首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tectonic processes that have been proposed to explain the transport to the surface of regional metamorphic belts can be broadly divided into two types. (i) Corner-flow within a convergent margin bounded by two essentially rigid plates associated with extension at shallow levels. This type of model assumes deformation is distributed throughout the margin and that any discontinuities are of secondary importance. (ii) Expulsion or extrusion of coherent metamorphic nappes. In this second idea, tectonic discontinuities are fundamental in the transport to the surface of metamorphic rocks. The wealth of geological data available from a variety of studies in the Sanbagawa metamorphic belt, southwest Japan makes it well-suited for studying the relative importance of continuous vs. discontinuous deformation in the process of exhumation. In the Sanbagawa belt a sudden decrease in metamorphic pressure going down section of several kilobars suggests the presence of a major tectonic contact separating two major regional nappes: an overlying higher-pressure Besshi nappe and an underlying lower-pressure Oboke nappe. Major tectonic discontinuities have also been proposed within the Besshi nappe, however, indicators of metamorphic temperature, the results of radiometric age dating, and microstructural studies all suggest that post-metamorphic discontinuities are minor and that this nappe formed and remained as an essentially coherent unit. Lithological associations and petrological studies suggest the following positions for the two nappes. The Besshi nappe formed deep within the former accretionary wedge, adjacent to the overlying mantle wedge, and with a dip of roughly 30 °C. In contrast, the Oboke nappe formed at moderate depths within the accretionary wedge, was distant from the mantle wedge, and was roughly horizontal. Penetrative deformation that post-dates the peak of metamorphism has affected nearly all of the Sanbagawa belt and has played an important role in its exhumation. However, the presence of a broad coherent Besshi nappe overlying the lower-pressure Oboke nappe suggests that some process such as buoyancy-driven extrusion was also important in the exhumation process and in forming the structure of the Sanbagawa metamorphic belt.  相似文献   

2.
Fold-and-thrust belts are prominent structures that occur at the front of compressional orogens. To unravel the tectonic and metamorphic evolution of such complexes, kinematic investigations, quantitative microstructural analysis and geothermometry (calcite–graphite, calcite–dolomite) were performed on carbonate mylonites from thrust faults of the Helvetic nappe stack in Central Switzerland. Paleo-isotherms of peak temperature conditions and cooling stages (fission track) of the nappe pile were reconstructed in a vertical section and linked with the microstructural and kinematic evolution. Mylonitic microstructures suggest that under metamorphic conditions close to peak temperature, strain was highly localized within thrust faults where deformation temperatures spatially continuously increased in both directions, from N to S within each nappe and from top–down in the nappe stack, covering a temperature range of 180–380 °C. Due to the higher metamorphic conditions, thrusting of the lowermost nappe, the Doldenhorn nappe, was accompanied by a much more pronounced nappe internal ductile deformation of carbonaceous rock types than was the case for the overlying Wildhorn- and Gellihorn nappes. Ongoing thrusting brought the Doldenhorn nappe closer to the surface. The associated cooling resulted in a freezing in of the paleo-isotherms of peak metamorphic conditions. Contemporaneous shearing localized in the basal thrust, initially still in the ductile deformation regime and finally as brittle faulting and cataclasis inducing ultimately an inverse metamorphic zonation. With ongoing exhumation and the formation of the Helvetic antiformal nappe stack, a bending of large-scale tectonic structures (thrusts, folds), peak temperature isotherms and cooling isotherms occurred. While this local bending can directly be attributed to active deformation underneath the section investigated up to times of 2–3 ma, a more homogeneous uplift of the entire region is suggested for the very late and still active exhumation stage.  相似文献   

3.
Structural and petrographic relationships on east Hinnøy, north Norway, indicate that the Caledonian nappes which are exposed directly to the east were emplaced over an older Precambrian crystalline terrane (Lofoten terrane) while at amphibolite facies metamorphic conditions. Caledonian structural and metamorphic effects disappear structurally downward away from the basal thrust of the nappe stack. The limited involvement of the basement in Caledonian deformation is explained by the limited availability of water which was introduced from external sources. The external water source is hypothetically the autochthonous and allochthonous cover, and the Precambrian Austerfjord Group metasedimentary rocks within the basement, which underwent prograde metamorphic dehydration during Caledonian orogenesis. The mechanisms by which addition of water concentrated strain in the basement probably include reaction-induced ductility-and hydrolytic weakening of the constituent silicate minerals. There are two main tectonic implications: (1) in collisional metamorphic belts, the lithosphere of the underthrusted plate may remain rigid below 15–25 km depth; and (2) the common phenomenon of detachment of crystalline thrust sheets at mid-crustal levels may be controlled in some cases by the limited access of water to pre-existing crystalline rocks, rather than by thermal structure.  相似文献   

