首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic fabric and rock magnetism studies were performed on three mafic dike swarms (total of 38 dikes) from the southernmost part of the São Francisco Craton (SFC) (Minas Gerais State, SE Brazil). They cut Archaean granite–gneiss–migmatite and paleoprototerozoic terranes. These swarms are classified as basic–noritic (Sm–Nd age  2.65 Ga), basic (Rb–Sr age  1.87 Ga) and metamorphic (Rb–Sr age  1.87 Ga) suites, in which the second is the most important. Magnetic fabrics were determined by applying both anisotropy of low-field magnetic susceptibility (AMS) and anisotropy of anhysteretic remanent magnetization (AARM). In most sites magnetic susceptibility is dominantly carried by ferromagnetic minerals, however, in some sites the paramagnetic contribution exceeds 70% of bulk susceptibility. Mainly coarse to fine-grained Ti-poor titanomagnetite up to pure magnetite carry the magnetic fabrics.Three primary AMS fabrics are recognized which are all coaxial with the AARM fabric. Normal AMS fabric is dominant in the basic suite (16 of 20 analyzed dikes) and occurs in 4 and 3 dikes from the basic–noritic and metamorphic suites, respectively. This fabric is interpreted as a result of magma flow in which the analysis of Kmax inclination permitted to infer that the majority of dikes were fed by inclined flows (30° < Kmax < 60°), although 44% of dikes from the basic suite were fed by horizontal or sub-horizontal flows (Kmax < 30°). Intermediate AMS fabric was found in 50% of dikes from the basic–noritic and metamorphic suites, but in only 2 dikes from the basic suite. It is interpreted as due to vertical compaction of a static magma column with the minimum stress along the dike strike. Inverse AMS fabric is a minority (2 dikes from each suite). The parallelism between AMS and AARM tensors for dikes with abnormal fabrics suggests a primary origin for them. Gyroremanent magnetization (GRM) effect was negligible for the majority of dikes, but it was found in two dikes from the basic suite with normal AMS fabric.Magnetic fabrics recognized for the three studied swarms do not depend on magnetic mineralogy, geochemical composition, dike strikes, nor the age of the swarms since the same magnetic minerals and magnetic fabric types are found in dikes from all suites. Inclined and horizontal flows allow us to infer the relative position of at least three magma sources (or magma chambers) from which the dikes were fed.  相似文献   

2.
Dikes of the eastern Troodos ophiolite of Cyprus intruded at slow ocean-spreading axes with dips ranging up to 15° from vertical and with bimodal strikes (now NE–SW and N–S due to post-88 Ma sinistral microplate rotation). Varied dike orientations may represent local stress fields during dike-crack propagation but do not influence the spatial-distributions or orientation-distributions of dikes' magnetic fabrics, nor of their palaeomagnetic signals. Anisotropy of magnetic susceptibility (AMS) integrates mineral orientation-distributions from each of 1289 specimens sampled from dikes at 356 sites over 400 km2 in the eastern Troodos ophiolite of Cyprus. In 90% of dikes, AMS fabrics define a foliation (kMAXkINT) parallel to dike walls and a lineation (kMAX) that varies regionally and systematically. Magma-flow alignment of accessory magnetite controls the AMS with a subordinate contribution from the mafic silicate matrix that is reduced in anisotropy by sea-floor metamorphism. Titanomagnetite has less influence on anisotropy. Occasionally, intermediate and minimum susceptibility axes are switched so as to be incompatible with the kinematically reasonable flow plane but maximum susceptibility (kMAX) still defines the magmatic flow axis. Such blended subfabrics of kinematically compatible mafic-silicate and misaligned multidomain magnetite subfabrics; are rare. Areas of steep magma flow (kMAX plunge ≥ 70°) and of shallow magma-flow alternate in a systematic and gradual spatial pattern. Foci of steep flow were spaced 4 km parallel to the spreading axes and 6 km perpendicular to the spreading axes. Ridge-parallel separation of steep flow suggest the spacing of magma-feeders to the dikes whereas ridge-perpendicular spacing of 6 km at a spreading rate of 50 mm/a implies the magma sources may have been active for 240 Ka. The magma feeders feeding dikes may have been ≤ 2 km in diameter. Stable paleomagnetic vectors, in some cases verified by reversal tests, are retained by magnetite and titanomagnetite. In all specimens, the stable components were isolated by three cycles of low-temperature demagnetization (LTD) followed by ≥ 10 steps of incremental thermal demagnetization (TD). 47% of primary A-components [338.2 /+ 57.2 n = 207, α95 = 3.9; mean TUB = 397 ± 8 °C] are overprinted by a B-component [341.4 /+ 63.5, n = 96, α95 = 8.7; mean TUB = 182 ± 11 °C]. A- and B-components are ubiquitous and shared equally by the N–S and NE–SW striking dikes. A-component unblocking temperatures (TUB) are zoned subparallel to the fossil spreading axis. Their spatial pattern is consistent with chemical remagnetization at some certain off-axis distance determined by sea-floor spreading. A-components indicate less microplate rotation and more northerly palaeolatitudes that are consistent with metamorphic remagnetization after some spreading from the ridge-axis. Thus, their magnetizations are younger than those of the overlying volcanic sequence for which ChRMs are commonly reported as 274 /+ 33 (88 Ma).  相似文献   

