首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 2,058 ± 4 Ma mafic–ultramafic Kevitsa intrusion is located in the Central Lapland greenstone belt, northern Finland. It is hosted by a Paleoproterozoic volcano–sedimentary sequence that contains komatiitic volcanic rocks and sulfide- and graphite-rich black schists. Economic Ni–Cu–(PGE) sulfide mineralization occurs in the middle part of the ultramafic lower unit of the intrusion. Two main types of ore are distinguished, “normal” and “Ni–PGE” ores. The normal ore is characterized by ~2 to 6 vol% disseminated sulfides and average Ni and Cu grades of 0.3 and 0.42 wt %, respectively (Ni/Cu < 1). The Ni–PGE ore has broadly similar sulfide contents, but a higher Ni grade and lower Cu grade. As a result, the Ni/Cu ratio reaches 15, much higher than in the normal ore. The Ni–PGE ores occur as irregular, discontinuous, lense-like bodies in the ultramafic rocks. Notably, the olivines in the Ni–PGE ore contain extremely high Ni contents of up to 14,000 ppm, which is significantly higher than the Ni content of olivine in other mafic–ultramafic igneous rocks globally (up to ~5,000 ppm) and in harmony with the associated Ni-rich sulfide assemblage containing pentlandite, millerite and pyrite. Microprobe mapping of olivine from the Ni–PGE ore suggests relatively low and homogeneous S contents and homogeneous distribution of Ni, Mg, Fe, which is inconsistent with the presence of sulfide inclusions in the olivine grains, or diffusion of Ni from interstitial sulfides into the olivine grains. We therefore conclude that Ni substitutes for Mg in the olivine lattice. The clinopyroxenes from the Ni–PGE ore also have unusually high Ni concentrations reaching 1,500 ppm and show a positive correlation with the nickel content of the associated olivine. The Nicpx/Niolivine is ~0.1 to 0.2 corresponding to high T partitioning of Ni between clinopyroxene and olivine. K D of 20 can account for the partitioning of nickel between olivine and the sulfide phase, consistent with magmatic equilibration. These data suggest that the olivine, clinopyroxene, and sulfides all crystallized from a basaltic magma with an unexceptionally high Ni content ranging from 300 to 1,100 ppm. The Ni–PGE ores are spatially associated with ultramafic xenoliths. Olivine in these ultramafic xenoliths have relatively high Fo contents (up to 90 mol %) and high Ni contents (up to 5,200 ppm) suggesting that the xenoliths formed from a komatiitic parental magma. It is proposed that assimilation by the Kevitsa magma of massive or semi-massive sulfides associated with komatiitic rocks elevated the Ni content of the magma and resulted in the formation of Ni–PGE ores and related extremely Ni-rich olivines.  相似文献   

2.
对金川镍铜铂硫化物矿床Ⅰ、Ⅱ矿区主矿体典型钻孔中的不同类型矿石进行了系统观察和铂族元素分布特征研究。金川矿床中星点状矿石、网状矿石、块状矿石PGE 总量依次降低,由西至东24 号、1 号、2 号矿体的PGE 总量亦具渐次降低趋势。形成块状矿石的硫化物熔体PGE 分异作用较星点状和网状矿石更充分; 块状矿石铂族元素分布特征显示其受晚期硫化物熔体分离结晶和单硫化物固溶体( MSS) 分离作用控制。研究结果表明: 星点状矿石是岩浆分离结晶过程中较快速度冷凝和就地硫化物熔离的结果; 而网状矿石可能是硫化物熔体经深部熔离但未经充分的硫化物分离结晶作用贯入的产物; 块状矿石成因定量模拟结果排除了R 因子控制作用,不同矿体中块状矿石由不同程度的单硫化物固溶体( MSS) 分离结晶所形成。  相似文献   