4.
The tectonic evolution of the Northern Shimanto belt, central Shikoku, Japan, was examined based on petrological and geochronological studies in the Oboke area, where mafic schists of the Kawaguchi Formation contain sodic amphibole (magnesioriebeckite). The peak P–T conditions of metamorphism are estimated as 44.5 kbar (1517 km depth), and 240270 °C based on available phase equilibria and sodic amphibole compositions. These metamorphic conditions are transitional between blueschist, greenschist and pumpellyite–actinolite facies. Phengite KAr ages of 64.8 ± 1.4 and 64.4 ± 1.4 Ma were determined for the mafic schists, and 65.0 ± 1.4, 61.4 ± 1.3 and 63.6 ± 1.4 Ma for the pelitic schists. The metamorphic temperatures in the Oboke area are below the closure temperature of the KAr phengite system, so the K–Ar ages date the metamorphic peak in the Northern Shimanto belt. In the broad sense of the definition of blueschist facies, the highest‐grade part of the Northern Shimanto belt belongs to the blueschist facies. Our study and those of others identify the following constraints on the possible mechanism that led to the exhumation of the overlying Sanbagawa belt: (i) the Sanbagawa belt is a thin tectonic slice with a structural thickness of 34 km; (ii) within the belt, metamorphic conditions varied from 5 to 25 kbar, and 300 to 800 °C, with the grade of metamorphism decreasing symmetrically upward and downward from a structurally intermediate position; and (iii) the Sanbagawa metamorphic rocks were exhumed from ~60 km depth and emplaced onto the Northern Shimanto metamorphic rocks at 15–17 km depth and 240–270 °C. Integration of these results with those of previous geological studies for the Sanbagawa belt suggests that the most probable exhumation mechanism is wedge extrusion.  相似文献   

5.
Monazite crystallization ages have been measured in situ using SIMS and EMP analysis of samples from the Bronson Hill anticlinorium in central New England. In west‐central New Hampshire, each major tectonic unit (nappe) displays a distinctive P–T path and metamorphic history that requires significant post‐metamorphic faulting to place them in their current juxtaposition, and monazite ages were determined to constrain the timing of metamorphism and nappe assembly. Monazite ages from the low‐pressure, high‐temperature Fall Mountain nappe range from c. 455 to 355 Ma, and Y zoning indicates that these ages comprise three to four distinct age domains, similar to that found in the overlying Chesham Pond nappe. The underlying Skitchewaug nappe contains monazite ages that range from c. 417 to 307 Ma. 40Ar/39Ar ages indicate rapid cooling of the Chesham Pond and Fall Mountain nappes after 350 Ma, which is believed to represent the time of emplacement of the high‐level Chesham Pond and Fall Mountain nappes onto rocks of the underlying Skitchewaug nappe. Garnet zone rocks from western New Hampshire contain monazite that display a range of ages (c. 430–340 Ma). Both the metamorphic style and monazite ages suggest that the low‐grade belt in western New Hampshire is continuous with the Vermont sequence to the west. Rocks of the Big Staurolite nappe in western New Hampshire contain monazite that crystallized between c. 370 and 290 Ma and the same unit along strike in northern New Hampshire and central Connecticut records ages of c. 257–300 Ma. Conspicuously absent from this nappe are the older age populations that are found in both the overlying nappes and underlying garnet zone rocks. These monazite ages confirm that the metamorphism observed in the Big Staurolite nappe occurred significantly later than that in the units structurally above and below. These data support the hypothesis that the Big Staurolite nappe represents a major tectonic boundary, along which rocks of the New Hampshire metamorphic series were juxtaposed against rocks of the Vermont series during the Alleghanian.  相似文献   

