79 chamber, whose main engine was the periodic arrivalof hot mafic magma batches. These were characterized by K-tephriticto K-basanitic compositions, high temperatures (>1150C),high volatile contents (20–25% H2O +Cl+F+S), low viscosities[(1+2 102 poises)] and relatively low densities (2500–2600kg/m3). The birth of the Pompei chamber followed the repeatedarrival of these batches (on average characterized by 87Sr/86Sr070729)into a reservoir containing a tephriticphonolitic, crystal-enriched,magma, a residue from the preceding ‘Avellino’ Plinianeruption (3400 BP).In fact, about half of magma ejected duringthe AD 79 eruption could have been inherited from pre-Avellinotimes. KEY WORDS: Vesuvius; magma chamber; magma mixing; compositional layering phonolites; magma supply; potassic magmas *Correponding author  相似文献   

14.
Okmok volcano is situated on oceanic crust in the central Aleutianarc and experienced large (15 km3) caldera-forming eruptionsat 12 000 years BP and 2050 years BP. Each caldera-forming eruptionbegan with a small Plinian rhyodacite event followed by theemplacement of a dominantly andesitic ash-flow unit, whereaseffusive inter- and post-caldera lavas have been more basaltic.Phenocryst assemblages are composed of olivine + pyroxene +plagioclase ± Fe–Ti oxides and indicate crystallizationat 1000–1100°C at 0·1–0·2 GPain the presence of 0–4% H2O. The erupted products followa tholeiitic evolutionary trend and calculated liquid compositionsrange from 52 to 68 wt % SiO2 with 0·8–3·3wt % K2O. Major and trace element models suggest that the moreevolved magmas were produced by 50–60% in situ fractionalcrystallization around the margins of the shallow magma chamber.Oxygen and strontium isotope data (18O 4·4–4·9,87Sr/ 86Sr 0·7032–0·7034) indicate interactionwith a hydrothermally altered crustal component, which led toelevated thorium isotope ratios in some caldera-forming magmas.This compromises the use of uranium–thorium disequilibria[(230Th/ 238U) = 0·849–0·964] to constrainthe time scales of magma differentiation but instead suggeststhat the age of the hydrothermal system is 100 ka. Modellingof the diffusion of strontium in plagioclase indicates thatmany evolved crystal rims formed less than 200 years prior toeruption. This addition of rim material probably reflects theremobilization of crystals from the chamber margins followingreplenishment. Basaltic recharge led to the expansion of themagma chamber, which was responsible for the most recent caldera-formingevent. KEY WORDS: Okmok; caldera; U-series isotopes; Sr-diffusion; time scales; Aleutian arc  相似文献   

15.
Quartz–calcite sandstones experienced the reaction calcite+ quartz = wollastonite + CO2 during prograde contact metamorphismat P = 1500 bars and T = 560°C. Rocks were in equilibriumduring reaction with a CO2–H2O fluid with XCO2 = 0·14.The transition from calcite-bearing, wollastonite-free to wollastonite-bearing,calcite-free rocks across the wollastonite isograd is only severalmillimeters wide. The wollastonite-forming reaction was drivenby infiltration of quartz–calcite sandstone by chemicallyreactive H2O-rich fluids, and the distribution of wollastonitedirectly images the flow paths of reactive fluids during metamorphism.The mapped distribution of wollastonite and modeling of an O-isotopeprofile across a lithologic contact indicate that the principaldirection of flow was layer-parallel, directed upward, withany cross-layer component of flow <0·1% of the layer-parallelcomponent. Fluid flow was channeled at a scale of 1–100m by pre-metamorphic dikes, thrust and strike-slip faults, foldhinges, bedding, and stratigraphic contacts. Limits on the amountof fluid, based on minimum and maximum estimates for the displacementof the wollastonite reaction front from the fluid source, are(0·7–1·9) x 105 cm3 fluid/cm2 rock. Thesharpness of the wollastonite isograd, the consistency of mineralthermobarometry, the uniform measured 18O–16O fractionationsbetween quartz and calcite, and model calculations all arguefor a close approach to local mineral–fluid equilibriumduring the wollastonite-forming reaction. KEY WORDS: contact metamorphism, fluid flow, wollastonite, oxygen isotopes, reaction front  相似文献   