3.
The Middle Jurassic Mirdita Ophiolite in northern Albania is part of an ophiolite belt occurring between the Apulian and Pelagonian subcontinents in the Balkan Peninsula. The upper mantle and crustal units of the Mirdita Ophiolite show major changes in thickness, rock types, and chemical compositions from west to east as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The  3–4-km-thick Western Mirdita Ophiolite (WMO) includes lherzolite–harzburgite, plagioclase–lherzolite, plagioclase–dunite in its upper mantle units and a plutonic complex composed of olivine gabbro, troctolite, ferrogabbro, and gabbro. These peridotites and gabbroic rocks are overlain directly by a  600-m-thick extrusive sequence containing basaltic pillow lavas and hyaloclastites. Sheeted dikes are rare in the WMO. The  12-km-thick Eastern Mirdita Ophiolite (EMO) includes tectonized harzburgite and dunite with extensive chromite deposits, as well as ultramafic cumulates including olivine clinopyroxenite, wehrlite, olivine websterite, and dunite forming a transitional Moho with the overlying lower crustal section. The plutonic rocks are made of pyroxenite, gabbronorite, gabbro, amphibole gabbro, diorite, quartz diorite, and plagiogranite. A well-developed sheeted dike complex has mutually intrusive relations with the underlying isotropic gabbros and plagiogranites and feeds into the overlying pillow lavas. Dike compositions change from older basalt to basaltic andesite, andesite, dacite, quartz diorite, to late-stage andesitic and boninitic dikes as constrained by crosscutting relations. The  1.1-km-thick extrusive sequence comprises basaltic and basaltic andesitic pillow lavas in the lower 700 m, and andesitic, dacitic and rhyodacitic massive sheet flows in the upper 400 m. Rare boninitic dikes and lavas occur as the youngest igneous products within the EMO. The basaltic and basaltic andesitic rocks of the WMO extrusive sequence display MORB affinities with Ti and Zr contents decreasing upsection (TiO2 = 3.5–0.5%, Zr = 300–50 ppm), while Nd(T) (+ 8 to + 6.5) varies little. These magmas were derived from partial melting of fertile MORB-type mantle. Fractional crystallization was important in the evolution of WMO magmas. The low Ti and HREE abundances and Cs and Ba enrichments in the uppermost basaltic andesites may indicate an increased subduction influence in the evolution of the late-stage WMO magmas. Basaltic andesites in the lower 700 m of the EMO volcanic sequence have lower TiO2 ( 0.5%) and Zr ( 50 ppm) contents but Nd(T) values (+ 7 to + 6.5) are similar to those of the WMO lavas. These rocks show variable enrichment in subduction-enriched incompatible elements (Cs, Ba, Th, U, LREE). The basaltic andesites through dacites and boninites within the upper 400 meters of EMO lavas show low TiO2 ( 0.8–0.3%) and Nd(T) (+ 6.5 to + 3.0). The mantle source of these rocks was variably enriched in Th by melts derived from subducted sediments as indicated by the large variations in Ba, K, and Pb contents. EMO boninitic dikes and lavas and some gabbroic intrusions with negative Nd (T) values (− 1.4 and − 4.0, respectively) suggest that these magmas were produced from partial melting of previously depleted, ultra-refractory mantle. The MORB to SSZ transition (from west to east and stratigraphically upwards in the Mirdita Ophiolite and the progression of the Nd(T) values from + 8.0 to − 4.0 towards the east resulted from an eastward shift in protoarc–forearc magmatism, keeping pace with slab rollback in this direction. The mantle flow above the retreating slab and in the arc-wedge corner played a major role in the evolution of the melting column, in which melt generation, aggregation/mixing and differentiation occurred at all levels of the sub-arc/forearc mantle. The SSZ Mirdita Ophiolite evolved during the intra-oceanic collapse and closure of the Pindos marginal basin, which had a protracted tectonic history involving seafloor spreading, protoarc rifting, and trench-continent collision.  相似文献   

