首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
使用一枚携带chaff的火箭观测到的垂直速度数据,研究中层大气垂直速度扰动细微结构。结果表明,垂直速度扰动有明显的层状结构,各层厚度约150-500m,层间垂直分离距离在几百米到1-3km间。在垂直速度方差和低Ri数峰值间以及动力不稳定和MST雷达回波区域间有好的对应关系。水平速度垂直波数谱与饱和谱在谱斜率和谱振幅上存在好的一致.这些观测结果表明,火箭测量到的细微结构可以用波场饱和解释。  相似文献   

2.
Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W). On one flight, a wind shear as high as 330 m s−1 km−1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity.  相似文献   

3.
Since gravity waves significantly influence the atmosphere by transporting energy and momentum, it is important to study their wave spectrum and their energy dissipation rates. Besides that, knowledge about gravity wave sources and the propagation of the generated waves is essential. Originating in the lower atmosphere, gravity waves can move upwards; when the background wind field is equal to their phase speed a so-called critical layer is reached. Their breakdown and deposition of energy and momentum is possible. Another mechanism which can take place at critical layers is gravity wave reflection.In this paper, gravity waves which were observed by foil chaff measurements during the DYANA (DYnamics Adapted Network for the Atmosphere) campaign in 1990 in Biscarrosse (44°N, 1°W)—as reported by Wüst and Bittner [2006. Non-linear wave–wave interaction: case studies based on rocket data and first application to satellite data. Journal of Atmospheric and Solar-Terrestrial Physics 68, 959–976]—are investigated to look for gravity wave reflection processes. Following nonlinear theory, energy dissipation rates according to Weinstock [1980. Energy dissipation rates of turbulence in the stable free atmosphere. Journal of the Atmospheric Sciences 38, 880–883] are calculated from foil chaff cloud and falling sphere data and compared with the critical layer heights. Enhanced energy dissipation rates are found at those altitudes where the waves’ phase speed matches the zonal background wind speeds. Indication of gravity wave trapping is found between two altitudes of around 95 and 86 km.  相似文献   

4.
The ALOMAR SOUSY Radar operated at 53.5 MHz has been used in a five-beam configuration to study dynamical processes at gravity wave periods in the summer polar mesosphere. A case study of a gravity wave with a period of about 9 min is presented and analysed in some detail. The three-dimensional wave number vector is determined from the phase information of the 9-min velocity oscillations obtained in all beam directions and all range gates. The horizontal wavelengths in the north and east direction are estimated to be about 60 and 50 km, respectively. The echo power variations, simultaneously observed at different beam pointing positions, are investigated using cross-correlation analysis. The results show that these wave-associated variations lead to horizontal and vertical deformation of the echoing layers. The horizontal wavelength in the north-south direction, derived from the echo power modification, is in good agreement with the one obtained from the velocity analysis.  相似文献   

5.
Observations of the horizontal wind field over the South Pole were made during 1995 using a meteor radar. These data have revealed the presence of a rich spectrum of waves over the South Pole with a distinct annual occurrence. Included in this spectrum are long-period waves, whose periods are greater than one solar day, which are propagating eastward. These waves exhibit a distinct seasonal occurrence where the envelope of wave periods decreases from a period of 10 days near the fall equinox to a minimum of 2 days near the winter solstice and then progresses towards a period near 10 days at the spring equinox. Computation of the meridional gradient of quasi-geostrophic potential vorticity has revealed a region in the high-latitude upper mesosphere which could support an instability and serve as a source for these waves. Estimation of the wave periods which would be generated from an instability in this region closely resembles the observed seasonal variation in wave periods over the South Pole. These results are consistent with the hypothesis that the observed eastward propagating long-period waves over the South Pole are generated by an instability in the polar upper mesosphere. However, given our limited data set we cannot rule out a stratospheric source. Embedded in this spectrum of eastward propagating waves during the austral winter are a number of distinct wave events. Eight such wave events have been identified and localized using a constant-Q filter bank. The periods of these wave events ranges from 1.7 to 9.8 days and all exist for at least 3 wave periods. Least squares analysis has revealed that a number of these events are inconsistent with a wave propagating zonally around the geographic pole and could be related to waves propagating around a dynamical pole which is offset from the geographic pole. Additionally, one event which was observed appears to be a standing oscillation.  相似文献   