16.
The Ilímaussaq intrusion consists of an augite syeniteshell and a central cumulitic series of layered peralkaline(agpaitic) nepheline syenites with both roof and bottom cumulates.Microprobe analyses of the strongly zoned mafics show that thepyroxenes range from ferro-salite through hedenbergite to aegirine,the amphiboles from hastingsite through katophorite to arfvedsonite,and the olivines from Fo16.8 to FO0.2. Aenigmatite analysesare also presented. The crystal chemistry of the pyroxenes isdiscussed in detail. The behaviour of the various elements isdiscussed in relation to the conditions in the coexisting magma.The relation between oxygen fugacity and silica activity andthe stability of fayalite and Na-poor pyroxenes in over-andundersaturated magmas is considered. The persistent stabilityof these minerals in the strongly undersaturated Ilimaussaqmagma shows that the oxygen fugacities in Ilímaussaqwere lower than in any other known alkaline suites. Based onthe compositional development in the mafic minerals it is inferredthat the intrusion formed from at least three separate pulsesof successively more differentiated magma: (1) an augite syenitemagma congealed inwards from the sides, (2) a peralkaline undersaturatedmagma gave rise to the roof cumulates which congealed successivelydownwards. The differentiating magma was water-undersaturatedand underwent depletion in Mg and enrichment in Zr and Na. Thecontemporaneous bottom cumulates are hidden beneath the nowvisible bottom cumulates which possess a still more differentiatedliquidus mineral assemblage and are ascribed to a third separatemagma pulse.  相似文献   

17.
The Early Cretaceous volcanic rocks of southern Uruguay comprisemafic and felsic volcanics. The position of these outcrops atthe southern edge of the Paraná–Etendeka continentalflood basalt province provides an opportunity to investigatepossible lateral variations in both mafic and more evolved rocktypes towards the margins of such an area of plume-related magmatism.The mafic lavas are divided into two compositionally distinctmagma types. The more voluminous Treinte Y Trés magmatype is similar to the low-Ti basalts of the Paraná floodbasalt province. The Santa Lucía magma type is a distinctand rare basalt type with ocean-island basalt type asthenosphericaffinities (high Nb/La, low 87Sr/86Sri). The felsic volcanicsare divided into two series, the Lavalleja Series and the AigüaSeries. The Lavalleja Series are chemically and isotopicallysimilar to the Paraná–Etendeka low-Ti rhyolites,and are considered to be related to the Treinte Y Tréslavas by extensive fractionation and crustal assimilation. TheAigüa Series have low 143Nd/144Ndi and low 87Sr/86Sri andunlike the rhyolites of the Paraná, are interpreted asmelts of pre-existing mafic lower crust that subsequently underwentextreme fractionation. The differences observed in the felsicsuites may be linked to differences in the volumes of the associatedbasalts and the amounts of extension. KEY WORDS: South America; flood basalts; felsic volcanics; crustal melts; plume  相似文献   

18.
Volcanological and petrological evidence, 87Sr/86Sr data, thelinear correlation between pairs of residual elements (e.g.Th, U, Zr, Hf, La, Ce, Ta) indicate that the rock series frommildly alkaline (transitional) basalt to pantellerite eruptedin recent Quaternary times at the Boina volcanic centre, canbe entirely explained in terms of fractional crystallizationat shallow depth. The fractionation process has been reconstructedby referrin to variation diagrams of major and trace elementsreported as a function of the fraction (f) of the initial compositionformed by the residual liquid, evaluated from the distributionof residual elements and by estimating the composition of theparent magma. The main crystal phases involved in the differentiationare, in the order of appearance: olivine, plagioclase, clinopyroxene,Fe-Ti oxides, alkali feldspar. Crystallization of Fe-Ti oxidesoccurs only at an advanced stage of fractionation in iron richliquids (ferrobasalts). The transition to the peralkaline field(near f=0?20) occurs without passing through a ‘true’trachytic (low-silica) salic stage and is determined by the‘plagioclase effect’. Fractionation within the peralkalinefield is dominated by alkali feldspar. Evidence is given fora ‘low-temperature zone’ of the oversaturated mildlyperalkaline system running along a line of constant alkali-ratio.Po2 variations are recorded during the evolution of the Boinaseries as suggested by petrological data and distribution curvesof total iron, Fe++/Fe+++and europium. Po2 values calculatedfrom europium distribution in feldspar and whole rocks agreewith published Po2 mineralogical calculations in pantelleritesfrom other localities. A crucial stage is recognized near thetransition to the peralkaline field, with a sudden Po2 dropduring the crystallization of the oxides probably provokingthe precipitation of apatite, followed by a rapid Po2 increaseat f=0?30. This limited oxygen unbuffered zone is importantin the basalt-pantellerite evolution, as it determines markedchemical variations in a restricted crystallization interval.It is suggested that such a crucial stage occurs also in theother known pantellerite series, such as Pantelleria. It mayalso account for the scarcity of rocks frequently reported atthis stage (‘Daly gap’). Data obtained from Boina and comparisons with other volcanicseries indicate that many peralkaline rhyolites are geneticallyrelated to transitional basalts and that their nature is mainlycontrolled by the composition of the parent basaltic magma.The association is characteristically found in zones of extensionof both continental and oceanic environments. The views of Coombs(1963) are confirmed and the rocks series from transitionalbasalts to comendites and/or pantellerites should be distinguishedfrom the alkalic (undersaturated) igneous rock suites producedby differentiation of alkali basalts.  相似文献   