4.
We investigate background seismic activity of the Abruzzo region, a 5000 km2 area located within the Central Apennines of Italy, where in the past 600 years at least 5 large earthquakes (I = XI–X) have occurred.Between April 2003 and September 2004, a dense temporary seismic network composed of 30 digital three-component seismic stations recorded 850 earthquakes with 0.9 < ML < 3.7. We present earthquake locations and focal mechanisms obtained by standard procedures and an optimized velocity model computed with a search technique based on genetic algorithms.The seismicity occurs at a low and constant rate of  2.6 e− 04 events/daykm2 and is sparsely distributed within the first 15 km of the crust. Minor increases in the seismicity rate are related to the occurrence of small and localised seismic sequences that occur at the tip of major active normal faults along secondary structures.We observe that during the 16 months of study period, the Fucino fault system responsible for the 1915 Fucino earthquake (MS = 7.0), and the major normal faults of the area, did not produce significant seismic activity.Fault plane solutions evaluated using P-wave polarity data show the predominance of normal faulting mechanisms ( 55%) with NE-trending direction of extension coherent with the regional stress field active in this sector of the Apennines. Around 27% of the focal solutions have pure strike–slip mechanisms and the rest shows transtensional faulting mechanisms that mainly characterise the kinematics of the secondary structures activated by the small sequences.We hypothesize that the largest known NW-trending normal faults are presently locked and we propose that in the case of activation, the secondary structures located at their tips may act as transfer faults accommodating a minor part of the extensional deformation with strike–slip motion.  相似文献   

5.
It is proposed that the growth of fractures is the basic process for generating and maintaining permeability in solid rock (bedrock). Many extension fractures grow as hydrofractures, whereas many shear (and extension) fractures grow through the formation of transverse fractures that connect the adjacent tips of existing fractures. In a boundary-element analysis, the hydrofractures are modeled as being driven open by a fluid overpressure that varies linearly from 10 MPa at the fracture centre to 0 MPa at the fracture tip. The host rock has a uniform Young's modulus of 10 GPa, a Poisson's ratio of 0.25, and is dissected by vertical joints and horizontal contacts, each of which is modeled as an internal spring of stiffness 6 MPa m−1. The number of joints and contacts, and their location with respect to the hydrofracture tip are varied in different model runs. The results of the analyses indicate that the tensile stresses generated by overpressured hydrofractures open up joints and contacts out to considerable distances from the fracture tip, so that they tend to link up to form a hydraulic pathway. Using the same Young's modulus, Poisson's ratio, and internal spring constant for joints as in the hydrofracture models, boundary-element models were made to study the interaction stresses that cause neighbouring joints to become interconnected through the growth of linking transverse fractures that, ultimately, may evolve into shear fractures. The models were subjected to tensile stress of 6 MPa acting normal to the joint planes as the only loading. The offset (horizontal distance) and underlap (vertical distance) between the adjacent tips of the joints were varied between model runs. The results show a concentration of tensile and shear stresses in the regions between the neighbouring tips of the joints, but these regions become smaller when the underlap of the joints decreases and changes to overlap. These stress-concentration regions favour the development of transverse (mostly shear) fractures that link up the nearby tips of the joints, so as to form a segmented shear or extension fracture. Analytical results on aperture variation of a hydrofracture in a homogeneous, isotropic rock are compared with boundary-element results for a hydrofracture dissecting layered rocks. The aperture is larger where the hydrofracture dissects soft (low Young's modulus) layers than where it dissects stiff layers. Aperture variation may encourage subsequent groundwater-flow channeling along a pathway generated by a hydrofracture in layered rocks. Electronic Publication  相似文献   

6.
Application of hornblende thermobarometry and fluid inclusion studies to the Palaeoproterozoic (1.7 Ga) basement rocks from Maddhapara, NW Bangladesh, provide information on the pressure and temperature (P–T) conditions of crystallization, the emplacement depth and composition of magmatic fluid. The basement rocks are predominantly diorite or quartz diorite with a mineral assemblage of plagioclase, hornblende, biotite, quartz, K-feldspar, titanite, and secondary epidote and chlorite. The calculated P–T conditions of the dioritic rocks are 680–725 °C and 4.9–6.4 kbar, which probably correspond to crystallization conditions. Fluid inclusion studies suggest that low- to medium-salinity (0–6.4 wt.% NaCleq) H2O-rich fluids are trapped during the crystallization of quartz and plagioclase. The isochore range calculated for primary aqueous inclusions is consistent with the P–T condition obtained by geothermobarometry. The basement rocks likely crystallized at a depth of 17–22 km, with a minimum average exhumation rate of 12–15 m/Ma during Palaeoproterozoic to Lopingian time. Such slow exhumation indicates low relief continental shield surface during this period.  相似文献   

