首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field determined hydraulic and chemical transport properties can be useful for the protection of groundwater resources from land-applied chemicals. Most field methods to determine flow and transport parameters are either time or energy consuming and/or they provide a single measurement for a given time period. In this study, we present a dripper-TDR field method that allows measurement of hydraulic conductivity and chemical transport parameters at multiple field locations within a short time period. Specifically, the dripper-TDR determines saturated hydraulic conductivity (Ks), macroscopic capillary length (λc), immobile water fraction (θim/θ), mass exchange coefficient (α) and dispersion coefficient (Dm). Multiple dripper lines were positioned over five crop rows in a field. Background and step solutions were applied through drippers to determine surface hydraulic conductivity parameters at 44 locations and surface transport properties at 38 locations. The hydraulic conductivity parameters (Ks, λc) were determined by application of three discharge rates from the drippers and measurements of the resultant steady-state flux densities at the soil surface beneath each dripper. Time domain reflectometry (TDR) was used to measure the bulk electrical conductivity of the soil during steady infiltration of a salt solution. Breakthrough curves (BTCs) for all sites were determined from the TDR measurements. The Ks and λc values were found to be lognormally distributed with average values of 31.4 cm h−1 and 6.0 cm, respectively. BTC analysis produced chemical properties, θim/θ, α, and Dm with average values of 0.23, 0.0036 h−1, and 1220 cm2 h−1, respectively. The estimated values of the flow and transport parameters were found to be within the ranges of values reported by previous studies conducted at nearby field locations. The dripper TDR method is a rapid and useful technique for in situ measurements of hydraulic conductivity and solute transport properties. The measurements reported in this study give clear evidence to the occurrence of non-equilibrium water and chemical movement in surface soil. The method allows for quantification of non-equilibrium model parameters and preferential flow. Quantifying the parameters is a necessary step toward determining the influences of surface properties on infiltration, runoff, and vadose zone transport.  相似文献   

2.
Predictions of post-wildfire flooding and debris flows are needed, typically with short lead times. Measurements of soil-hydraulic properties necessary for model parameterization are, however, seldom available. This study quantified soil-hydraulic properties, soil-water retention, and selected soil physical properties within the perimeter of the 2017 Thomas Fire in California. The Thomas Fire burn scar produced catastrophic debris flows in January 2018, highlighting the need for improved prediction capability. Soil-hydraulic properties were also indirectly estimated using relations tied to soil-water retention. These measurements and estimates are examined in the context of parameterizing post-wildfire hydrologic models. Tension infiltrometer measurements showed significant decreases (p < .05) in field-saturated hydraulic conductivity (Kfs) and sorptivity (S) in burned areas relative to unburned areas. Wildfire effects on soil water-retention were dominated by significant decreases in saturated soil-water content (θS). The van Genuchten parameters α, N, and residual water content did not show significant wildfire effects. The impacts of the wildfire on hydraulic and physical soil properties were greatest in the top 1 cm, emphasizing that measurements of post-fire soil properties should focus on the near-surface. Reductions in Kfs, θs, and soil-water retention in burned soils were attributed to fire-induced decreases in soil structure evidenced by increases in dry bulk density. Sorptivity reductions in burned soils were attributed to increases in soil-water repellency. Rapid post-fire assessments of flash flood and debris flow hazards using physically-based hydrologic models are facilitated by similarities between Kfs, S, and the Green–Ampt wetting front potential (ψf) with measurements at other southern CA burned sites. We suggest that ratios of burned to unburned Kfs (0.37), S (0.36), and ψf (0.66) could be used to scale unburned values for model parameterization. Alternatively, typical burned values (Kfs = 20 mm hr−1; S = 6 mm hr−0.5; ψf = 1.6 mm) could be used for model parameterization.  相似文献   