19.
Intermediate-composition plagioclase (An40–60) is typicallyless dense than the relatively evolved basaltic magmas fromwhich it crystallizes and the crystallization of plagioclaseproduces a dense residual liquid, thus plagioclase should havea tendency to float in these magmatic systems. There is, however,little direct evidence for plagioclase flotation cumulates eitherin layered intrusions or in Proterozoic anorthosite complexes.The layered series of the Poe Mountain anorthosite, southeastWyoming, contains numerous anorthosite–leucogabbro blocksthat constrain density relations during differentiation. Allblocks are more mafic than their hosting anorthositic cumulates,their plagioclase compositions are more calcic, and each blockis in strong Sr isotopic disequilibrium with its host cumulate.Associated structures—disrupted and deformed layering—indicatethat (1) a floor was present during crystallization and thatplagioclase was accumulating and/or crystallizing on the floor,(2) compositional layering and plagioclase lamination formeddirectly at the magma–crystal pile interface, and (3)the upper portions of the crystal pile contained significantamounts of interstitial melt. Liquid densities are calculatedfor proposed high-Al olivine gabbroic parental magmas and Fe-enrichedferrodioritic and monzodioritic residual magmas of the anorthositestaking into account pressure, oxygen fugacity, P2O5, estimatedvolatile contents, and variable temperatures of crystallization.For all reasonable conditions, calculated block densities aregreater than those of the associated melt. The liquid densities,however, are greater than those for An40–60 plagioclase,which cannot have settled to the floor. Plagioclase must eitherhave been carried to the floor in relatively dense packets ofcooled liquid plus crystals or have crystallized in situ. Asloping floor, possibly produced by diapiric ascent of relativelylight plagioclase-rich cumulates, is required to allow for drainingand removal of the dense interstitial liquid produced in thecrystal pile and may be a characteristic feature during thecrystallization of many Proterozoic anorthosites and layeredintrusions. KEY WORDS: magma; density; Proterozoic anorthosites; blocks; plagioclase  相似文献   

20.
Ilmenite and magnetite are investigated from the point of viewof their distribution, microtexture, and chemical composition(major and minor elements) in the Bjerkrem-Sogndal massif (Egersundarea, South-Rogaland, SW. Norway). This massif is an igneouslayered synkinematic lopolith made up of cumulates of the anorthosite-mangeritesuite. The lower part of the massif presents a rhythmic structure. The microtextures of ilmenite result from simple exsolutionof ilmenite-hematite solid solutions. Magnetite contains intergrowthsof ilmenite formed by oxidation-exsolution of ulv?spinel-magnetitesolid-solutions. In the stratigraphic sequence, on a large scale, ilmenite appearsfirst alone, and is then accompanied by magnetite; its hematitecontent decreases towards the top of the massif, while the titaniumcontent of the magnetite increases. On the scale of the rhythms,similar trends but of lesser amplitude are also observed. Evidence of deuteric readjustment of the orthomagmatic compositionof the two oxides is provided (1) by the observation of microtexturesat the contact between grains (zoning of primary ilmenite andrim of secondary ilmenite) (2) by the existence of differencesin chemical composition between isolated grains and grains incontact, and (3) by the determination of the equilibrium temperatureby means of the Buddington and Lindsley geothermometer. Reconstitution of the T-fo2 orthomagmatic conditions in twoparticular levels of the massif shows that the reducing characterof the magma increases during differentiation. The sudden changesin the oxide assemblage at the base of the rhythms reflect asudden increase in the fo2 of the magma. These increases, asshown by variation in Cr, Ni, and Co, are due to recurrencesof the basic character of the magma. The variations of the minor elements Mn, V, Ga, and Zn are interpretedin terms of the influence of the deuteric readjustment. It followsthat the ratios Mn/Fe2+, Ga/Fe3+, and Zn/Fe2+ increase and thatthe ratio V/Fe3+ decreases in the magma in the course of differentiation.The distribution of Mn between ilmenite and magnetite is discussed. Intermittent supplies of undifferentiated magma are proposedas the geological mechanism controlling the chemical recurrencesassociated with the rhythmic structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号