7.
High resolution pollen, plant macrofossil, charcoal, mineral magnetic and sedimentary analyses, combined with AMS 14C measurements, were performed on multiple sediment sequences along a transect through the former crater lake Preluca iganului in northwestern Romania in order to reconstruct the climatic and environmental changes during the early part of the Last Termination. Lake sediments started to accumulate at 14,700 cal yr BP. Initially the upland vegetation consisted of an open forest with mainly Betula and Salix and few Pinus sp., but from 14,500 cal yr BP onwards, Pinus mugo, P. sylvestris and Populus and later on also Larix became established around the lake. Between 14,150 and 13,950 cal yr BP, Pinus cembra seems to have replaced P. mugo and P. sylvestris. At 13,950 cal yr BP the tree cover increased and Picea appeared for the first time, together with Pinus cembra, P. mugo and Larix. From 13,750 cal yr BP onwards, a Picea forest developed around the site. Based on the combined proxy data the following climatic development may be inferred: 14,700–14,500 cal yr BP, cooler and wet/humid; 14,500–14,400 cal yr BP: gradually warmer temperatures, wet/humid with dry summers; 14,400–14,320 cal yr BP: warm and dry; 14,320–14,150 cal yr BP: cooler and wet/humid; 14,150–14,100 cal yr BP: warm and dry; 14,100–13,850 cal yr BP: warmer and wet/humid; <13,850 cal yr BP: warm and dry. The tentative correlation of this development with the North Atlantic region assumes that the period >14,700 cal yr could correspond to GS-2a, the time span between 14,700 and 14,320 to GI-1e, the phase between 14,320 and 14,150 cal yr BP to GI-1d and the time frame between 14,150 and 13,600 cal yr BP to the lower part of GI-1c.  相似文献   

8.
The Concón Mafic Dike Swarm (CMDS) consists of basaltic to andesitic dikes emplaced into deformed Late Paleozoic granitoids during the development of the Jurassic arc of central Chile. The dikes are divided into an early group of thick dikes (5–12 m) and a late group of thin dikes (0.5–3 m). Two new amphibole 40Ar/39Ar dates obtained from undeformed and deformed dikes, constrain the age of emplacement and deformation of the CMDS between 163 and 157 Ma. Based on radiometric ages, field observations, AMS studies and petrographic data, we conclude that the emplacement of the CMDS was syntectonic with the Jurassic arc extension and associated with sinistral displacements along the NW-trending structures that host the CMDS. The common occurrence of already deformed and rotated xenoliths in the dikes indicates that deformation in the granitoids started previously.The early thick dikes and country rocks appear to have been remagnetized during the exhumation of deep-seated coastal rocks in the Early Cretaceous (around 100 Ma). The remanent magnetization in late thin dikes is mainly retained by small amounts of low-Ti magnetite at high temperature and pyrrhotite at low temperature. The magnetization in these dikes appears to be primary in origin. Paleomagnetic results from the thin dikes also indicate that the whole area was tilted  23° to the NNW during cooling of the CMDS.The NNW–SSE extension vectors deduced from the paleomagnetic data and internal fabric of dikes are different with respect to extension direction deduced for the Middle–Late Jurassic of northern Chile, pointing to major heterogeneities along the margin of the overriding plate during the Mesozoic or differences in the mechanisms driving extension during such period.  相似文献   

9.
The Rushan gold deposit in the Jiaodong Peninsula is currently the largest lode gold in China. Gold occurs mainly in pyrite- and polymetallic sulfide–quartz vein/veinlet stockworks. Fluid inclusions in the deposit are divided into three main types, namely CO2–H2O, H2O–CO2 ± CH4 and aqueous ones. Microthermometric data show that the pre-gold fluids were CO2-dominant (XCO2 up to 0.53), and the total homogenization temperatures fall in the range of 298377 °C. These fluids, modified by fluid/wallrock reactions, gradually evolved into fluids with less CO2 (XCO2 = 0.010.19) in the main ore-forming stage, and the total homogenization temperatures range from 170 to 324 °C. Hydrogen and oxygen stable isotope data suggest that ore-forming fluids were mixture of magmatic and meteoritic origin. Co-occurrence of gold and sulfides implies that gold was most likely transported in the form of gold–sulfide complexes. The wide distribution of CO2 inclusions means that the pH variation during gold transportation was controlled by CO2 buffering.  相似文献   