6.
利用位于海南富克(19.5°N,109.1°E)和广西桂平(23.4°N,110.1°E)两个台站两年多的OH全天空气辉成像仪观测数据,对中国低纬地区的重力波传播统计特征进行了研究.从富克和桂平的气辉成像观测中, 分别提取了65和86个重力波事件.研究结果表明,观测水平波长,观测周期和水平相速度分别集中分布在10~35 km, 4~14 min和20~90 m·s-1范围.重力波传播方向,在夏季表现出很强的东北方向传播.然而,在冬季主要沿东南和西南方向传播. 同时,结合流星雷达风场观测和TIMED/SABER卫星的温度数据,也发现在中层-低热层中传播的大多数重力波表现为耗散传播.且低层-中层大气中背景风场的滤波作用和多普勒频移可能对纬向方向传播的重力波产生的各向异性起到重要的调制作用.然而,经向方向传播的重力波产生的各向异性可能同时被低层大气中波源的非均匀分布以及潮汐变化所影响.  相似文献   

7.
2004年8月3日近地TC-1卫星在磁尾XGSM~-12RE的等离子体片内,观测到了伴随着高速流的低于离子回旋频率的波,即超低频波(ULF,Ultra Low Frequency).该波垂直分量的振幅在高速流及其振荡减速期间大致相当;而平行分量振幅在高速流时明显大于其振荡减速时. 利用一个扰动双流模型对完全磁化离子横场漂移驱动的电磁不稳定性计算后,预测结果表明:(1)对于垂直分量来说,横场漂移速度与Alfvén速度的比值影响不稳定性增长率和激发波频率,随其比值增加,增长率变大,激发波频率从负值增加到正值.(2)对于平行分量来说,温度各向异性时等离子体热速度与Alfvén速度比值只影响不稳定性增长率和激发波频率,未改变不稳定性模类别;而温度各向同性时离子横场漂移速度与Alfvén速度比值既影响不稳定性模的种类及其分支,又影响激发波频率.进一步将卫星观测到的等离子体密度、温度、整体流速和磁场代入模型方程,进行数值计算与上述预测结果对比后发现:卫星观测中垂直分量的功率谱密度(PSD,Power Spectrum Density)增强时间和频段与理论模型中由β//、β和v/VA引起不稳定性激发的波一致;卫星观测中平行分量的功率谱密度增强时间与理论模型基本相符,但是前者的频率明显地低于后者.因此,除了需考虑平行磁场的离子整体流速对不稳定性激发波频率的可能影响,还需要统计上进一步核实伴随有高速流的ULF波与不稳定性的相关性.  相似文献   

8.
Middle atmosphere temperatures have been measured by in situ and by remote sensing instruments for several decades. Extensive temperature measurements by rocket-borne falling spheres (FS) were performed from Andøya Rocket Range in northern Norway from the late 1980s onwards. About 90 rockets were successfully launched within eight measurement campaigns and compiled to an empirical temperature statistic. About half of these measurements were in July and August. Since 1997 the Bonn University Rayleigh/Mie/Raman lidar has been operated at Esrange in northern Sweden during winter as well as during summer. One hundred and eight night mean temperature profiles were obtained for July and August from this data set and have been compared to the FS-statistics. A systematic difference could be observed, i.e. the weekly average temperatures taken from the FS-based empirical temperature statistics are up to 10 K warmer than the temperatures measured by lidar, depending on altitude. In particular comparisons during August show larger differences than comparisons with July data. Temperatures were additionally derived from the Rayleigh-scattered light of the Bonn University Na-resonance lidar which was operated during the 1980s at Andøya. No systematic differences between these measurements and the FS-data were found. Gravity waves, tides, volcanic aerosol, and the solar cycle are not likely to cause the observed differences, since their influence is minimised either by data selection (gravity waves and tides) or by measurement times (volcanic aerosol, solar cycle). Additionally to the temperature difference a change in the gravity wave activity was observed, in particular during summer 2002 and 2006. During these years also noctilucent clouds occurred rather late in the season. The latest unambiguous observation of a noctilucent cloud by the U. Bonn lidar at Esrange was on 24 August 2006. All these observations are indications of a long-term temperature change in the polar summer middle atmosphere as predicted by model calculations. While similar changes have already been observed at middle and low latitudes, temperature trend analyses for the polar atmosphere did not reveal any variation up to now.  相似文献   