3.
Determination of saturated hydraulic conductivity, Ks, and the van Genuchten water retention curve θ(h) parameters is crucial in evaluating unsaturated soil water flow. The aim of this work is to present a method to estimate Ks, α and n from numerical analysis of an upward infiltration process at saturation (Cap0), with (Cap0 + h) and without (Cap0) an overpressure step (h) at the end of the wetting phase, followed by an evaporation process (Evap). The HYDRUS model as well as a brute-force search method were used for theoretical loam soil parameter estimation. The uniqueness and the accuracy of solutions from the response surfaces, Ks–n, α–n and Ks–α, were evaluated for different scenarios. Numerical experiments showed that only the Cap0 + Evap and Cap0 + h + Evap scenarios were univocally able to estimate the hydraulic properties. The method gave reliable results in sand, loam and clay-loam soils.  相似文献   

4.
We compare two methods for determining the upscaled water characteristics and saturation-dependent anisotropy in unsaturated hydraulic conductivity from a field-scale injection test. In both approaches an effective medium approximation is used to reduce a porous medium of M textures to an equivalent homogenous medium. The first approach is a phenomenological approach based on homogenization and assumes that moisture-based Richards’ equation can be treated like the convective–dispersive equation (CDE). The gravity term, dKz(θ)/d(θ), analogous to the vertical convective velocity in the CDE, is determined from the temporal evolution of the plume centroid along the vertical coordinate allowing calculation of an upscaled Kz(θ). As with the dispersion tensor in the CDE, the rate of change of the second spatial moment in 3D space is used to calculate the water diffusivity tensor, D(θ), from which an upscaled K(θ) is calculated. The second approach uses the combined parameter scale inverse technique (CPSIT). Parameter scaling is used first to reduce the number of parameters to be estimated by a factor M. Upscaled parameters are then optimized by inverse modeling to produce an upscaled K(θ) characterized by a pore tortuosity–connectivity tensor, L. Parameters for individual textures are finally determined from the optimized parameters by inverse scaling using scale factors determined a priori. Both methods produced upscaled K(θ) that showed evidence of saturation dependent anisotropy. Flow predictions with the STOMP simulator, parameterized with upscaled parameters, were compared with field observations. Predictions based on the homogenization method were able to capture the mean plume behavior but could not reproduce the asymmetry caused by heterogeneity and lateral spreading. The CPSIT method captured the effects of heterogeneity and anisotropy and reduced the mean squared residual by nearly 90% compared to local-scale and upscaled parameters from the homogenization method. The Pacific Northwest National Laboratory is operated for the US Department of Energy by Battelle under Contract DE-AC05-76RL01830.  相似文献   

5.
Simulation of soil moisture content requires effective soil hydraulic parameters that are valid at the modelling scale. This study investigates how these parameters can be estimated by inverse modelling using soil moisture measurements at 25 locations at three different depths (at the surface, at 30 and 60 cm depth) on an 80 by 20 m hillslope. The study presents two global sensitivity analyses to investigate the sensitivity in simulated soil moisture content of the different hydraulic parameters used in a one‐dimensional unsaturated zone model based on Richards' equation. For estimation of the effective parameters the shuffled complex evolution algorithm is applied. These estimated parameters are compared to their measured laboratory and in situ equivalents. Soil hydraulic functions were estimated in the laboratory on 100 cm3 undisturbed soil cores collected at 115 locations situated in two horizons in three profile pits along the hillslope. Furthermore, in situ field saturated hydraulic conductivity was estimated at 120 locations using single‐ring pressure infiltrometer measurements. The sensitivity analysis of 13 soil physical parameters (saturated hydraulic conductivity (Ks), saturated moisture content (θs), residual moisture content (θr), inverse of the air‐entry value (α), van Genuchten shape parameter (n), Averjanov shape parameter (N) for both horizons, and depth (d) from surface to B horizon) in a two‐layer single column model showed that the parameter N is the least sensitive parameter. Ks of both horizons, θs of the A horizon and d were found to be the most sensitive parameters. Distributions over all locations of the effective parameters and the distributions of the estimated soil physical parameters from the undisturbed soil samples and the single‐ring pressure infiltrometer estimates were found significantly different at a 5% level for all parameters except for α of the A horizon and Ks and θs of the B horizon. Different reasons are discussed to explain these large differences. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Solute leaching in unsaturated soil is influenced by the variability in hydraulic functions (water retention and conductivity) that govern the flow process. Variability in measured soil hydraulic functions of a coarse-, medium- and fine-textured soil group was quantified with the scaling theory of similar media. Solute leaching in these soils was calculated with Monte Carlo simulation assuming, successively, hydraulic conductivity, K, volumetric water content, 0, and pressure head, h, to be constant. In addition to variability in hydraulic functions, variability in the solute retardation factor was also taken into account. To examine this effect five solutes were considered: a conservative solute (chloride), a non-retarded solute subject to decay (nitrate), a retarded solute that does not decay (cadmium) and two organic solutes which are retarded but have different sorption and decay parameters (the pesticide atrazine and a chlorinated hydrocarbon). The numerical results obtained with Monte Carlo simulation were in a number of instances verified with analytical solutions. The three soil groups distinguished showed considerable differences in vulnerability for leaching of the five solutes, emphasizing the importance of the effect of variability in soil hydraulic functions when studying solute leaching. Numerical and analytical results showed good agreement. Therefore, in relatively simple situations analytical solutions are attractive. However, in complicated situations, analytical solutions are cumbersome and numerical solutions are the only realistic alternative.  相似文献   