10.
To investigate possible indicators of critical point behavior prior to rock failure, the statistical properties of pre-failure damage were analyzed based on acoustic emission events (AE) recorded during the catastrophic fracture of typical rock samples under differential compression. AEs were monitored using a high-speed 32-channel waveform recording system. Time-dependent statistics, including the energy release rate, b-value of the magnitude–frequency distribution, fractal dimension and spatial correlation length (SCL) of the AE hypocenters were calculated for each data set. Each parameter is a function of the time-to-failure and thus can be treated as an indicator of the critical point. It is clear that the pre-failure damage evolution prior to catastrophic failures in several common rock-types is generally characterized by: 1) accelerated energy release, 2) a decrease in fractal dimension and SCL with a subsequent precursory increase, and 3) a decrease in b-value from  1.5 to  0.5 for hard rocks, and from  1.1 to  0.8 for soft rocks such S–C cataclasite. However, each parameter also reveals more complicated temporal evolution due to either the heterogeneity of the rock mass or the micro-mechanics of shear fracturing. This confirms the potential importance of integrated analysis of two or more parameters for successfully predicting the critical point. The decreasing b-value and increasing energy release may prove meaningful for intermediate-term prediction, while the precursory increase in fractal dimension and SCL may facilitate short-term prediction.  相似文献   

11.
Neotethyan suprasubduction zone ophiolites represent anomalous oceanic crust developed in older host basins during trench rollback cycles and later entrapped in orogenic belts as a result first of trench-passive margin and then continent–continent collisions. The Middle Jurassic Mirdita zone ophiolites in northern Albania constitute a critical transition between the dominantly mid-ocean ridge basalt (MORB)-related Early Jurassic Alpine–Apennine ophiolites in the west and supra-subduction zone (SSZ)-generated Cretaceous Eastern Mediterranean ophiolites in the east. The previously recognized Western- and Eastern-type ophiolites in the Mirdita zone display significant differences in their internal structure and pseudostratigraphy, but their geochemical affinities are more gradational in contrast to the earlier claims that these ophiolites may have formed in different tectonic settings at different times. Crosscutting relations of dike intrusions in the Eastern-type ophiolites indicate changes in the chemistry of magmatic plumbing systems from basaltic to andesitic, dacitic, rhyodacitic, and boninitic compositions through time and from west to east. The chemostratigraphy of the extrusive sequence in the Western-type ophiolites shows that the MORB-like tholeiitic rocks display a significant decrease in their TiO2 contents and Zr concentrations stratigraphically upward, although their εNd(T) values (+ 7.3 to + 6.9) show minor variation. The basaltic andesites in the upper 100 m of the Western extrusive sequence have island arc tholeiite (IAT)-like chemical characteristics (low-Ti, lower HFSE and HREE distribution, significant LREE depletion and higher Co, Ni, and Cr contents) that signify increased subduction influence in magma/melt evolution. The Eastern-type extrusive rocks range in composition from basaltic andesite to andesite, dacite and rhyodacite stratigraphically upward mimicking the temporal changes in the sheeted dikes, and they display constant Zr ( 50 ppm) but significantly varying Cr contents. The TiO2 contents of their pyroxenes are < 0.3 wt.%, and their εNd(T) values decrease from + 6.5 in the lower parts to  + 3.1 in the uppermost section of the sequence. Farther east in the extrusive sequence the youngest boninitic lavas and dikes have εNd(T) values between − 1.4 and − 4.0. These chemical variations through time point to a mantle source increasingly contaminated by subduction-derived aqueous fluids and sediments, which were incorporated into the melt column beneath an extending protoarc–forearc region. Slab retreat and sinking played a major role in establishing asthenospheric upwelling and corner flow beneath the forearc mantle that in turn facilitated shallow partial melting of highly depleted harzburgitic peridotites, producing boninitic magmas. This chemical progression in the Mirdita zone ophiolite volcanism is similar to the temporal variations in magma chemistry documented from very young intraoceanic arcs built on recently generated backarc crust (i.e., South Sandwich arc). The Western and Eastern-type ophiolites in the Mirdita zone are therefore all subduction-related with the subduction zone influence in the lavas increasing stratigraphically upward as well as eastwards, suggesting a west-dipping slab geometry. The Mirdita zone and the Western Hellenic ophiolites in the Balkans were produced within a marginal basin that had evolved between the Apulian and Pelagonian microcontinents, and were subsequently emplaced onto their passive margins diachronously through different collisional processes.  相似文献   