9.
To examine the effects of horizontal resolution on internal gravity waves simulated by the 40-level GFDL SKYHI general circulation model, a comparison is made between the 3° and 1° resolution models during late December. The stratospheric and mesospheric zonal flows in the winter and summer extratropical regions of the 1° model are much weaker and more realistic than the corresponding zonal flows of the 3° model. The weaker flows are consistent with the stronger Eliassen-Palm flux divergence (EPFD).The increase in the magnitude of the EPFD in the winter and summer extratropical mesospheres is due mostly to the increase in the gravity wave vertical momentum flux convergence (VMFC). In the summer extratropical mesosphere, the increase in the resolvable horizontal wavenumbers accounts for most of the increase in the gravity wave VMFC. In the winter extratropical mesosphere, the increase of VMFC associated with large-scale eastward moving components also accounts for part of the increase in the gravity wave VMFC.The gravity waves in the summer and winter mesosphere of the 1° model are associated with a broader frequency-spectral distribution, resulting in a more sporadic time-distribution of their VMFC. This broadening is due not only to the increase in resolvable horizontal wavenumbers but also occurs in the large-scale components owing to wave-wave interactions. It was found that the phase velocity and frequency of resolvable small-scale gravity waves are severely underestimated by finite difference approximations.  相似文献   

10.
We have applied a full-correlation analysis technique to the echo power fluctuations observed by the MU radar (35°N, 136°E), and analyzed the horizontal structure of the scattering pattern in the mesosphere as well as their horizontal motions. The velocity of the scattering pattern did not agree with the background wind velocity, but was associated with the horizontal propagating direction of a saturated inertia gravity wave identified in the wind field. The length of the long axis of the characteristic ellipse of the scattering pattern was approximately 50 km, and the direction was almost perpendicular to the propagating direction of the wave. The correlation time of the scattering pattern was approximately 700 s, which is much longer than the lifetime of the isolated turbulence itself. This implies that the observed scattering pattern is associated with a region where the saturated inertia gravity wave generates turbulence.  相似文献   

11.
A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO) regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2–10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.  相似文献   

12.
The nonlinear equation of the first order of the Riccati type has been obtained for the wave impedance of acoustic gravity waves in the nonisothermal atmosphere. The vertically nonuniform horizontal wind and the effect of viscosity on the horizontal components of the velocity field have been taken into account in the calculations. The boundary-value problem for the Riccati equation is defined by the boundary emission condition at high altitudes. Upon finding the wave impedance along with the generalized polarization relationship, all remaining disturbances of the atmospheric parameters related to acoustic gravity waves are found with the help of a simple integration. The results of using a developed formalism are illustrated by the numerical computation of acoustic gravity wave fields in the atmosphere with real vertical profiles of temperature and horizontal field velocity.  相似文献   