6.
Within the Çokkul synform, Caledonian metamorphic rocks of the Middle Köli Nappe Complex (MKNC) are in low-angle fault contact with the basement mylonites derived from the Precambrian Tysfjord granite-gneiss. In the synform, the MKNC is composed of four fault-bounded nappes each of which has a distinct tectonic stratigraphy composed of amphibolite-facies metamorphosed pelitic and psammitic schists with minor lensoidal bodies of mafic and ultramafic rocks. Pelitic rocks from the three structurally lowest nappes contain the low-variance AFM mineral assemblages gar + bio + staur and staur + ky + bio with mu + qtz + ilm, whereas staur and ky are absent from the highest nappe, the Kallakvare nappe. AFM mineral assemblages in the three lowest nappes indicate peak metamorphic temperatures of 610–660°C and peak pressures in excess of 600 MPa. Mineral assemblages from the Kallakvare nappe are not as diagnostic of metamorphic grade. However, rocks from that nappe contain coexisting plagioclases from both sides of the peristerite gap, suggesting lower-grade peak P–T conditions than those of the structurally lower nappes. In addition, biotite from the lower nappes is more Ti-rich than biotite from the Kallakvare nappe. However, gar–bio–mu–plag and gar–bio–ky–plag–qtz thermobarometry suggests that all four nappes equilibrated at approximately 525 ± 25°C and 700 ± 100 MPa. Gibbs method thermodynamic modelling of garnet zoning profiles suggests that the lower three nappes followed clockwise P–T paths that involved heating and compression to a metamorphic peak of approximately 575–625°C, 800 MPa followed by cooling and decompression to 525°C, 700 MPa. P–T paths calculated for the Kallakvare nappe show decompression and minor heating to a peak T of 500–525°C. In the lower nappes, staur and ky grew during the heating phase not seen by the highest nappe. The outer parts of the paths from all four nappes are approximately parallel, possibly recording the emplacement of the Kallakvare nappe onto the already stacked lower three nappes at some time following the metamorphic peak. These P–T paths suggest that the sole fault of the Kallakvare nappe is a normal fault. Garnet zonation thus appears to record a previously unrecognized phase of uplift and tectonic thinning of the MKNC. This event appears to be restricted to the MKNC and to have occurred prior to the emplacement of the MKNC onto the Tysfjord granite-gneiss basement of Baltoscandia under greenschist-facies conditions. It may have been responsible for the uplift and cooling of the MKNC from 25–30 km amphibolite-facies conditions prior to its emplacement onto Baltoscandia under 15–20 km greenschist-facies conditions. The deformation zone associated with this normal fault is relatively narrow, generally less than 1 m thick. If this is typical of other detachment faults in the metamorphic infrastructure of the Scandinavian Caledonides, they may be relatively common, but not often recognized due to the detailed study needed to document them.  相似文献   

7.
Structural analysis carried out in the Tuscan Nappe (TN) in the southeastern sector of the Apuan Alps highlights a structural evolution much more complex than that proposed so far. The TN has been deformed by structures developed during four deformation phases. The three early phases resulted from a compressive tectonic regime linked to the construction of the Apenninic fold‐and‐thrust‐belt. The fourth phase, instead, is connected with the extensional tectonics, probably related to the collapse of the belt and/or to the opening of the Tyrrhenian Sea. Our structural and field data suggest the following. (1) The first phase is linked to the main crustal shortening and deformation of the Tuscan Nappe in the internal sectors of the belt. (2) The second deformation phase is responsible for the prominent NW–SE‐trending folds recognized in the study area (Mt. Pescaglino and Pescaglia antiforms and Mt. Piglione and Mt. Prana synforms). (3) The direction of shortening related to the third phase is parallel to the main structural trend of the belt. (4) The interference between the third folding phase and the earlier two tectonic phases could be related to the development of the metamorphic domes. The two directions of horizontal shortening induced buckling and vertical growth of the metamorphic domes, enhancing the process of exhumation of the metamorphic rocks. (5) The exhumation of the Tuscan Nappe occurred mostly in a compressive tectonic setting. A new model for the exhumation of the metamorphic dome of the Apuan Alps is proposed. Its tectonic evolution does not fit with the previously suggested core complex model, but is due to compressive tectonics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
EPMA analyses and K-Ar age determinations were carried out on phengite in pelitic schist from the Sanbagawa metamorphic belt of the Kanto Mountains, Central Japan.