3.
The paper discusses the results of studying the contents of platinum group elements (PGE) and platinum group minerals (PGM) in ores of the Kingash deposit. The bulk of PGE has been established as concentrated in disseminated sulfide chalcopyrite–pyrrhotite–pentlandite ore and is represented by palladium bismuth–tellurides. During melt differentiation, the content and relationship of PGE are changed; the Pd/Pt value increases (up to 1.9 and 4.2 in dunite and wehrlite, respectively) with decreasing Mg number. The distribution of PGE, sulfur, and REE in various ore types suggests two formation mechanisms of high-grade ores: (1) the product of liquid immiscibility and gravity separation at the early magmatic stage and (2) involvement of the residual melt saturated in volatiles, which contributed to transportation and segregation of PGE at the late magmatic stage. The evolution of the ore system of the Kingash massif is characterized by sequential enrichment of PGM in Ni from high-Mg to low-Mg rocks similarly to sulfide minerals of disseminated ore. The criteria for ore content in utramafics of the Kansk block have been identified based on compared ore element and PGE concentrations in ultramafic rocks of the Kingash and Idar complexes.  相似文献   

4.
The results of melt inclusion study are reported for chromites of the Klyuchevsky ultramafic massif, which is the most representative of all Ural ultramafic massifs localized beyond the Main Ural Fault Zone. The massif is composed of a dunite-harzburgite complex (tectonized mantle peridotite) and a dunite-wehrlite-clinopyroxenite-gabbro complex (layered portion of the ophiolitic section). The studied Kozlovsky chromite deposit is located in the southeastern part of the Klyuchevsky massif and hosted in serpentinized dunite as a series of lenticular bodies and layers up to 7–8 m thick largely composed of disseminated and locally developed massive ore. Melt inclusions have been detected in chromites of both ore types. The heated and then quenched into glass melt inclusions and host minerals were analyzed on a Camebax-Micro microprobe. The glasses of melt inclusions contain up to 1.06 wt % Na2O + K2O and correspond to melts of normal alkalinity. In SiO2 content (49–56 wt %), they fit basalt and basaltic andesite. The melt inclusions are compared with those from chromites of the Nurali massif in the southern Urals and the Karashat massif in southern Tuva. The physicochemical parameters of magmatic systems related to the formation of disseminated and massive chromite ores of the Klyuchevsky massif are different. The former are characterized by a wider temperature interval (1185–1120°C) in comparison with massive chromite ore (1160–1140°C).  相似文献   

5.
On the basis of a representative collection of ultramafic rocks and chromite ores and a series of technological samples from the largest (Central and Western) deposits in the Rai-Iz massif of the Polar Urals and the Almaz-Zhemchuzhina and Poiskovy deposits in the Kempirsai massif of the southern Urals, the distribution and speciation of platinum-group elements (PGE) in various type sections of mafic-ultramafic massifs of the Main ophiolite belt of the Urals have been studied. Spectral-chemical and spectrophotometric analyses were carried out to estimate PGE in 700 samples of ultramafic rocks and chromite ores; 400 analyses of minerals from rocks, ores, and concentrates and 100 analyses of PGE minerals (PGM) in chromite ores and concentrates were performed using an electron microprobe. Near-chondritic and nonchondritic PGE patterns in chromitebearing sections have been identified. PGE mineralization has been established to occur in chromite ore from all parts of the mafic-ultramafic massifs in the Main ophiolite belt of the Urals. The PGE deposits and occurrences discovered therein are attributed to four types (Kraka, Kempirsai, Nurali-Upper Neiva, and Shandasha), which are different in mode of geological occurrence, geochemical specialization, and placer-forming capability. Fluid-bearing minerals of the pargasite-edenite series have been identified for the first time in the matrix of chromite ore of the Kempirsai massif (the Almaz-Zhemchuzhina deposit) and Voikar-Syn’ya massif (the Kershor deposit). The PGE grade in various types of chromite ore ranges from 0.1–0.2 to 1–2 g/t or higher. According to technological sampling, the average PGE grade in the largest deposits of the southeastern ore field of the Kempirsai massif is 0.5–0.7 g/t. Due to the occurrence of most PGE as PGM 10–100 mm in size and the proved feasibility of their recovery into nickel alloys, chromites of the Kempirsai massif can be considered a complex ore with elevated and locally high Os, Ir, and Ru contents. The Nurali-Upper Neiva type of ore is characterized by small-sized primary deposits, which nevertheless are the main source of large Os-Ir placers in the Miass and Nev’yansk districts of the southern and central Urals, respectively.  相似文献   