12.
The bulk properties and bitumen molecular compositions of a rank-series of 38 humic coals from the New Zealand Coal Band (Cretaceous–Cenozoic) have been analysed to investigate early maturation processes affecting coaly organic matter through diagenesis to moderate catagenesis (Rank(Sr) 0.0–11.8, Ro 0.23–0.81%). The samples comprise a relatively restricted range of vitrinite rich coal types formed largely from higher land plant material under relatively oxic conditions, but with a significant contribution from microbial biomass. With increasing rank, total organic carbon contents show a general increase, whereas moisture and asphaltene contents decrease. Bitumen yields also decrease through the stages of diagenesis and early catagenesis (Rank(Sr) < 9, Ro < 0.55%), indicating partial loss of initial bitumen during early maturation. Thermal generation of hydrocarbons begins slowly at Rank(Sr)  5–6 (Ro  0.40%) as indicated by the constant occurrence and gradual increase of isoprenoids (e.g., pristane and phytane) and hopanoids in their more mature αβ configuration. This early phase of catagenesis, not previously recognised in New Zealand coals, is followed at Rank(Sr)  9 (Ro  0.55%) by the main catagenesis phase characterised by a more rapid increase in the generation of hydrocarbons, including total n-alkanes, isoprenoids and αβ-hopanes. Changes in the maturity of New Zealand coals can be traced by the Carbon Preference Index and several hopane maturity parameters, including 22S/(22S + 22R), αβ/(αβ + βα) and ββ/(αβ + βα + ββ).  相似文献   

13.
Cleats and fractures in southwestern Indiana coal seams are often filled with authigenic kaolinite and/or calcite. Carbon- and oxygen-stable isotope ratios of kaolinite, calcite, and coalbed CO2 were evaluated in combination with measured values and published estimates of δ18O of coalbed paleowaters that had been present at the time of mineralization. δ18Omineral and δ18Owater values jointly constrain the paleotemperature of mineralization. The isotopic evidence and the thermal and tectonic history of this part of the Illinois Basin led to the conclusion that maximum burial and heat-sterilization of coal seams approximately 272 Ma ago was followed by advective heat redistribution and concurrent precipitation of kaolinite in cleats at a burial depth of < 1600 m at  78 ± 5 °C. Post-Paleozoic uplift, the development of a second generation of cleats, and subsequent precipitation of calcite occurred at shallower burial depth between  500 to  1300 m at a lower temperature of 43 ± 6 °C. The available paleowater in coalbeds was likely ocean water and/or tropical meteoric water with a δ18Owater  − 1.25‰ versus VSMOW. Inoculation of coalbeds with methanogenic CO2-reducing microbes occurred at an even later time, because modern microbially influenced 13C-enriched coalbed CO2 (i.e., the isotopically fractionated residue of microbial CO2 reduction) is out of isotopic equilibrium with 13C-depleted calcite in cleats.  相似文献   

14.
Changes in oil composition in the course of the development depend on numerous factors including both technogenic and natural ones. Physicochemical compositional analysis of 2456 oil samples collected in the Romashkino field in 1982–2000 from two productive strata (Devonian and Carboniferous reservoirs) has indicated statistically significant variations in the i-butane to n-butane content ratio (i-b / n-b). This ratio is characterized not only by a trend of steady growth but also by a significant variation with a period of 4.5 years. The i-b / n-b ratio variations are well correlated (R2 = 0.61) between these two reservoirs (Devonian and Carboniferous) occurring at different depths. However, the average i-b / n-b ratios recorded in these reservoirs are essentially different (0.44 and 0.55, respectively). A possible relationship is discussed between the i-b / n-b ratio variations and those in global seismicity.  相似文献   

15.
SHRIMP U–Pb zircon age, geochemical and Sm–Nd isotopic data are reported for mid-Neoproterozoic volcanic rocks and mafic intrusions in northern Guangxi (Guibei) and western Hunan (Xiangxi) Provinces along the southern margin of the Yangtze Block. The mafic igneous rocks studied are generally synchronous, dated at  765 Ma. The least-contaminated dolerite samples from Xiangxi are characterized by high εNd(T) value of 3.3 to 5.3 and OIB-type geochemical features, indicating that they were derived from an OIB-like mantle source in a continental rift setting. The spilites and gabbros in Guibei show basaltic compositions transitional between the tholeiitic and calc-alkaline series. Despite depletion in Nb and Ta relative to La and Th, they have Zr/Sm = 27–35 and Ti/V = 30–40, affinitive to intraplate basalts. Their εNd(T) values are variable, ranging from − 1.2 to 3.2 for the spilites and from − 1.7 to 2.9 for the gabbros, suggesting that these spilites and gabbros crystallized from crustal-contaminated mafic magmas derived from a metasomatised subcontinental lithospheric mantle source. We conclude that the  765 Ma mafic magmatic rocks in Guibei and Xiangxi were formed in a single continental rift setting as part of the broadly concurrent  780–750 Ma rift magmatism over much of South China, which may be related to the plume activities during the breakup of Rodinia.  相似文献   