13.
利用东港(40°N,124°E)台站于2013年9月15—16日的OH气辉成像观测数据报告了两个重力波事件(1和2).同时,结合北京十三陵(40.3°N,116.2°E)台站的多普勒流星雷达风场数据和位于39.4°N,130.6°E位置处的SABER/TIMED卫星的温度参数分析发现,观测的两个重力波事件于2013年9月15—16日02∶00—03∶00 LT时间段,和70~110 km高度是自由传播的.利用反射线追踪方法分析表明,重力波事件1和事件2分别产生于(39.3°N,117.2°E)和(47.1°N,121.3°E).且事件1的波源位置与对流活动和大气向上向下运动过程中产生的不稳定性吻合较好.然而,通过ECMWF再分析资料和MTSAT卫星观测数据分析表明,事件2可能由对流活动或大气向上运动过程中可能产生的不稳定性导致.利用MERRA自地面到约70 km高度的风场数据分析表明,观测的重力波事件1和事件2的水平相速度分别是83.5 m·s-1(事件1)和80.1 m·s-1(事件2),均大于低层-中层大气风速-10~45 m·s-1.因此,观测的两个重力波事件是可能从低层大气传播到中层-低热层大气的.  相似文献   

14.
The parameters of internal gravity waves detected based on the variations in the hydroxyl molecule emission are statistically analyzed. The wave structures were registered with an all-sky infrared camera at Maimaga optical station (? = 63° N, λ = 129.5° E). The data obtained in the winter period of 1998–2002 are analyzed. In total, 162 waves, the majority of which propagated westward, were recorded. The wavelengths vary from 15.4 to 100 km (the average value is ~31 km); the observed horizontal phase velocities change from 19 to 166 m/s (the average value is ~60 m/s), and the estimated periods are 9–90 min (the average value is ~11 min). The statistical characteristics of the waves do not differ from those of similar waves at middle and low latitudes. The azimuthal dependence of the wave propagation direction is consistent with the theory of wave filtration by a background wind in the middle atmosphere. Probable sources of the waves are mountain ranges located at a distance of 200 km east of the observation site. Somewhat greater values of the mean wavelength and wave propagation velocities than those recorded at lower latitudes may be due to the lower loss of energy and velocity of the waves during their propagation from the source to the mesosphere, although other causes are not ruled out. Ripple-type waves have the same direction of propagation as band-type waves.  相似文献   

15.
We present a first detailed climatological study of individual quasi-monochromatic mesospheric, short-period gravity-wave events observed over Antarctica. The measurements were made using an all-sky airglow imager located at Halley Station (76°S, 27°W) and encompass the 2000 and 2001 austral winter seasons. Distributions of wave parameters were found to be similar to findings at other latitudes. The wave headings exhibited unusually strong anisotropy with a dominant preference for motion towards the Antarctic continent and a rotation from westward during fall, to poleward in mid-winter, to eastward in spring. This rotation was accompanied by a systematic increase of ~50% in the magnitudes of the horizontal wavelengths and observed phase speeds. It is postulated that the observed wave anisotropy was due to a succession of wave sources of different characteristics lying equatorward of Halley, or a dominant source mechanism evolving with time during the winter months.  相似文献   

16.
南海东北部海洋内波的反射地震研究   总被引:9,自引:4,他引:5       下载免费PDF全文
已有的内波研究多来自单点的垂直剖面观测资料,但研究内波水平特征的实测资料却非常缺乏.利用反射地震方法研究海水温盐结构,具有高水平分辨率和短时间内对整个海水垂直剖面进行成像的优势,能够弥补传统物理海洋学观测方法的缺陷,为研究海洋内波提供有前景的新手段.本文通过对南海东北部地震剖面的重新处理、分析,认为地震叠加剖面上同相轴呈现的起伏变化反映了内波的总体形态.计算的水平波数能量密度谱与GM76模型谱基本一致,但在低波数段和高波数段中,两者的振幅及斜率存在着一定差异,经分析认为这种差异主要与内潮波和复杂海底地形的强烈非线性相互作用以及内波破碎等因素有关  相似文献   

17.
用数字测高仪漂移测量研究电离层声重波扰动   总被引:8,自引:1,他引:8  
数字测高仪Digisonde中的漂移测量,常用来研究小尺度电离层扰动,如电离层小不均匀体的漂移。文中提出一种新的分析方法,利用漂移测量数据中多普勒频移和到达角参量的最大熵动态功率谱,估算声重波一类大尺度电离层扰动的水平传播速度和传播方向。作为实例,研究了Millstone Hill测高仪站的漂移观测资料,并对处理结果进行了初步分析。分析结果表明,从数字测高仪漂移测量数据中,可有效地提取声重波一类大尺度电离层扰动的传播参量,在电离层动力过程的研究中很有意义。  相似文献   

