首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   3篇
大气科学   1篇
地球物理   6篇
地质学   4篇
  2021年   2篇
  2020年   1篇
  2018年   2篇
  2016年   1篇
  2008年   2篇
  2007年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有11条查询结果,搜索用时 78 毫秒
1.
In situ turbidity meters are being increasingly used to generate continuous records of suspended sediment concentration in rivers. However, the usefulness of the information obtained depends heavily on the existence of a close relationship between fluctuations in suspended sediment concentration and turbidity and the calibration procedure that relates suspended sediment concentration to the turbidity meter's signal. This study assesses the relationship between suspended sediment concentration and turbidity for a small (1·19 km2) rural catchment in southern Brazil and evaluates two calibration methods by comparing the estimates of suspended sediment concentration obtained from the calibrated turbidity readings with direct measurements obtained using a USDH 48 suspended sediment sampler. With the first calibration method, the calibration relationship is derived by relating the turbidity readings to simultaneous measurements of concentration obtained from suspended sediment samples collected from the vicinity of the turbidity probe during flood events. With the second method, the calibration is based on the readings obtained from the turbidity meter when the probe immersed in samples of known concentration prepared using soils collected from the catchment. Overall, there was a close link between fluctuations in suspended sediment concentration and turbidity in the stream at the outlet of the catchment, and the estimates of sediment concentration obtained using the first calibration method corresponded closely with the conventionally measured sediment concentrations. However, use of the second calibration method introduced appreciable errors. When the estimated sediment concentrations were compared with the measured values, the mean errors were ± 122 mg l?1 and + 601 mg l?1 for the first and second calibration procedures respectively. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
2.
Sediments produced from eroding cultivated land can cause on‐site and off‐site effects that cause considerable economic and social impacts. Despite the importance of soil conservation practices (SCP) for the control of soil erosion and improvements in soil hydrological functions, limited information is available regarding the effects of SCP on sediment yield (SY) at the catchment scale. This study aimed to investigate the long‐term relationships between SY and land use, soil management, and rainfall in a small catchment. To determine the effects of anthropogenic and climatic factors on SY, rainfall, streamflow, and suspended sediment concentration were monitored at 10‐min intervals for 14 years (2002–2016), and the land use and soil management changes were surveyed annually. Using a statistical procedure to separate the SY effects of climate, land use, and soil management, we observed pronounced temporal effects of land use and soil management changes on SY. During the first 2 years (2002–2004), the land was predominantly cultivated with tobacco under a traditional tillage system (no cover crops and ploughed soil) using animal traction. In that period, the SY reached approximately 400 t·km?2·year?1. From 2005 to 2009, a soil conservation programme introduced conservation tillage and winter cover crops in the catchment area, which lowered the SY to 50 t·km?2·year?1. In the final period (2010–2016), the SCP were partially abandoned by farmers, and reforested areas increased, resulting in an SY of 150 t·km?2·year?1. This study also discusses the factors associated with the failure to continue using SCP, including structural support and farmer attitudes.  相似文献   
3.
No-till (NT) is a conservation system that improves the hydrological regime of agricultural slopes by providing greater surface protection and benefits to the physical and hydrological properties of soils. However, the isolated use of NT is not enough to control runoff and its associated degradation processes. Therefore, this study aimed to evaluate the runoff of agricultural slopes under NT under different runoff control conditions by monitoring 63 rainfall events in two 2.4-ha zero-order catchments and 27 rainfall events in four 0.6-ha macroplots. The catchments are paired and similar in terms of the type of soil and relief, but different regarding the presence of terraces. The macroplots have different soil and crop management systems. By using monitoring techniques, the hyetographs and hydrographs revealed the influence of the different types of management on the catchments and macroplots and allowed rainfall characteristics, runoff volume, runoff coefficients, water infiltration, peak runoff, response times, and curve number to be analysed. The terraces positively affected the NT and controlled runoff and related variables, in addition to infiltration significantly increasing and runoff reducing in the terraced catchment. All the hydrological information assessed pointed to the positive effects provided by the presence of the terraces. The results in the macroplots showed that high amounts of phytomass and/or chiselling do not control runoff and its correlated variables in medium and high magnitude events. The study concludes by underlining the need for additional measures to control runoff (terraces), even in areas under NT and with high phytomass production. Additionally, the study emphasizes the importance of monitoring at the catchment scale to better understand the hydrological behaviour of agricultural areas and provide the necessary parameters to effectively control runoff.  相似文献   
4.