6.
The geology and mineralogy of host metamorphic rocks, the mineralogy of sulfide ores, and the distribution of PGE mineralization were studied in detail for the Kvinum-1 and Kvinum-2 copper-nickel occurrences of the Kvinum ore field, which are the most promising targets for the copper-nickel-PGE mineralization of the Sredinny Range of Kamchatka. It was established that stringer-disseminated and massive copper-nickel ores are localized in amphibole peridotites, cortlandites, and form ore bodies varying from tens of centimeters to 5–20 m thick among the layered cortlandite-gabbroid massifs. The massive sulfide ores were found only at the bottom of cortlandite bodies and upsection grade into stringer-disseminated and disseminated ores. Pyrrhotite, chalcopyrite, and pentlandite are the major ore minerals with a sharply subordinate amount of pyrite, sphalerite, galena, arsenopyrite, and löllingite. Besides pentlandite, the Ni-bearing minerals include sulforasenides (gersdorffite), arsenides (nickeline), and tellurides (melonite) of nickel. It was found that PGE mineralization represented by antimonides (sudburyite) and tellurobismuthides (michenerite) of Pd with sharply subordinate platinum arsenide (sperrylite) is confined to the apical parts of massive sulfide zones and the transition zone to the stringer-disseminated ores. Ore intervals enriched in arsenides and tellurides of Ni, Pd, and Bi contain high-purity gold. In the central parts of the orebodies, the contents of PGE and native gold are insignificant. It is suggested that the contents of major sulfide minerals and the productivity of PGE mineralization in the cortlandites are defined by combined differentiation and sulfurization of ultramafic derivatives under the effect of fluids, which are accumulated at the crystallization front and cause layering of parental magmas with different sulfur contents. The fluid-assisted layering of mafic-ultramafic massifs resulted in the contrasting distribution of PGM in response to uneven distribution of sulfur (as well as As, Te, and Bi) during liquid immiscibility. The productivity of PGE mineralization significantly increases with increasing contents of S, As, Te, and Bi (elements to which Pt and, especially, Pd have high affinity) in fluids.  相似文献   

7.
The Permian Hulu intrusion is one of several sulphide-bearing Permian mafic–ultramafic intrusions in the eastern part of the eastern Tianshan located at the southern margin of the Central Asian Orogenic Belt (CAOB) in Xinjiang, NW China. The intrusion is composed of lherzolite, olivine websterite, gabbro, and gabbro-diorite. Disseminated and net-textured Ni-Cu sulphide ores are located at the bottom of the lopolith complex. Negative Zr, Hf, Nb, and Ta anomalies, whole-rock εNd(t) values of +5.7 to +8.8, and variable (Th/Nb)PM values (from 1.06 to 8.13) suggest that the source of the Hulu complexes is depleted mantle metasomatized by subducted slab-derived fluid and/or melt (~5% global subducted sediment and 15% slab fluid) that has experienced approximately 3% lower crustal and 10% upper crustal contamination. The Hulu intrusion is characterized by low PGE abundances i.e. 0.03–1.08 ppb Ir, 0.04–0.69 ppb Ru, 0.02–2.15 ppb Rh, 0.30–48.71 ppb Pt, and 0.21–344 ppb Pd. Our calculations indicate that if the Pd, Os, Ir, and Cu contents of the primary magma were 2.1 ppb, 0.03 ppb, 0.05 ppb, and 200 ppm, respectively, a variable R-factor between 200 and 1600 with residual magma that had experienced 0.01% early-sulphide segregation can explain the variation in Pd, Os, and Ir contents of sulphide-poor and disseminated sulphide samples of the Hulu deposit. Basaltic magma fractionation and assimilation and/or contamination of sulphur-bearing crustal materials might have triggered sulphur saturation to form Cu-Ni sulphide ores. Tarim basaltic PGE contents cannot be used as the mineralized parent magma for the Hulu intrusion because of the differing evolutionary trends of the Ni/Pd and Cu/Ir values. However, similar Cu/Ni and Pd/Ir values in Tarim basalts and Hulu Cu-Ni sulphide ores, as well as the same early sulphide segregation process, show that certain genetic relationships between them and magma sources are probably similar to each other.  相似文献   