7.
The prediction of soil moisture content, θ, as a function of depth, z, and time, t, is of fundamental importance for applications in many hydrological processes. The main objective of this paper is to provide an approach to solve this problem at a local scale in soils with vegetation. The matching of soil moisture vertical profiles observed under natural conditions in grassy plots and their simulations by a conceptual model is presented. Experimental measurements were performed in a plot located in Central Italy, complete with hydrometeorological sensors specifically set up and equipped with a time domain reflectometry system providing the water content, θe(z, t). A conceptual model framework earlier proposed for two‐layered soil vertical profiles was modified and adopted for simulations. The changes concern the incorporation of evapotranspiration, the reduction of the original model for applications also to homogeneous soil vertical profiles, and a correction for the differences existing between assumed and observed initial moisture contents. In the model calibration, it was found that the effects of vegetation could be represented adequately by a fictitious soil vertical profile with a more permeable upper layer of saturated hydraulic conductivity, Ks, independent of time. Then, for the validation events, the model simulations in the stages of both infiltration and redistribution/evapotranspiration reproduced appropriately θe(z, t) with typical values of root mean square error in the range 0.0017–0.0657. Similar results were obtained by applying the modified two‐layered model for simulations of experimental data observed in three other plots located in Northern Italy and Germany. For all four vegetated sites, the two‐layer profile better matched the experimental data than the assumption of a homogeneous profile. Thus, the conceptual approach based on a two‐layered scheme for representing θ(z, t) in soils with vegetation appears to be appropriate for many hydrological applications. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The point measurement of soil properties allows to explain and simulate plot scale hydrological processes. An intensive sampling was carried out at the surface of an unsaturated clay soil to measure, on two adjacent plots of 4 × 11 m2 and two different dates (May 2007 and February–March 2008), dry soil bulk density, ρb, and antecedent soil water content, θi, at 88 points. Field‐saturated soil hydraulic conductivity, Kfs, was also measured at 176 points by the transient Simplified Falling Head technique to determine the soil water permeability characteristics at the beginning of a possible rainfall event yielding measurable runoff. The ρb values did not differ significantly between the two dates, but wetter soil conditions (by 31%) and lower conductivities (1.95 times) were detected on the second date as compared with the first one. Significantly higher (by a factor of 1.8) Kfs values were obtained with the 0.30‐m‐diameter ring compared with the 0.15‐m‐diameter ring. A high Kfs (> 100 mm h?1) was generally obtained for low θi values (< 0.3 m3m?3), whereas a high θi yielded an increased percentage of low Kfs data (1–100 mm h?1). The median of Kfs for each plot/sampling date combination was not lower than 600 mm h?1, and rainfall intensities rarely exceeded 100 mm h?1 at the site. The occurrence of runoff at the base of the plot needs a substantial reduction of the surface soil permeability characteristics during the event, probably promoted by a higher water content than the one of this investigation (saturation degree = 0.44–0.62) and some soil compaction due to rainfall impact. An intensive soil sampling reduces the risk of an erroneous interpretation of hydrological processes. In an unstable clay soil, changes in Kfs during the event seem to have a noticeable effect on runoff generation, and they should be considered for modeling hydrological processes. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The hydraulic conductivity of heterogeneous porous media depends on the distribution function and the geometry of local conductivities at the smaller scale. There are various approaches to estimate the effective conductivity Keff at the larger scale based on information about the small scale heterogeneity. A critical geometric property in this ‘upscaling’ procedure is the spatial connectivity of the small-scale conductivities. We present an approach based on the Euler-number to quantify the topological properties of heterogeneous conductivity fields, and we derive two key parameters which are used to estimate Keff. The required coefficients for the upscaling formula are obtained by regression based on numerical simulations of various heterogeneous fields. They are found to be generally valid for various different isotropic structures. The effective unsaturated conductivity function Keff (ψm) could be predicted satisfactorily. We compare our approach with an alternative based on percolation theory and critical path analysis which yield the same type of topological parameters. An advantage of using the Euler-number in comparison to percolation theory is the fact that it can be obtained from local measurements without the need to analyze the entire structure. We found that for the heterogeneous field used in this study both methods are equivalent.  相似文献   