Phengite from the Sanbagawa pelitic schist in the Kanto Mountains generally occurs as aggregates of fine-grained crystals. It is extremely fine-grained in domains adjacent to relatively rigid garnet and albite porphyroblasts. This suggests that deformation-induced grain-size reduction took place in phengite during the ductile deformation accompanying the exhumation of the host schists. EPMA analysis shows that phengite is chemically heterogeneous at the thin-section scale, suggesting that it formed during retrograde metamorphism in restricted equilibrium domains. The retrograde chemical reaction was promoted by the ductile deformation.

K-Ar ages of phengite get younger from the Southern Unit (82 Ma) to the Northern Unit (58 Ma) in the Kanto Mountains. The age range is similar to that in Central Shikoku. The older schists occur in the higher metamorphic grade zone in Central Shikoku and in the lower-grade zone in the Kanto Mountains. The thermal structures in Central Shikoku are inverted, so that the highest-grade zone occurs in the upper or middle parts of the apparent stratigraphic succession. In contrast, the Kanto Mountains have a normal thermal structure: the higher-grade zone is in the lower part of the apparent stratigraphic succession. The different tectonic features in exhumation produced the two contrasting age-temperature-structure relations at the western side of Sanbagawa belt in Central Shikoku and the eastern end of the Sanbagawa belt in the Kanto Mountains that are 800 km distant from each other. Namely, the western Sanbagawa belt in Central Shikoku underwent longer ductile deformation during the exhumation than the eastern Sanbagawa belt in the Kanto Mountains.  相似文献   


9.
Known eclogite occurrences in the Sanbagawa metamorphic belt of SW Japan are dominantly in metagabbro bodies which have complex polyphase metamorphic histories. These bodies are generally described as tectonic blocks and their relationship to the Sanbagawa metamorphism is unclear. New findings of foliated eclogite in the Seba and Kotsu areas show that eclogite facies metamorphism is much more widespread than generally thought. Evidence that the foliated eclogite units originated as lavas or sediments implies that these units can be treated as a high-grade part of the subduction-related Sanbagawa metamorphism. Although separated by an along-strike distance of 80 km, the Seba and Kotsu eclogites have very similar garnet and omphacite compositions, suggesting that they were formed under similar metamorphic conditions. However, differences in the associated retrograde assemblages (epidote–amphibolite in the Seba unit and epidote–blueschist in the Kotsu unit) suggest contrasting P – T  paths. In both units, the eclogite rocks occupy the highest structural level of the Sanbagawa belt and overlie rocks metamorphosed at lower pressure. The lower boundary to the eclogite units is therefore a major tectonic discontinuity locally decorated with lenses of exotic material. These features can help trace the boundary into other areas. The previously known outcrops of eclogite show enough similarities with the newly found areas to suggest that all the eclogite facies rocks in the Sanbagawa belt constitute a single nappe that lies at the highest structural levels of the orogen.  相似文献   

10.
The nappe pile presently cropping out in the central sector of the Ligurian Alps, is represented by some principal groups of tectonic units. Starting from the foreland, the outer and lower, weakly metamorphic (up to 0.3 GPa) Briançonnais units support the high-pressure (up to 1.3 GPa) ensemble of inner Briançonnais nappes, in turn overridden by the Prepiedmont units, sourced from the European continental margin. Prepiedmont units form two superposed groups. The lower is composed only of a pre-Namurian basement (Alpine metamorphism up to 0.6 GPa); and the upper is mainly composed of a slightly metamorphic (greenschist facies) post-Namurian cover. At the top lie the high-pressure metamorphosed (up to 0.8 GPa in the sector here considered) ophiolitic units. The group of the non-metamorphic Helminthoid Flysch nappes (original stratigraphic cover of the ophiolitic units) has travelled the greatest distance and is presently mainly set onto the outer part of the chain. Only events up to the stacking of the nappe pile are discussed, disregarding late-stage deformation. As the examined sector is located at a considerable distance from the collisional zone, late processes did not change the overall order of superposition formerly acquired. The model proposes the development of two major, subhorizontal detachment surfaces. The first, shallower one confines at the base a very thin-skinned set of nappes, nearly totally made up of Prepiedmont sedimentary covers that are bounded at their top by the Helminthoid Flysch units. Both these groups underwent a mainly horizontal outwards transport. In contrast, the underlying Prepiedmont crust and the adjoining Briançonnais inner sector (separated by the second, deeper major detachment surface) were progressively dragged into the subduction zone under the ophiolitic units and duplexes were generated. Exhumation of the metamorphic units occurred along the subduction channel, as did stacking of the nappe pile.  相似文献   