Sao Tome and Principe is a small insular African country extremely vulnerable to rising sea levels and impacts such as inundation, shore line change, and salt water intrusion into underground aquifers. Projections of climate change have considered coarse model resolutions. The objective of this work is to dynamically downscale the global model projections to 4-km resolution and to assess the climate change in the Sao Tome and Principe islands. The global climate projections are provided by the Canadian Earth System Model under two Representative Concentration Pathways greenhouse gas scenarios, RCP4.5 and RCP8.5. The downscaling is produced by the Eta regional climate model. The baseline period is taken between 1971 and 2000, and the future climate period is taken between 2041 and 2070. The 2-m temperature simulations show good agreement with station data. The model simulates temperature more accurately than precipitation. The precipitation simulations systematically show underestimation and delay of the rainy and the dry seasons by about 1 month, a feature inherited from the global climate model. In the middle of the 21st century, projections show the strongest warming in the elevated parts of the Sao Tome Island, especially in February under RCP8.5. Warmer nights and warmer days become more frequent in the islands when compared with those in the present. While under RCP4.5, precipitation increases in the islands; under RCP8.5, it decreases everywhere in both islands. Heavy precipitation rates should increase, especially in the south-southwestern parts of the Sao Tome islands. Detailed spatial variability of the temperature and precipitation changes in the islands can only be revealed at very high spatial model resolution. Implications for the potential energy production from two major river basins are assessed in this work.  相似文献   
5.
Land‐use/cover change (LUCC), and more specifically deforestation and multidecadal agriculture, is one of the various controlling factors of water fluxes at the hillslope or catchment scale. We investigated the impact of LUCC on water pathways and stream stormflow generation processes in a subtropical region in southern Brazil. We monitored, sampled and analysed stream water, pore water, subsurface water, and rainwater for dissolved silicon concentration (DSi) and 18O/16O (δ18O) signature to identify contributing sources to the streamflow under forest and under agriculture. Both forested and agricultural catchments were highly responsive to rainfall events in terms of discharge and shallow groundwater level. DSi versus δ18O scatter plots indicated that for both land‐use types, two run‐off components contributed to the stream discharge. The presence of a dense macropore network, combined with the presence of a compact and impeding B‐horizon, led to rapid subsurface flow in the forested catchment. In the agricultural catchment, the rapid response to rainfall was mostly due to surface run‐off. A 2‐component isotopic hydrograph separation indicated a larger contribution of rainfall water to run‐off during rainfall event in the agricultural catchments. We attributed this higher contribution to a decrease in topsoil hydraulic conductivity associated with agricultural practices. The chemical signature of the old water component in the forested catchment was very similar to that of the shallow groundwater and the pore soil water: It is therefore likely that the shallow groundwater was the main source of old water. This is not the case in the agricultural catchments where the old water component had a much higher DSi concentration than the shallow groundwater and the soil pore water. As the agricultural catchments were larger, this may to some extent simply be a scale effect. However, the higher water yields under agriculture and the high DSi concentration observed in the old water under agriculture suggest a significant contribution of deep groundwater to catchment run‐off under agriculture, suggesting that LUCC may have significant effects on weathering rates and patterns.  相似文献   
6.