8.
The Jinchuan deposit, NW China, is one of the world’s most important Ni-Cu-(PGE) sulfide deposits related to a magma conduit system and is hosted in an ultramafic intrusion. The intrusion is composed of lherzolite and dunite with the two largest sulfide ore bodies (named as ore body 1 and 2) in its middle portion. The sulfide ores may be disseminated, net-textured, or massive. The disseminated and net-textured sulfide ores are characterized by variable but generally low PGE concentrations: 10-3200 ppb Pt, 240-9800 ppb Pd, 17-800 ppb Ir, 25-1500 ppb Ru, and 15-400 ppb Rh in 100% sulfides. The massive sulfide ores are extremely low in Pt (<30 ppb) on a 100% sulfides and have very high Cu/Pd ratios, ranging from 104 to 4.5 × 105. The low PGE contents suggest that the sulfide ores formed from the silicate magmas that had already experienced prior-sulfide separation.Our calculations indicate that if the first stage basaltic magmas had contained 6.3 ppb Pt, 6.2 ppb Pd, and 0.1 ppb Ir, 0.008% sulfide removal would result in PGE-depletion in the residual magma with 0.57 ppb Pt, 0.25 ppb Pd, and 0.009 ppb Ir. The Jinchuan sulfides were formed by a second stage of sulfide segregation from a PGE-depleted magma under silicate/sulfide liquid ratios (R-factor) ranging from 103 to 104 in a deep-seated staging chamber. The massive sulfide ores and some of the net-textured sulfide ores exhibit strong negative Pt-anomalies that cannot be explained by sulfide segregation under variable R-factors. Instead, the sulfide melts that formed the massive ores were segregated from magmas experienced prior fractionation of Pt-Fe alloy. Alternatively, the Pt may have been selectively leached by hydrothermal fluids during remobilization of the sulfide melts that produced the massive sulfides, which occur in cross-cutting veins. We propose that the Jinchuan intrusion and ore bodies were formed by injections of sulfide-free and sulfide-bearing olivine mushes from a deep-seated staging chamber.  相似文献   

9.
The Taihe, Baima, Hongge, Panzhihua and Anyi intrusions of the Emeishan Large Igneous Province (ELIP), SW China, contain large magmatic Fe–Ti–(V) oxide ore deposits. Magnetites from these intrusions have extensive trellis or sandwich exsolution lamellae of ilmenite and spinel. Regular electron microprobe analyses are insufficient to obtain the primary compositions of such magnetites. Instead, laser ablation ICP-MS uses large spot sizes (~ 40 μm) and can produce reliable data for magnetites with exsolution lamellae. Although magnetites from these deposits have variable trace element contents, they have similar multi-element variation patterns. Primary controls of trace element variations of magnetite in these deposits include crystallography in terms of the affinity of the ionic radius and the overall charge balance, oxygen fugacity, magma composition and coexisting minerals. Early deposition of chromite or Cr-magnetite can greatly deplete magmas in Cr and thus Cr-poor magnetite crystallized from such magmas. Co-crystallizing minerals, olivine, pyroxenes, plagioclase and apatite, have little influence on trace element contents of magnetite because elements compatible in magnetite are incompatible in these silicate and phosphate minerals. Low contents and bi-modal distribution of the highly compatible trace elements such as V and Cr in magnetite from Fe–Ti oxide ores of the ELIP suggest that magnetite may not form from fractional crystallization, but from relatively homogeneous Fe-rich melts. QUILF equilibrium modeling further indicates that the parental magmas of the Panzhihua and Baima intrusions had high oxygen fugacities and thus crystallized massive and/or net-textured Fe–Ti oxide ores at the bottom of the intrusive bodies. Magnetite of the Taihe, Hongge and Anyi intrusions, on the other hand, crystallized under relatively low oxygen fugacities and, therefore, formed net-textured and/or disseminated Fe–Ti oxides after a lengthy period of silicate fractionation. Plots of Ge vs. Ga + Co can be used as a discrimination diagram to differentiate magnetite of Fe–Ti–(V) oxide-bearing layered intrusions in the ELIP from that of massif anorthosites and magmatic Cu–Ni sulfide deposits. Variable amounts of trace elements of magmatic magnetites from Fe–Ti–(P) oxide ores of the Damiao anorthosite massif (North China) and from Cu–Ni sulfide deposits of Sudbury (Canada) and Huangshandong (northwest China) demonstrate the primary control of magma compositions on major and trace element contents of magnetite.  相似文献   