10.
Abstract

The accuracy of six combined methods formed by three commonly-used soil hydraulic functions and two methods to determine soil hydraulic parameters based on a soil hydraulic parameter look-up table and soil pedotransfer functions was examined for simulating soil moisture. A novel data analysis and modelling approach was used that eliminated the effects of evapotranspiration so that specific sources of error among the six combined methods could be identified and quantified. By comparing simulated and observed soil moisture at six sites of the USDA Soil Climate Analysis Network, we identified the optimal soil hydraulic functions and parameters for predicting soil moisture. Through sensitivity tests, we also showed that adjusting only the soil saturated hydraulic conductivity, Ks , is insufficient for representing important effects of macropores on soil hydraulic conductivity. Our analysis illustrates that, in general, soil hydraulic conductivity is less sensitive to Ks than to the soil pore-size distribution parameter.

Editor D. Koutsoyiannis; Associate editor D. Hughes

Citation Pan, F., McKane, R.B. and Stieglitz, M., 2012. Identification of optimal soil hydraulic functions and parameters for predicting soil moisture. Hydrological Sciences Journal, 57 (4), 723–737.  相似文献   

11.
Anisotropy and heterogeneity of hydraulic conductivity (K) are suspected of greatly affecting rates and patterns of ground‐water seepage in peats. A new laboratory method, termed here the modified cube method, was used to measure horizontal and vertical hydraulic conductivity (Kh and Kv) of 400 samples of bog peat. The new method avoids many of the problems associated with existing field and laboratory methods, and is shown to give relatively precise measurements of K. In the majority of samples tested, Kh was much greater than Kv, indicating that the bog peat was strongly anisotropic. Log10Kh, log10Kv, and log10 (Kh/Kv) were found to vary significantly with depth, although none of the relationships was simple. We comment on the scale dependency of our measurements. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A new empirical equation to estimate hydraulic conductivity is proposed, based on a large set of measured data for hydraulic properties of soil. The equation is simpler and more accurate than the series-parallel model. Under conditions of insufficient data, the new equation provides a good estimation of hydraulic conductivity for sands. For the same class of soils, another empirical equation is proposed to estimate the power N in the Averjanov-Irmay function.  相似文献   

13.
Abstract

Time-domain reflectometry (TDR) is an electromagnetic technique for measurements of water and solute transport in soils. The relationship between the TDR-measured dielectric constant (Ka ) and bulk soil electrical conductivity ([sgrave]a) to water content (θW) and solute concentration is difficult to describe physically due to the complex dielectric response of wet soil. This has led to the development of mostly empirical calibration models. In the present study, artificial neural networks (ANNs) are utilized for calculations of θw and soil solution electrical conductivity ([sgrave]w) from TDR-measured Ka and [sgrave]a in sand. The ANN model performance is compared to other existing models. The results show that the ANN performs consistently better than all other models, suggesting the suitability of ANNs for accurate TDR calibrations.  相似文献   