No-till (NT) is a soil management system designed to protect soil resources from water erosion and provide numerous benefits compared to conventional tillage through the increase of organic matter inputs into the soil. However, NT in isolation is not sufficient to control erosion processes caused by an excessive production of surface runoff. This study evaluated soil losses on agricultural hillslopes under no-till characterized by contrasted water, soil, and crop management conditions. To this end, water and soil losses were monitored between 2014 and 2018 at two scales, including four macroplots (0.6 ha; 27 events) and two paired zero-order catchments (2.4 ha; 63 events). The resulting dataset covered a wide range of rainfall conditions that occurred in contrasted soil, crop, and runoff management conditions. Hyetographs, hydrographs, and sedigraphs were constructed, and these data were used to evaluate the impact of management on sediment yields, including that of terraces, scarification, and phytomass on sediment yield. The installation of terraces reduced sediment yield by 58.7%, mainly through surface runoff control. Crop management including an increased phytomass input efficiently controlled soil losses (63%), although it did not reduce runoff volume and peak flow. In contrast, scarification had no impact on runoff and soil losses. The current research demonstrated the need to combine the installation of terraces and leaving a high amount of phytomass on the soil to control surface runoff and erosion and reduce sediment yield. The current research therefore reinforces the relevance of the monitoring strategy conducted at the scale of macroplots and zero-order catchments to evaluate the impact of contrasted water, soil, and crop management methods and select the most effective conservation agriculture practices.  相似文献   
7.
Ophiolitic melange and flyschoidal sediments of the Tithonian-Lower Cretaceous age are widespread in the Eastern Albanides. They lie transgressively or normally on top of the ophiolitic sequence through radiolarian cherts of the Kimmeridgian-Tithonian age, or on top of the carbonate sequence of the periphery of the ophiolites through Middle Liassic-Dogger-Malm pelagic limestones with manganese nodules and radiolarian cherts. They are overlain by conglomerates or neritic limestones of the Lower Cretaceous age. Ophiolitic melange consists of ophiolitic conglobreccias, often of homogenous composition: serpentinite melange with a ‘sedimentary’serpentinite matrix, or basaltic ‘sedimentary’tuffagglomerate. Less commonly they have a heterogeneous composition with small amounts of fine-grained matrix and marls with calpionellids. In other examples, the ophiolitic melange contains heterogeneous exotic blocks including all the members of the ophiolite suite: serpentinite, ophicalcite, gabbro, plagiogranite, diabase, basalts, dacites, amphibolite, sulphide and chromite ores as well as blocks of radiolarites, limestones etc. in the argillic matrix. They are overlain by conglomerate-sandstone-marly flyschoidal deposits with abundant ophiolitic detritus and calpionellids. These deposits are linked with Tithonian-Lower Cretaceous tectogenesis, which led to the fragmentary uplift of ophiolites and partly of their sedimentary periphery, and to the formation of the faulted topography. The presence of the ophiolitic melange and flyschoidal sediments both over the ophiolites and the associated sedimentary rocks of their periphery indicate that the latter were not the basement of an ophiolite nappe during the Late Jurassic time.  相似文献   
8.
Neotethyan suprasubduction zone ophiolites represent anomalous oceanic crust developed in older host basins during trench rollback cycles and later entrapped in orogenic belts as a result first of trench-passive margin and then continent–continent collisions. The Middle Jurassic Mirdita zone ophiolites in northern Albania constitute a critical transition between the dominantly mid-ocean ridge basalt (MORB)-related Early Jurassic Alpine–Apennine ophiolites in the west and supra-subduction zone (SSZ)-generated Cretaceous Eastern Mediterranean ophiolites in the east. The previously recognized Western- and Eastern-type ophiolites in the Mirdita zone display significant differences in their internal structure and pseudostratigraphy, but their geochemical affinities are more gradational in contrast to the earlier claims