11.
The Precambrian geology of west-central Madagascar is reviewed and re-interpreted in light of new field observations, Landsat Thematic Mapper image analysis, and U–Pb geochronology. The bedrock of the area consists of: (1) late Archean (to Paleoproterozoic) migmatite gneiss and schist; (2) Mesoproterozoic stratified rocks (Itremo, Amborompotsy, and Malakialina Groups) perhaps deposited unconformably on the older metamorphic rocks (1, above); (3) Proterozoic ( 1000 Ma–720 Ma) plutonic rocks emplaced into both units above (1 and 2), and; (4) latest Neoproterozoic to middle Cambrian ( 570–520 Ma) granitoids emplaced as regionally discordant and weakly foliated plutons throughout the regions.

The effects of Neoproterozoic orogenic processes are widespread throughout the region and our observations and isotopic measurements provide important constraints on the tectonic history of the region: (i) Archean gneisses and Mesoproterozoic stratified rocks are the crystalline basement and platformal sedimentary cover, respectively, of a continental fragment of undetermined tectonic affinity (East or West Gondwanan, or neither). (ii) This continental fragment (both basement and cover) was extensively invaded by subduction-related plutons in the period from  1000 Ma to  720 Ma that were emplaced prior to the onset of regional metamorphism and deformation. (iii) Continental collision related to Gondwana's amalgamation began after  720 Ma and before  570 Ma. Collision related deformation and metamorphism continued throughout the rest of the Neoproterozoic with thermal effects that lasted until  520 Ma. The oldest structures produced during continental collision were km-scale fold- and thrust-nappes with east or southeast-directed vergence (present-day direction). They resulted in the inversion and repetition of Archean and Proterozoic rocks throughout the region. During this early phase of convergence warm rocks were thrust over cool rocks thereby producing the present distribution of regional metamorphic isograds. The vergence of the nappes and the distribution of metamorphic rocks are consistent with their formation within a zone of west or northwest-dipping continental convergence (present-day direction). (iv) Later upright folding of the nappes (and related folds and thrusts) produced km-scale interference fold patterns. The geometry and orientation of these younger upright folds is consistent with E–W horizontal shortening (present-day direction) within a sinistral transpressive regime. We relate this final phase of deformation to motion along the Ranotsara and related shear zones of south Madagascar, and to the initial phases of lower crustal exhumation and extensional tectonics within greater Gondwana.  相似文献   


12.
Abstract

The western margin of the Tauera Window (Eastern Alps) is defined by a low angle westward dipping fault zone of potently We disp lacement. Ductile deformation of the fault rocks results in a carpet of mylonites up to 400 metres thick. Evidence from shear criteria and the excision of part of the Cretaceous-Tertiary metamorphic edifice both indicate normal displacements, and relative movement of Austroalpine nappe complex towards the west. The Sterzing-Steinach mylonite zone overprints the Alpine nappe edifice. Movements occurred on the cooling path of the Tauern metamorphism, and may be as recent as Middle Miocene.

The Kinematics and geometry of the mylonite zone constrain two likely t ectonic explanations that are both compatible with secondary thining of a thick orogenic wedge. (1) Ute the Austroalpine nappe pile due to tectonic unroofing of the Tauern window. (2) Continental escape by east-west stretching of the Alpine orogenic wedge in response to continental collision.  相似文献   