10.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

11.
The Hongge magmatic Fe-Ti-V oxide deposit in the Panxi region, SW China, is hosted in a layered mafic–ultramafic intrusion. This 2.7-km-thick, lopolith-like intrusion consists of the lower, middle, and upper zones, which are composed of olivine clinopyroxenite, clinopyroxenite, and gabbro, respectively. Abundant Fe-Ti oxide layers mainly occur in the middle zone and the lower part of the upper zone. Fe-Ti oxides include Cr-rich and Cr-poor titanomagnetite and granular ilmenite. Cr-rich titanomagnetite is commonly disseminated in the olivine clinopyroxenite of the lower parts of the lower and middle zones and contains 1.89 to 14.9 wt% Cr2O3 and 3.20 to 16.2 wt% TiO2, whereas Cr-poor titanomagnetite typically occurs as net-textured and massive ores in the upper middle and upper zones and contains much lower Cr2O3 (<0.4 wt%) but more variable TiO2 (0.11 to 18.2 wt%). Disseminated Cr-rich titanomagnetite in the ultramafic rocks is commonly enclosed in either olivine or clinopyroxene, whereas Cr-poor titanomangetite of the net-textured and massive ores is mainly interstitial to clinopyroxene and plagioclase. The lithology of the Hongge intrusion is consistent with multiple injections of magmas, the lower zone being derived from a single pulse of less differentiated ferrobasaltic magma and the middle and upper zones from multiple pulses of more differentiated magmas. Cr-rich titanomagnetite in the disseminated ores of the lower and middle zones is interpreted to represent an early crystallization phase whereas clusters of Cr-poor titanomagnetite, granular ilmenite, and apatite in the net-textured ores of the middle and upper zones are thought to have formed from an Fe-Ti-(P)-rich melt segregated from a differentiated ferrobasaltic magma as a result of liquid immiscibility. The dense Fe-Ti-(P)-rich melt percolated downward through the underlying silicate crystal mush to form net-textured and massive Fe-Ti oxide ores, whereas the coexisting Si-rich melt formed the overlying plagioclase-rich rocks in the intrusion.  相似文献   

12.
Apparent Re–Os ages of some magmatic sulfide ore deposits are older than the zircon and baddeleyite U–Pb ages which are interpreted as the formation age of the host intrusions. The Jinchuan Ni–Cu–PGE deposit of China, the world's third largest, is such a case. We report apparent Re–Os isochron ages of 1117 ± 67 Ma, 1074 ± 120 Ma and 867 ± 75 Ma with initial 187Os/188Os ratios of 0.120 ± 0.012, 0.162 ±0.017 and 0.235 ± 0.027 for disseminated ores, sulfides from the disseminated ores and massive ores from Jinchuan, respectively. Using these data and Re–Os ages from the literature, we find that the oldest apparent Re–Os age and lowest initial Os isotope ratio are from disseminated ores which contain small amounts of sulfide minerals, the highest initial Os isotope ratios and youngest apparent Re–Os ages, consistent with the zircon and baddeleyite U–Pb ages, are from massive ores containing 90–100 modal% sulfide, and net-textured ores with about 25 modal% sulfides yield apparent Re–Os ages and initial Os ratios intermediate between those of the disseminated and massive ores.Because Os diffusion between sulfides is inhibited by the intervening silicates even at high temperatures, re-equilibration did not occur in the disseminated ore and the samples retained the Os ratios of the contaminated magma, leading to geologically meaningless ages that are older than the formation age of the rocks. While Os-bearing sulfide minerals and magnetite show low closure temperatures of Os diffusion and the sulfide minerals in the massive ore are closely connected with each other, facilitating fast diffusion of Os, re-equilibration of Os was achieved during cooling of the ore from about 850 °C after the segregation to about 400 °C. Thus, an age corresponding to the formation time and an elevated initial Os ratio were yielded by the massive ore. Os isotopes in the net-textured ore behave in the way intermediate between the disseminated and massive ores. Pb isotope data support the Os results. Disseminated ores have heterogeneous Pb isotope ratios whereas Pb in the massive ores is more uniform, consistent with Pb isotopic equilibration in the massive ores, but not in the disseminated ores.  相似文献   