that these ophiolites may have formed in different tectonic settings at different times. Crosscutting relations of dike intrusions in the Eastern-type ophiolites indicate changes in the chemistry of magmatic plumbing systems from basaltic to andesitic, dacitic, rhyodacitic, and boninitic compositions through time and from west to east. The chemostratigraphy of the extrusive sequence in the Western-type ophiolites shows that the MORB-like tholeiitic rocks display a significant decrease in their TiO2 contents and Zr concentrations stratigraphically upward, although their εNd(T) values (+ 7.3 to + 6.9) show minor variation. The basaltic andesites in the upper 100 m of the Western extrusive sequence have island arc tholeiite (IAT)-like chemical characteristics (low-Ti, lower HFSE and HREE distribution, significant LREE depletion and higher Co, Ni, and Cr contents) that signify increased subduction influence in magma/melt evolution. The Eastern-type extrusive rocks range in composition from basaltic andesite to andesite, dacite and rhyodacite stratigraphically upward mimicking the temporal changes in the sheeted dikes, and they display constant Zr ( 50 ppm) but significantly varying Cr contents. The TiO2 contents of their pyroxenes are < 0.3 wt.%, and their εNd(T) values decrease from + 6.5 in the lower parts to  + 3.1 in the uppermost section of the sequence. Farther east in the extrusive sequence the youngest boninitic lavas and dikes have εNd(T) values between − 1.4 and − 4.0. These chemical variations through time point to a mantle source increasingly contaminated by subduction-derived aqueous fluids and sediments, which were incorporated into the melt column beneath an extending protoarc–forearc region. Slab retreat and sinking played a major role in establishing asthenospheric upwelling and corner flow beneath the forearc mantle that in turn facilitated shallow partial melting of highly depleted harzburgitic peridotites, producing boninitic magmas. This chemical progression in the Mirdita zone ophiolite volcanism is similar to the temporal variations in magma chemistry documented from very young intraoceanic arcs built on recently generated backarc crust (i.e., South Sandwich arc). The Western and Eastern-type ophiolites in the Mirdita zone are therefore all subduction-related with the subduction zone influence in the lavas increasing stratigraphically upward as well as eastwards, suggesting a west-dipping slab geometry. The Mirdita zone and the Western Hellenic ophiolites in the Balkans were produced within a marginal basin that had evolved between the Apulian and Pelagonian microcontinents, and were subsequently emplaced onto their passive margins diachronously through different collisional processes.  相似文献   
9.
The Middle Jurassic Mirdita Ophiolite in northern Albania is part of an ophiolite belt occurring between the Apulian and Pelagonian subcontinents in the Balkan Peninsula. The upper mantle and crustal units of the Mirdita Ophiolite show major changes in thickness, rock types, and chemical compositions from west to east as a result of its complex evolution in a suprasubduction zone (SSZ) environment. The  3–4-km-thick Western Mirdita Ophiolite (WMO) includes lherzolite–harzburgite, plagioclase–lherzolite, plagioclase–dunite in its upper mantle units and a plutonic complex composed of olivine gabbro, troctolite, ferrogabbro, and gabbro. These peridotites and gabbroic rocks are overlain directly by a  600-m-thick extrusive sequence containing basaltic pillow lavas and hyaloclastites. Sheeted dikes are rare in the WMO. The  12-km-thick Eastern Mirdita Ophiolite (EMO) includes tectonized harzburgite and dunite with extensive chromite deposits, as well as ultramafic cumulates including olivine clinopyroxenite, wehrlite, olivine websterite, and dunite forming a transitional Moho with the overlying lower crustal section. The plutonic rocks are made of pyroxenite, gabbronorite, gabbro, amphibole gabbro, diorite, quartz diorite, and plagiogranite. A well-developed sheeted dike complex has mutually intrusive relations with the underlying isotropic gabbros and plagiogranites and feeds into the overlying pillow lavas. Dike compositions change from older basalt to basaltic andesite, andesite, dacite, quartz diorite, to late-stage andesitic and boninitic dikes as constrained by crosscutting relations. The  1.1-km-thick extrusive sequence comprises basaltic