13.
张长厚  柴育成 《地质论评》1998,44(3):225-232
尽管许多地质学家提出了不同的超高压变质岩石形成与折返模式,但高压、超高压变质岩折返与剥露机制仍是大陆造山带动力学研究中的热点和焦点问题。本文明确提出并研究了分布于苏北-胶南变质岩区西北和北部边缘的地壳规模的拆离伸展型韧性剪切带。通过韧性剪切带几何学、运动学、变形环境分析和形成时代的讨论,认为与高压、超高压变质带展布方向斜交的斜向伸展构造作用,是苏北-鲁东南高压、超高压变质带从中地壳抬升至地表的主导  相似文献   

14.
Abstract A detailed field and petrological study of rocks from nappes cut by the Valle dell'Orco (Italian Western Alps), in particular the Sesia–Lanzo composite unit, has revealed geological and metamorphic histories which started in pre-alpine times and lasted up to the alpine subduction-collisional processes. During these processes the nappes sustained an early high P–low T stage and a later low P greenschist facies stage, but followed partly distinctive P–T–time trajectories. This paper discusses the kinematic evolution and the thermal history of the alpine belt from the early subduction/underthrust to the later exhumation stage. The metamorphic crystallization is often governed by incomplete and/or local equilibrium, and the pervasive syn-metamorphic deformation and the composition of the syn-metamorphic fluid phase (if present) have exerted an effective local control on reaction kinetics.  相似文献   

15.
The crustal architecture of the Southern Urals is dominated by an orogenic wedge thrusted westward upon the subducted East European continental margin. The N–S trending wedge constitutes an antiformal stack composed mainly of the high-P Maksyutov Complex, the overlying Suvanyak Complex and the allochthonous synformal Zilair flysch further west. These tectono-metamorphic units are separated by tectonic contacts and record discontinously decreasing metamorphic conditions from bottom to top. In the east, the E-dipping Main Uralian Normal Fault cross-cuts the metamorphic footwall and juxtaposes the non metamorphic Magnitogorsk island arc. This syncollisional normal fault compensated crustal thickening and exhumation of the high-P rocks. Orogenic shortening was accommodated by the Main Uralian Thrust, a W-vergent crustal-scale shear zone at the base of the wedge. Geological investigations and reflection seismics (URSEIS '95) argue in favour of a geodynamic evolution integrating subduction and basal accretion of high-P rocks during sinistral oblique thrusting along the Main Uralian Thrust and coeval normal-faulting along the Main Uralian Normal Fault.  相似文献   

16.

Ophiolitic and metamorphic rocks of the eastern part of the New England Fold Belt in the Shoalwater Bay region and the Percy Isles are grouped in the Marlborough and Shoalwater terranes, respectively. Marlborough terrane units occur on South Island (Percy Isles) and comprise the Northumberland Serpentinite, antigorite serpentinite with rodingite and more silicic dykes and mafic inclusions, the Chase Point Metabasalt, some 800+ metres of pillow lava, and the intervening South Island Shear Zone containing fault‐bounded slices of mafic and ultramafic igneous rocks, schist, and volcaniclastic sedimentary rocks, and zones of mélange. The Shoalwater terrane, an ancient subduction complex, consists of the Shoalwater Formation greenschist facies metamorphosed quartz sandstone and mudstone on North East Island and on the mainland at Arthur Point, the Townshend Formation, amphibolite‐grade quartzite, schist and metabasalt on Townshend Island, and the Broome Head Metamorphics on the western side of Shoalwater Bay, upper amphibolite facies quartz‐rich gneiss. With the exception of a sliver emplaced onto the western Yarrol terrane, possibly by gravity sliding, Shoalwater terrane rocks show the effects of Late Permian polyphase deformation. The Shacks Mylonite Zone along the northwest edge of the Broome Head Metamorphics marks a zone of oblique thrusting and is part of the major Stanage Fault Zone. The latter is a northeast‐striking oblique‐slip dextral tear fault active during Late Permian west‐directed thrusting that emplaced large ultramafic sheets farther south. Marlborough terrane rocks were emplaced along the Stanage Fault Zone, probably from the arc basement on which rocks of the Yarrol terrane were deposited. Structural trends and the distribution of rock units in the Shoalwater Bay‐Percy Isles region are oblique to the overall structural trend of the northern New England Fold Belt, probably due to the presence of a promontory in the convergent margin active in this region in Devonian and Carboniferous time.  相似文献   