13.
喀拉通克铜镍矿床位于准噶尔板块北缘,矿区主要矿体赋存于Y1-Y3号岩体中。矿石构造类型为致密块状和浸染状两大类,其中前者与后者呈贯入接触,不同浸染状类型之间为过渡关系。岩石和矿石的PGE总量偏低,且以PPGE为主,IPGE含量较低。整体上岩石中的PGE含量显示随基性程度降低而变小。矿石中的PGE含量随硫化物含量增加增大,显示PGE主要分布于硫化物熔离形成的物相中。100%硫化物计算后,矿石PGE含量平均仅为573×10-9。各岩体中浸染状矿石PGE组成并无明显差异;岩石和矿石具有相似的PGE分配模式,均属于Pt-Pd配分型。岩石Ni/Cu-Pd/Ir关系以及岩石地球化学资料显示,形成喀拉通克岩体的初始岩浆为MgO含量较高的玄武质岩浆,属于PGE不亏损的岩浆。基于PGE不亏损的大陆拉斑玄武岩初始岩浆推算,喀拉通克矿床母岩浆明显亏损PGE,而深部硫化物熔离可能是导致母岩浆PGE亏损的主要原因。岩石和矿石Pd/Pt比值总体特征,岩石Cr与Ni、Ir、Ru和Rh相关性,以及硫同位素和岩石学资料分析表明,初始岩浆在地壳深部发生的橄榄石、铬铁矿等矿物的分离结晶作用,可能是促使硫过饱和与深部熔离的主要因素。IPGE与PPGE分异特征及其相关分析,结合矿床宏观地质特征,推断该矿床浸染状矿的成矿作用经历了初始岩浆(PGE不亏损)→橄榄石等矿物分离结晶→硫化物深部熔离→成矿母岩浆(PGE亏损)→上侵并结晶分异的成矿过程。块状矿则可能是这一过程中PGE亏损的成矿母岩浆相对滞后熔离形成的硫化物熔体贯入的结果。  相似文献   

14.
金川含矿超镁铁岩侵入体侵位序列   总被引:1,自引:0,他引:1       下载免费PDF全文
金川铜镍硫化物矿床是世界第三大镍矿床,但其成岩成矿过程及侵位机制一直存在较大争论。根据金川含矿超镁铁岩岩石学特征、穿插关系、矿物成分及地球化学特征,提出了金川含矿岩体5阶段的成岩、成矿侵位序列,它们分别是:(1)超镁铁质岩浆侵位;(2)浸染状硫化物矿浆侵位;(3)网状硫化物矿浆侵位;(4)块状硫化物矿浆侵位;(5)铂钯富集体侵位。金川铜镍(铂)矿床中Ni,Cu,Pt,Pd,Rh,Ir,Ru,及Co与S呈正相关关系;当ω(S)=5%~15%时,铂族元素发生明显的分离作用,铂族金属主要富集在铂钯富集体中。铂钯富集体是硫化物矿浆经单硫化物固溶体结晶后的残余熔浆;块状矿石是单硫化物固溶体堆积而成的产物。金川铜镍硫化物矿床的侵位机制为岩墙型岩浆通道。  相似文献   

15.
Two types of massive sulfide ores have been identified in the Kamennoozero segment of the green-stone belt: (1) hydrothermal volcanic-sedimentary strata-bound ores with massive, banded, and disseminated structures and (2) massive, brecciated, and stringer-disseminated Au-bearing base-metal ores, crosscutting the rocks of the Vozhmozero Group. The strata-bound, slightly metamorphosed orebodies are located at several levels along the contact between the Kamennoozero and Kumbuksa groups in the deep fault zones of the same names. These ores are composed of pyrite and pyrrhotite, small amounts of chalcopyrite and sphalerite, and distinguished by low grades of base metals and not higher than 0.06 g/t Au. In the Lebyazhino and Svetloozero areas, close to the sulfide Cu-Ni ore hosted in ultramafic rocks, the strata-bound bodies contain pentlandite and are enriched in Co, Ni, Cu, Zn, and up to 2.0–9.2 g/t Au. Brecciated and recrystallized pyrite ores contain up to 0.08–0.4% Sb and As, and up to 0.6–1 g/t Au in the Kumbuksa Fault Zone near Zolotye Porogi. The North Vozhma and Upper Vozhma base-metal massive sulfide occurrences, composed of pyrite, chalcopyrite, sphalerite, pyrrhotite, galena, bornite, and chalcocite, are considered to be promising Au-bearing prospects. Some samples from the North Vozhma occurrence contain up to 1.2–2.8 g/t Au and up to 167 g/t Ag. A gold grade of up to 20 g/t has been detected in the Upper Vozhma occurrence. The potential gold resources of the North Vozhma occurrence are estimated at about 600 kg.  相似文献   