14.
E. Rosa  M. Larocque 《水文研究》2008,22(12):1866-1875
Flow dynamics within a peatland are governed by hydraulic parameters such as hydraulic conductivity, dispersivity and specific yield, as well as by anisotropy and heterogeneity. The aim of this study is to investigate hydraulic parameters variability in peat through the use of different field and laboratory methods. An experimental site located in the Lanoraie peatland complex (southern Quebec, Canada) was used to test the different approaches. Slug and bail tests were performed in piezometer standpipes to investigate catotelm hydraulic conductivity. Combined Darcy tests and tracer experiments were conducted on cubic samples using the modified cube method (MCM) to assess catotelm hydraulic conductivity, anisotropy and dispersivity. A new laboratory method is proposed for assessing acrotelm hydraulic conductivity and gravity drainage using a laboratory experimental tank. Most of slug tests' recovery curves were characteristic of compressible media, and important variability was observed depending on the initial head difference. The Darcy experiments on cubic samples provided reproducible results, and anisotropy (Kh > Kv) was observed for most of samples. All tracer experiments displayed asymmetrical breakthrough curves, suggesting the presence of retardation and/or dual porosity. Hydraulic conductivity estimates performed using the experimental tank showed K variations over a factor of 44 within the upper 40 cm of the acrotelm. The results demonstrate that the intrinsic variability associated with the different field and laboratory methods is small compared with the spatial variability of hydraulic parameters. It is suggested that a comprehensive assessment of peat hydrological properties can be obtained through the combined use of complementary field and laboratory investigations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Our understanding of hydraulic properties of peat soils is limited compared with that of mineral substrates. In this study, we aimed to deduce possible alterations of hydraulic properties of peat soils following degradation resulting from peat drainage and aeration. A data set of peat hydraulic properties (188 soil water retention curves [SWRCs], 71 unsaturated hydraulic conductivity curves [UHCs], and 256 saturated hydraulic conductivity [Ks] values) was assembled from the literature; the obtained data originated from peat samples with an organic matter (OM) content ranging from 23 to 97 wt% (weight percent; and according variation in bulk density) representing various degrees of peat degradation. The Mualem‐van Genuchten model was employed to describe the SWRCs and UHCs. The results show that the hydraulic parameters of peat soils vary over a wide range confirming the pronounced diversity of peat. Peat decomposition significantly modifies all hydraulic parameters. A bulk density of approximately 0.2 g cm?3 was identified as a critical threshold point; above and below this value, macroporosity and hydraulic parameters follow different functions with bulk density. Pedotransfer functions based on physical peat properties (e.g., bulk density and soil depth) separately computed for bog and fen peat have significantly lower mean square errors than functions obtained from the complete data set, which indicates that not only the status of peat decomposition but also the peat‐forming plants have a large effect on hydraulic properties. The SWRCs of samples with a bulk density of less than 0.2 g cm?3 could be grouped into two to five classes for each peat type (botanical composition). The remaining SWRCs originating from samples with a bulk density of larger than 0.2 g cm?3 could be classified into one group. The Mualem‐van Genuchten parameter values of α can be used to estimate Ks if no Ks data are available. In conclusion, the derived pedotransfer functions provide a solid instrument to derive hydraulic parameter values from easily measurable quantities; however, additional research is required to reduce uncertainty.  相似文献   

16.
The paper describes a permeameter test method for determination of the hydraulic conductivity(AT) along multi-directions in fluvial sediments with cross beddings.Unlike existing in-situ permeameter methods that determine hydraulic conductivity for submerged streambeds,our method was intended to measure hydraulic conductivity of exposed streambeds or fluvial sediments.The method was applied to the Wei River,Shaanxi Province,Central China for characterization of the anisotropy of K in a well-sorted fluvial sediment.The results illustrated that even in well-sorted sediments,cross-bedding and sediment fabrication(or texture) can lead to varied K values along different measurement directions.The K value was the largest along the dip direction(or the major direction) that is parallel to the orientation of cross bedding and the smallest in the direction perpendicular to the bedding(or the minor direction). The K value in a given direction between the major and minor direction often fell in the range bounded by the K values in the major and minor directions.The anisotropy ratio of K(the ratio of K value between the major and minor directions) in two trenches for this well-sorted fluvial sediment was up to 1.14 to 1.23,respectively.Our results also demonstrated that even for well-sorted sediments,the K values between two sampling points only about 10 cm apart can differ.It is clear that the K distribution strongly correlates to the bedding orientation.  相似文献   