17.
通过CCSD-MH、卫星孔的岩性-构造剖面和苏鲁造山带中榴辉岩-超镁铁质岩的产出、深俯冲/折返过程的岩石的塑性流变特征和变形序次的分析、俯冲-折返过程中流体作用及变质化学地球动力学对流变学行为的制约,以及韧性剪切作用形成的折返年代学时限,提出苏鲁超高压变质地体为面型深俯冲/折返杂岩带组成的穹形挤出推覆岩片、叠置在扬子陆块之上; 根据岩石变形微构造及组构的分析,重塑超高压变质岩石深俯冲阶段、折返早期、折返主期和折返后期的塑性流变;提出深俯冲的物质沿板块汇聚边界的多层隧道呈多重/分片样式“挤出”的折返模式,并认为在折返初期开始(230~220Ma)和折返主期(220~200Ma)形成的透入性韧性剪切是俯冲岩片挤出的重要机制;提出郯庐走滑断裂的形成对苏鲁高压/超高压变质地体演化的影响。  相似文献   

18.
苏鲁高压-超高压变质地体南缘高压与超高压变质带接触关系的确定对该地区构造格局的建立具有重要的意义。研究表明苏鲁高压-超高压变质地体南缘高压变质带内的锦屏群底部含砾岩层不整合覆盖于超高压变质带南部的朐山花岗片麻岩之上,含砾岩层中的砾石虽然经历了后期的塑性变形改造,但其地质特征仍展示出地层下部层位沉积砾石特有的性质。此外,同位素年代学研究揭示出朐山花岗片麻岩与锦屏群变质岩的原岩分别形成于859Ma和814Ma。这些都说明锦屏群变质岩与下伏朐山花岗片麻岩原岩之间的接触关系为角度不整合。在后期的构造运动过程中它们一起经历了高压-超高压变质变形作用,折返过程中锦屏群变质岩向北西西方向逆冲,形成叠加于不整合接触面的韧性剪切带。  相似文献   

19.
Deformation partitioning is identified as the fingerprint of late Palaeozoic continental subduction that affected various lithologies whose field relationship, thermobarometric and petrofabric features are closely related. Different modes of deformation partitioning can be identified within medium temperature, high‐P eclogite lenses, between them and the host gneisses, and within the latter. Development of foliations and lineations with a coherent attitude in all these rocks and their related structural petrology demonstrate that eclogite enclosures and their country rocks underwent a common, pervasive deformational event. The published P–T stability fields of the eclogite phases that define the microscopic fabric are used to define the metamorphic conditions prevailing during the deformation event and relate it to the subduction process. The mineral equilibria of the gneisses (ortho‐ and paragneisses) fail to record the full range of those P–T conditions, but the field relationships show that eclogites were originally basic dykes emplaced in acid igneous rocks and demonstrate that the eclogites and gneisses shared a common tectonometamorphic evolution. Deformation partitioning within the latter occurred at variable scales and involved (1) meso macroscale preservation of virtually undeformed metagranite bodies, surrounded by (2) pervasively foliated and lineated gneisses, and (3) the simultaneous microscale operation in the latter of ductile and brittle–ductile mechanisms at conditions above 500°C and below 1.5 GPa. A subduction channel tectonic setting is proposed to explain the subduction of upper to mid‐crustal igneous rocks and exhumation subsequent to high‐P metamorphism. Its currently accessible dimensions, and its organization into several lithotectonic units mapped as nappes support tectonic amalgamation of units several km3 in volume. Maximum burial in the subduction channel likely reached depths shallower than the lithostatic pressure implied by geobarometric calculations, possibly conditioned by a sudden pressure drop during the initial retrogression stages accompanying exhumation.  相似文献   

20.
ABSTRACT Nappe refolding, back-thrusting and normal faulting frequently cause severe late-stage overprinting of the architecture of an orogen. A combined investigation of nappe stack polarity, kinematics of shearing and metamorphic gradients in the Western Alps develops criteria for distinguishing between these three modes of late-stage deformation. This distinction is a prerequisite for any retro-deformation necessary for understanding the main tectonic and metamorphic evolution of collisional orogens. In the case of the Western Alps overprint was by mega-scale nappe refolding in the Oligocene. This implies exhumation of the HP-rocks prior to postnappe folding, i.e. during nappe stacking and by foreland-directed ascent within a subduction channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号