18.
Infragravity wave (IGW) transformation was quantified from field measurements on two shore platforms on New Zealand's east coast, making this the first study to describe the presence, characteristics and behaviour of IGWs on rock platform coasts. Data was collected using a cross‐shore array of pressure transducers during a 22 hour experiment on Oraka shore platform and a 36 hour experiment at Rothesay Bay shore platform. A low pass Fourier filter was used to remove gravity wave frequency oscillations, allowing separate analysis of IGWs and the full wave spectrum. Offshore IGW heights were measured to be 7 cm (Oraka) and 9 cm (Rothesay Bay), which were 21% (Oraka) and 7.5% (Rothesay Bay) the height of incident wave height. At the cliff toe, significant IGW height averaged 15 cm at Oraka and 13 cm at Rothesay Bay. This increase in IGW height over the platform during both experiments is attributed to shoaling of 40 to 55% over the last 50–60 m before the cliff toe, respectively. Shoaling across the platform was quantified as the change in IGW height from the platform edge to cliff toe, resulting in a maximum increase of 1·88 and 2·63 on Rothesay Bay and Oraka platforms. IGW height at the cliff toe showed a strong correlation with incident wave height. The proportional increase in IGW height shows a strong correlation to water level on each platform. The rate of shoaling of long period waves on the shallow, horizontal platforms increased at higher water levels resulting in a super elevation in water level at the cliff toe during high tide. Greater IGW shoaling was also observed on the wider (Oraka) shore platform. Results from this study show the first measurements of IGWs on shore platforms and identify long wave motion a significant process in a morphodynamic understanding of rock coast. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The capabilities of the continuous wavelet transform (CWT) and the multiresolution analysis (MRA) are presented in this work to measure vertical gravity wave characteristics. Wave properties are extracted from the first data set of Rayleigh lidar obtained between heights of 30 km and 60 km over La Reunion Island (21°S, 55°E) during the Austral winter in 1994 under subtropical conditions. The altitude-wavelength representations deduced from these methods provide information on the time and spatial evolution of the wave parameters of the observed dominant modes in vertical profiles such as the vertical wavelengths, the vertical phase speeds, the amplitudes of temperature perturbations and the distribution of wave energy. The spectra derived from measurements show the presence of localized quasi-monochromatic structures with vertical wavelengths <10 km. Three methods based on the wavelet techniques show evidence of a downward phase progression. A first climatology of the dominant modes observed during the Austral winter period reveals a dominant night activity of 2 or 3 quasi-monochromatic structures with vertical wavelengths between 1/2 km from the stratopause, 3/4 km and 6/10 km observed between heights of 30 km and 60 km. In addition, it reveals a dominant activity of modes with a vertical phase speed of –0.3 m/s and observed periods peaking at 3/4 h and 9 h. The characteristics of averaged vertical wavelengths appear to be similar to those observed during winter in the southern equatorial region and in the Northern Hemisphere at mid-latitudes.  相似文献   

20.
The propagation of atmospheric gravity waves (AGWs) is studied in the context of geometrical optics in the nonisothermal, viscous, and thermal-conductive atmosphere of Earth in the presence of wind shifts. Parametric diagrams are plotted, determining the regions of allowed frequencies and horizontal phase velocities of AGWs depending on the altitude. It is shown that a part of the spectrum of AGWs propagates in stationary air in an altitude range from the Earth’s surface through the ionospheric F1 layer. AGW from nearearth sources attenuate below 250 km, while waves generated at altitudes of about 300 km and higher do not reach the Earth’s surface because of the inner reflection from the thermosphere base. The pattern changes under strong thermospheric winds. AGW dissipation decreases with an adverse wind shift and, hence, a part of the wave spectrum penetrated from the lower atmosphere to the altitudes of F2 layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号