and basaltic andesitic pillow lavas in the lower 700 m, and andesitic, dacitic and rhyodacitic massive sheet flows in the upper 400 m. Rare boninitic dikes and lavas occur as the youngest igneous products within the EMO. The basaltic and basaltic andesitic rocks of the WMO extrusive sequence display MORB affinities with Ti and Zr contents decreasing upsection (TiO2 = 3.5–0.5%, Zr = 300–50 ppm), while Nd(T) (+ 8 to + 6.5) varies little. These magmas were derived from partial melting of fertile MORB-type mantle. Fractional crystallization was important in the evolution of WMO magmas. The low Ti and HREE abundances and Cs and Ba enrichments in the uppermost basaltic andesites may indicate an increased subduction influence in the evolution of the late-stage WMO magmas. Basaltic andesites in the lower 700 m of the EMO volcanic sequence have lower TiO2 ( 0.5%) and Zr ( 50 ppm) contents but Nd(T) values (+ 7 to + 6.5) are similar to those of the WMO lavas. These rocks show variable enrichment in subduction-enriched incompatible elements (Cs, Ba, Th, U, LREE). The basaltic andesites through dacites and boninites within the upper 400 meters of EMO lavas show low TiO2 ( 0.8–0.3%) and Nd(T) (+ 6.5 to + 3.0). The mantle source of these rocks was variably enriched in Th by melts derived from subducted sediments as indicated by the large variations in Ba, K, and Pb contents. EMO boninitic dikes and lavas and some gabbroic intrusions with negative Nd (T) values (− 1.4 and − 4.0, respectively) suggest that these magmas were produced from partial melting of previously depleted, ultra-refractory mantle. The MORB to SSZ transition (from west to east and stratigraphically upwards in the Mirdita Ophiolite and the progression of the Nd(T) values from + 8.0 to − 4.0 towards the east resulted from an eastward shift in protoarc–forearc magmatism, keeping pace with slab rollback in this direction. The mantle flow above the retreating slab and in the arc-wedge corner played a major role in the evolution of the melting column, in which melt generation, aggregation/mixing and differentiation occurred at all levels of the sub-arc/forearc mantle. The SSZ Mirdita Ophiolite evolved during the intra-oceanic collapse and closure of the Pindos marginal basin, which had a protracted tectonic history involving seafloor spreading, protoarc rifting, and trench-continent collision.  相似文献   
10.
Geological studies of the tectonic zones of eastern Albania indicate that they represent the passive margin to a Neotethyan Mirdita ocean basin, situated on the western margin of the Korab-Pelagonian microcontinent.After Lower-Middle Triassic times a regional phase of early alpine rifting caused the eruption of volcanic rocks withMorb-WPB geochemistry, followed by a Middle-Upper Liassic rifting event and the resulting regional subsidence of the Albanian eastern zones.The Albanian ophiolites are believed to have been partially formed during Middle-Upper Jurassic oceanic spreading (forming the western ophiolite with its MORB-type geochemistry), followed by a phase of intraoceanic subduction (early mini-collision) during the Upper Jurassic, with formation of the eastern ophiolite, characterized by boninite series volcanic rocks. This is followed by the regional deposition of radiolarian chert on the top of the ophiolite sequence and the carbonate platform periphery. Initial ophiolite displacement (limited obduction and strikeslip faulting) during the Upper Jurassic is recorded by the formation of the metamorphic aureole with itsMorb-transitional geochemistry.Tithonian-Lower Cretaceous times were marked by the continuing tectonic setting of the ophiolite within an ocean basin as well as the start of subduction, documented by fragmentary uplift at the ophiolite and the formation of the homogeneous ophiolite mélange and heterogeneous block-in-matrix type coloured mélange, covered by flysch sediments. During Cretaceous time the Mirdita ocean remained partly open, and the ophiolite was partially transgressed by a sedimentary cover.Final continental collision occurred during post Cretaceous times due to closure of the Mirdita ocean, resulting in westward folding and thrusting during Eocene-Oligocene of the ophiolite and its sedimentary cover, as well as the carbonate platform periphery, onto the more western zones (Krasta subzone and Kruja zone).Final thrusting was accompanied by extension behind the thrust front.