16.
Summary  A tensile fracture of about 1 m in length was created by indenting wedges in a block of granite, and the heights of the two fracture surfaces were measured using a large, non-contact surface profile measurement system with a laser profilometer to determine the aperture distribution of the fracture. Based on the measured data, the frequency characteristics of the asperity heights, the initial aperture (the aperture when the surfaces are in contact at a single point), and the size effect on the statistical properties were analyzed. The results can be summarized as follows:
1.  The relation between the power spectral density of the fracture surface and the spatial frequency shows linearity on a log–log plot and thus the fracture surfaces can be assumed to be fractal object. On the other hand, the power spectral of the initial aperture becomes almost constant for wavelengths greater than about 100 mm. Thus, the matedness between the two surfaces of a fracture of 1 m monotonously increases with wavelength.
2.  The standard deviation of the initial aperture increases with fracture size until the fracture size is about 200 mm, beyond which the standard deviation is almost independent of the fracture size. On the other hand, the mean initial aperture still increases when the fracture size exceeds 200 mm, since the initial aperture depends on the minimum value of the aperture, which decreases with the number of data points.
Authors’ address: Dr. Kiyotoshi Sakaguchi, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8579, Japan  相似文献   

17.
This paper documents a continuous  44,000-yr pollen record derived from the Mfabeni Peatland on the Maputaland Coastal Plain. A detailed fossil pollen analysis indicates the existence of extensive Podocarpus-abundant coastal forests before  33,000 cal yr BP. The onset of wetter local conditions after this time is inferred from forest retreat and the development of swampy conditions. Conditions during the last glacial maximum ( 21,000 cal yr BP) are inferred to have been colder and drier than the present, as evidenced by forest retreat and replacement of swampy reed/sedge communities by dry grassland. Forest growth and expansion during the Holocene Altithermal ( 8000–6000 cal yr BP) indicates warm, relatively moist conditions. Previous records from Maputaland have suggested a northward migration of Podocarpus forest during the late Holocene. However, we interpret a mid-Holocene decline in Podocarpus at Mfabeni as evidence of deforestation. Forest clearance during the mid-Holocene is supported by the appearance of Morella serrata, suggesting a shift towards more open grassland/savanna, possibly due to burning. These signals of human impact are coupled with an increase in Acacia, indicative of the development of secondary forest and hence disturbance.  相似文献   

18.
The release of irradiation-produced noble gas isotopes (38ArCl, 80KrBr, 128XeI and 39ArK) during in vacuo crushing scapolite has been investigated and is compared to quartz. Three thousand crushing strokes released 98% of fluid inclusion-hosted noble gas from quartz. In comparison, 3000 crushing strokes released only 4% of the lattice-hosted 38ArCl from a scapolite gem. In vacuo crushing released lattice Ar preferentially relative to lattice Kr or Xe and prolonged crushing released 88% of the lattice-hosted noble gas in 96,000 crushing strokes. We suggest fast diffusion pathways generated by crushing are an important noble gas release mechanism and we demonstrate two applications of prolonged in vacuo crushing on irradiated scapolite.Firstly, scapolite molar Br/Cl and I/Cl values are shown to vary over a similar range as crustal fluids. The Cl-rich scapolite gem from Hunza, Pakistan has Br/Cl of 0.5–0.6 × 10−3 and I/Cl values of 0.3–2 × 10−6, that are similar to fluids that have dissolved evaporites. In contrast, three out of four skarn-related scapolites from the Canadian Grenville Province have molar Br/Cl values of 1.5–2.4 × 10−3, and I/Cl values of 11–24 × 10−6, that are broadly consistent with skarn formation by magmatic fluids. The fourth Grenvillian scapolite, with only 0.02 wt% Cl, has an exceptionally elevated molar Br/Cl value of up to 54 × 10−3 and I/Cl of 284 × 10−6. It is unclear if these values reflect the composition of fluids formed during metamorphism or preferential incorporation of Br and I in Cl-poor meionitic scapolite.Secondly, the Grenvillian scapolites give plateau ages of between 830 Ma and 400 Ma. The oldest ages post-date regional skarn formation by 200 Myr, but are similar to feldspar cooling ages in the Province. The age variation in these samples is attributed to a combination of factors including variable thermal history and the presence of mineral sub-grains in some of the samples. These sub-grains control the release of 39ArK, 38ArCl and 40Ar* during in vacuo crushing as well as the samples 40Ar* retentivity in nature. Scapolite is suggested as a possible analogue for K-feldspar in thermochronologic studies.  相似文献   