16.
The Kabanga deposit constitutes one of the most significant Ni sulfide discoveries of the last two decades (indicated mineral resource 23 Mt of ore at 2.64% Ni, inferred resource 28.5 Mt at 2.7% Ni, November 2008). The sulfides are hosted by predominantly harzburgitic and orthopyroxenitic intrusions that crystallized from magnesian basaltic and picritic magmas. However, compared with other sulfide ores that segregated from such magmas (e.g., Jinchuan, Pechenga, Raglan), most Kabanga sulfides have low Ni (<1–3%), Cu (∼0.1–0.4%), and PGE contents (≪1 ppm), high Ni/Cu (5–15), and low Ni/Co (10–15) and Pd/Ir (2–20). Sulfides with higher metal contents (up to ∼5% Ni, 0.8% Cu, 10 ppm PGE) are found in only one unit from Kabanga North. The observed metal contents are consistent with segregation of magmatic sulfides from fertile to strongly metal-depleted magmas, at intermediate to very low mass ratios of silicate to sulfide liquid (R factors) of approximately 10–400. Sulfide saturation was triggered prior to final emplacement, by assimilation of up to 50% of the total sulfur in the intrusions from sulfide-bearing metasedimentary country rocks. Immiscible sulfide liquid was entrained by the magma and ultimately precipitated in dynamic magma conduits that formed tubular and sill-like mafic–ultramafic bodies characterized by abundant magmatic breccias, highly irregular layering, and frequent compositional reversals. The unusually large degree of crustal contamination and the low R factors render Kabanga an end-member in the spectrum of magmatic Ni sulfide ores.  相似文献   

17.
The Karchiga copper massive sulfide deposit is located in the Kurchum block of high-grade metamorphosed rocks. This block is part of the Irtysh shear zone, which belongs to the largest transregional fault in Central Asia. The deposit is associated with the gneiss–amphibolite middle unit of the metamorphic complex, which is distinct in the geochemical fields. The mineralization is spatially and paragenetically related to the amphibolite beds, which are ore-bearing together with terrigenous rocks.The deposit contains two spatially isolated lodes, in which all the discovered commercial reserves concentrate. They conformably overlie the host rocks and are tabular or ribbonlike. The mineralization has a close spatial relationship with Mg-rich anthophyllite-containing rocks. The sulfide ores are disseminated or massive and comprise pyrite, chalcopyrite, pyrrhotite, sphalerite, and magnetite. The ore is of Zn–Cu composition, in which Cu dominates considerably over Zn (average contents 2 and 0.4%, respectively; Cu/(Cu + Zn) = 0.83). The ores are rich in Co (up to 0.16%, averaging 0.02%), poor in Au and Ag (0.3 and 7.2 ppm, respectively), and almost free of Pb and Ba.All the rocks and ores experienced epidote–amphibolitic metamorphism. Meanwhile, the ores experienced a recrystallization and partial regeneration, but the initial shape of the lodes remained unchanged.The essentially chalcopyritic ores, the volcaniclastic ore-bearing rocks, and the spatial and genetic relationship of the mineralization with undifferentiated mafic and siliciclastic rocks suggest that this deposit belongs to the Besshi type, formed in a back-arc environment, near large rises.The studies show that Besshi-type Cu–Zn massive sulfide deposits differ from most of the polymetallic (Kuroko-type) deposits in Rudny Altai in the composition of volcanics and geodynamic settings, but belong to the same evolutionary series in this VMS province. Both types of deposits might have formed in the Paleozoic, during the main peak of VMS generation in the Earth's history.  相似文献   