Zusammenfassung Die tektonischen Zonen des östlichen Albaniens repräsentieren den passiven Rand des zur Neotethys gehörenden Mirdita-Ozeanbeckens. Es lag am westlichen Rand des korabisch-pelagonischen Mikrokontinents.Im Anschluß an Unter- und Mitteltrias führte regionales frühalpidisches Rifting zur Eruption vulkanischer Gesteine mit MORB-WPB-Geochemie. Ein mittel — oberliassisches Rifting-Event und daraus resultierende regionale Subsidenz der östlichen Zonen Albaniens folgte.Die albanischen Ophiolithe bildeten sich teilweise während mittel — oberjurassischen Ozean-Spreadings (westlicher Ophiolith mitMorb-Type Geochemie), auf welches während des Oberjura eine Phase intraozeanischer Subduktion (frühe Minikollision) mit der Bildung des östlichen Ophioliths folgte. Er ist durch boninitische vulkanische Serien charakterisiert. Danach bildeten sich regional Radiolarite auf dem Top der Ophiolith-Folge und an der Peripherie der Karbonatplattform. Initiales Ophiolith-Displacement (begrenzte Obduktion und Strike-slip-Tektonik) während des Oberjura bildete sich in einer metamorphen Aureole mit MORB-Übergangs-Geochemie ab.Tithon und Unterkreide waren von fortdauernder Ophiolith-Tektonik innerhalb eines ozeanischen Bekkens wie auch vom Beginn der Subduktion charakterisiert. Diese Vorgänge sind dokumentiert durch die bruchstückartige Hebung der Ophiolithe, der Bildung einer homogenen Ophiolith-Melange und einer heterogenen, bunten matrixgestützen Melange, welche von Flyschsedimenten überdeckt werden. Während der Kreide blieb der Mirdita-Ozean teilweise offen; Teile des Ophioliths wurden von sedimentären Deckschichten überzogen.Die Schließung des Mirdita-Ozeans nach der Kreide führte zur endgültigen Kontinent-Kollision. Sie resultierte im Eozän — Oligozän in einer westgerichteten Faltung und Überschiebung des Ophioliths, seiner sedimentären Überdeckung und auch der Peripherie der Karbonatplattform auf die westlich anschließenden Zone (Krasta Subzone and Kruja Zone).Die finale Überschiebungstektonik wurde von Extension hinter der Überschiebungsfront begleitet.

Résumé Les zones tectoniques de l'est de l'Albanie représentent la marge passive du bassin océanique de Mirdita, qui appartient à la Néotéthys. Cette marge forme le bord occidental du micro-continent korabien-pélagonien.Après le Trias inférieur et moyen, une phase régionale de rifting éo-alpin a amené l'émission de roches volcaniques de géochimie MORB-WPB. Cette phase a été suivie au Lias moyen et supérieur d'un nouveau rifting responsable de la subsidence régionale des régions orientales de l'Albanie.On considère que les ophiolites albanaises se sont formées en partie pendant l'expansion océanique d'âge jurassique moyen à supérieur (ophiolites occidentales à géochimie de MORB); ensuite, au Jurassique supérieur, au cours d'une phase de subduction intra-océanique (mini-collision initiale) se sont formées les ophiolites orientales caractériseés par des séries volcaniques boninitiques. Ces événements ont été suivis par un dépôt régional de radiolarites qui a recouvert les séquences ophiolitiques et la plate-forme carbonatée périphérique. Un déplacement initial des ophiolites (obduction limitée et décrochements) a eu lieu au cours du Jurassique supérieur; il s'est traduit par une auréole métamorphique avec sa géochimie MORB de transition.La période Tithonique-Crétacé inférieur a été marquée par la continuation de la tectonique ophiolitique dans un bassin océanique, ainsi que par le début de la subduction. En témoignent le soulèvement par fragments des ophiolites, la formation d'un mélange ophiolitique homogène et d'un mélange bariolé hétérogène à blocs, recouvert par les sédiments du flysch. Au cours du Crétacé, l'océan Mirdita est resté partiellement ouvert et les ophiolites ont été en partie recouvertes par une couverture sédimentaire transgressive.La collision continentale finale s'est produite après le Crétacé. Elle fut provoquée par la fermeture de l'océan Mirdita et s'est exprimée, à l'Eocène-Oligocène par le plissement et le charriage des ophiolites, de leur couverture sédimentaire et de la plate-forme carbonatée périphérique. Ces charriages se sont déplacés vers l'ouest sur les zones plus occidentales (sub-zone de Krasta et zone de Kruja).

, . - . - MORB-WPB. / , . - ( MORB), ( » «) . . . ( = Strikeslip-Tektonik) MORB. . , , - . . . . , - , , ( ). .
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号