19.
Luminescence dating of loess older than 100 ka has long been a challenge. It has been recently reported that, using optically stimulated luminescence (OSL) of fine-grained quartz (4–11 μm) extracted from loess, the range of luminescence dating could be pushed to 0.6 Ma with OSL ages being in agreement with independent ages [Watanuki, T., Murray, A.S., Tsukamoto, S., 2005. Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: comparison with an independent chronology. Earth and Planetary Science Letters 240, 774–789]. The aim of this study is to provide a luminescence chronology (20 samples) for the standard Luochuan loess section, and to further examine the upper limit of quartz OSL dating for Chinese loess. The growth curve does not saturate at 700 Gy, and should allow reliable equivalent dose (De) determination up to at least 400 Gy. However, when compared with independent chronological control, the De that could be treated as reliable is less than 230 Gy (corresponding to 70 ka in age for Chinese loess), and the De larger than 230 Gy should be underestimated. Ages for samples from the lower part of palaeosol S1 are severely underestimated, with the maximum age of 95 ka for a sample from the bottom of this palaeosol, much younger than the expected age of 128 ka. The maximum De obtained for sample L9/M, collected from loess layer L9 which is below the Matuyama–Brunhes (B/M) boundary whose age is 780 ka, is only 403 Gy which corresponds to an age of 107 ka. The cause of underestimation is not yet clear. The previous results by Watunuki et al. (2005) on the extension of OSL dating of loess to 0.6 Ma is not confirmed. When evaluating the validity of OSL ages in S1, another possibility is to question the already established chronological frame for Luochuan section, which is based on the hypothesis of continuous dust deposition. The assumption of an erosion hiatus between L2 and S1 could make the OSL ages look reasonable. However, if this is the case, then it is difficult to explain why the age of sample L9/M is only 107 ka which could be treated as a saturation age, while the OSL can provide a correct age for loess as old as 94.9 ka for sample LC22 collected from the bottom of S1. Much work is required to clarify these confusions.  相似文献   

20.
The geomorphic origin and evolution of the tectonically unique interior highland of southern Africa, the Kalahari Plateau, and its flanking low-lying coastal planes, remain largely unresolved because of a lack of regional quantitative analyses of its uplift and erosion history. Here we focus on the southern Cape, South Africa and link onshore denudation, based on new apatite fission track thermochronology results, to offshore sediment accumulation, using abundant well data and a seismic reflection profile. We attempt to relate source and sink in order to resolve some first order issues concerning timing of the exhumation and development of the topographic features of southern Africa. The volume of sediment accumulated off South Africa's south coast is calculated using 173 wells and a seismic reflection profile. A total, uncompacted, sediment volume of 268,500 km3 accumulated off South Africa's south coasts since  136 Ma, in the Outeniqua and Southern Outeniqua Basins. Accumulation volumes and rates were highest in the early Cretaceous (48,800 × 104 km3 at  8150 km3/Ma from  136 to 130 Ma, and 57,500 × 104 km3 at 5750 km3/Ma from  130 to 120 Ma) and mid–late Cretaceous (83,700 × 104 km3 at 3200 km3/Ma from  93 to 67 Ma). Volumes and accumulation rates were lowest for the early–mid-Cretaceous (47,400 × 104 km3 at 1750 km3/Ma from  120 to 93 Ma) and the Cenozoic (31,200 × 104 km3 at 450 km3/Ma from  67 to 0 Ma). Although our analysis shows that the accumulated volume of offshore sediments does not match the calculated volume of onshore erosion, as quantified through apatite fission track thermochronology (e.g. Tinker, J.H., de Wit, M.J., Brown, R., 2008. Mesozoic exhumation of the 439 southern Cape, South Africa, quantified using apatite fission track thermochronology. Tectonophysics, doi: 10.1016/j.tecto.2007.10.009), the timing of increased sediment accumulation closely matches the timing of increased onshore denudation. This suggests that the greatest volumes of material were transported from source to sink during two distinct Cretaceous episodes, and that the processes driving onshore denudation decreased by an order of magnitude during the Cenozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号