17.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

18.
Relationships between gravimetric soil moisture content (w) and matric potential (ϕ), and between volumetric soil moisture content (θv) and pressure head (h) were approximated for the unsaturated zone on Long Island, New York. Soil samples were collected from two sites using a hand auger. The soil moisture content was determined using the filter‐paper (wf) and gravimetric (w) methods, respectively. The wf was then used in an empirical equation to estimate ϕm. Each set of ϕm and w was combined with a straight‐line empirical model to obtain a wm) relationship. Soil ϕm was converted to h, and w to the volumetric moisture content θv, in order to produce a θv(h) curve. Graphical and statistical comparison showed that the resulting θv(h) curves fell within one order of magnitude of similar curves generated by a more sophisticated non‐linear model developed previously. The simplicity and low cost of the filter‐paper approach described in this study recommends it for preliminary studies of hydraulic properties in the unsaturated zone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
We present a nonlinear stochastic inverse algorithm that allows conditioning estimates of transient hydraulic heads, fluxes and their associated uncertainty on information about hydraulic conductivity (K) and hydraulic head (h  ) data collected in a randomly heterogeneous confined aquifer. Our algorithm is based on Laplace-transformed recursive finite-element approximations of exact nonlocal first and second conditional stochastic moment equations of transient flow. It makes it possible to estimate jointly spatial variations in natural log-conductivity (Y=lnK)(Y=lnK), the parameters of its underlying variogram, and the variance–covariance of these estimates. Log-conductivity is parameterized geostatistically based on measured values at discrete locations and unknown values at discrete “pilot points”. Whereas prior values of Y at pilot point are obtained by generalized kriging, posterior estimates at pilot points are obtained through a maximum likelihood fit of computed and measured transient heads. These posterior estimates are then projected onto the computational grid by kriging. Optionally, the maximum likelihood function may include a regularization term reflecting prior information about Y. The relative weight assigned to this term is evaluated separately from other model parameters to avoid bias and instability. We illustrate and explore our algorithm by means of a synthetic example involving a pumping well. We find that whereas Y and h can be reproduced quite well with parameters estimated on the basis of zero-order mean flow equations, all model quality criteria identify the second-order results as being superior to zero-order results. Identifying the weight of the regularization term and variogram parameters can be done with much lesser ambiguity based on second- than on zero-order results. A second-order model is required to compute predictive error variances of hydraulic head (and flux) a posteriori. Conditioning the inversion jointly on conductivity and hydraulic head data results in lesser predictive uncertainty than conditioning on conductivity or head data alone.  相似文献   

20.
The heterogeneous hydraulic conductivity (K) in water‐bearing formations controls subsurface flow and solute transport processes. Geostatistical techniques are often employed to characterize the K distribution in space based on the correlation between K measurements. However, at the basin scale, there are often insufficient measurements for inferring the spatial correlation. This is a widespread problem that we address in this study using the example of the Betts Creek Beds (BCB) in the Galilee Basin, Australia. To address the lack of data, we use a 1D stochastic fluvial process‐based model (SFPM) to quantify the total sediment thickness, Z( x ), and the sandstone proportion over the total thickness, Ps( x ), in the BCB. The semivariograms of Z( x ) and Ps( x ) are then extracted and used in sequential Gaussian simulation to construct the 2D spatial distribution of Z( x ) and Ps( x ). Ps( x ) can be converted to a K distribution based on classical averaging methods. The results demonstrate that the combination of SFPM and geostatistical simulation allows for the evaluation of upscaled K distribution with a limited number of K measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号