18.
The paper discusses earlier poorly studied mineralized rocks of the Kingash ultramafic complex in the Kan Block of the Eastern Sayan, including the large Cu–Ni–PGE deposit of the same name. Despite many researchers' increased interest in the Kingash massif, a number of questions related to the petrology, formation mechanism, and localization of Cu–Ni–PGE ore remain controversial. Along with already known ore minerals, we have identified and described a number of new mineral species: argentite, Fe-enriched sperrylite, a bismuth variety of merenskyite, gersdorffite, cobaltite, and thorianite. The ore minerals are distinguished by a higher relative amount of Fe, and this makes the Kingash deposits close to other Paleoproterozoic Cu–Ni deposits, e.g., the Jinchuan in China, Pechenga in Russia, Ungava in Canada, Mt. Scholl in Australia, etc.  相似文献   

19.
Partitioning of platinum-group elements (PGE) between sulfide liquid and monosulfide solid solution (mss) has been investigated by crystallizingmss from Fe–Ni–Cu sulfide liquid at 1,000–1,040° C, using bulk compositions and PGE contents typical of magmatic sulfides associated with mafic and ultramafic systems. Products were analyzedin situ for PGE and Au using SIMS. Sulfide liquid compositions were more Ni- and Cu-rich than coexistingmss. Liquid/mss partition coefficients are: Os-0.23±0.04, Ir-0.28±0.11, Ru-0.24±0.05, Rh-0.33±0.06, Pt-4.8±0.7, Pd-4.8±1.9, Au-11.4. Partitioning of PGE is independent of PGE concentration and Ni content in the composition range investigated. Additionally, Henry's law appears to be obeyed up to minor-element contents in the sulfide liquid andmss. Osmium, Ir, Ru, and Rh are compatible elements in the anhydrous Fe–Ni–Cu–S system, whereas Pt, Pd and Au are incompatible elements. These affinities correspond to the partitions of PGE between massive and Cu-rich magmatic sulfides. However, the detailed precious-metal compositions of the Cu-rich sulfides of mafic rock systems, disseminated ores of komatiites and Cu-rich assemblage of droplet ore from the Noril'sk-Talnakh deposits are not consistent with those expected for pristine fractionated sulfide liquids.  相似文献   

20.
The Qingkuangshan Ni-Cu-PGE deposit, located in the Xiaoguanhe region of Huili County, Sichuan Province, is one of several Ni-Cu-PGE deposits in the Emeishan Large Igneous Province (ELIP). The ore-bearing intrusion is a mafic-ultramafic body. This paper reports major elements, trace elements and platinum-group elements in different types of rocks and sulfide-mineralized samples in the intrusion. These data are used to evaluate the source mantle characteristics, the degree of mantle partial melting, the composition of parental magma and the ore-forming processes. The results show that Qingkuangshan intrusion is part of the ELIP. The rocks have trace element ratios similar to the coeval Emeishan basalts. The primitive mantle-normalized patterns of Ni-Cu-PGE have positive slopes, and the ratios of Pd/Ir are lower than 22. The PGE compositions of sulfide ores and associated rocks are characterized by Ru depletion. The PGE contents in bulk sulfides are slightly depleted relative to Ni and Cu, which is similar to the Yangliuping Ni-Cu-PGE deposit. The composition of the parental magma for the intrusion is estimated to contain about 14.65 wt% MgO, 48.66 wt% SiO2 and 15.48 wt% FeOt, and the degree of mantle partial melting is estimated to be about 20%. In comparison with other typical Ni-Cu-PGE deposits in the ELIP, the Qingkuangshan Ni-Cu-PGE deposit has lower PGE contents than the Jinbaoshan PGE deposit, but has higher PGE contents than the Limahe and Baimazhai Ni-Cu deposit, and has similar PGE contents to the Yangliuping Ni-Cu-PGE deposit. The moderate PGE depletions in the bulk sulfide of the Qingkuanghan deposit suggest that the parental magma of the host intrusion may have undergone minor sulfide segregation at depth. The mixing calculations suggests that an average of 10% crustal contamination in the magma, which may have been the main cause of sulfide saturation in the magma. We propose that sulfide segregation from a moderately PGE depleted magma took place prior to magma emplacement at Qingkuangshan, that small amounts of immiscible sulfide droplets and olivine and chromite crystals were suspended in the ascending magma, and that the suspended materials settled down when the magma passed trough the Qingkuangshan conduit. The Qingkuangshan sulfide-bearing intrusion is interpreted to a feeder of Emeishan flood basalts in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号