首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical patterns for elements, such as Sn, W and Au, present in drainage sediments as resistate heavy minerals are often erratic and difficult to interpret. To investigate the source of these problems and develop methods of eliminating them we have compared the behavior of Sn, present as cassiterite, and associated pathfinder elements downstream from a small primary Sn deposit in Perak, Peninsular Malaysia.Dispersion trains for the pathfinder elements are characterized by smooth decay patterns and differences in concentrations between high- and low-energy environments, characterized by coarse-and medium-grained sands respectively, are not significant. In contrast, Sn (and magnetite) concentrations are extremely erratic with significantly higher concentrations in high- compared to low-energy environments. As a result the dispersion train for Sn exhibits no regular decay pattern away from its source. These findings suggest that the action of the stream is analogous to that of sluice box, with light minerals being winnowed away and cassiterite, together with magnetite, accumulating. For all but the finest sizes this process, which is most efficient in high-energy environments, causes considerable local variability in Sn content of the sediments. However, because the hydraulic behavior of cassiterite and magnetite is similar, but magnetite is not associated with the primary mineralization, the Sn/magnetite ratio can be used to eliminate Sn anomalies resulting from local variations in hydraulic conditions.The concept of hydraulic equivalence of cassiterite and magnetite was extended to examining the relationship between Sn and different size fractions of the light minerals that constitute the bulk of most sediments. Greatest contrast is obtained when the Sn content of the −270 mesh (−53 μm) fraction is re-expressed as its hydraulic equivalent concentration in −65 + 100 mesh (−212 + 150 μm) material.For exploration purposes it is concluded that: (1) providing cassiterite is present in the fine size fractions, sampling of this material will reduce hydraulic effects, thereby reducing data variability, and can also increase the length of the anomalous dispersion train; and (2) hydraulic effects can also be reduced by re-expressing Sn concentrations as ratios to magnetite (provided this is not associated with the primary Sn mineralization) or a hydraulically equivalent size fraction of the light minerals that constitute the bulk of the sediment. Similar principles probably apply to the interpretation of geochemical data for other elements dispersed in drainage sediments as heavy minerals; this warrants further investigation.  相似文献   

2.
Geochemical and mineralogical investigations have been carried out on laterite profiles developed in the Lake Sonfon Au district of northern Sierra Leone. The area is underlain by Archean metavolcanics and constitutes part of the Sula Mountains greenstone belt, which is mineralized in Au. Extensive lateritization has affected the rocks of this region, resulting in a profile which from bottom to top consists typically of a decomposed bedrock zone, a pisolitic laterite layer and a duricrust layer. Both the pisolitic and duricrust layers of the laterite are sometimes punctuated by lenses of ironstones containing high amounts of Cu, Zn, Ni, Co and Ce. Gold occurs as small grains within the heavy mineral fraction recovered from the decomposed rock zones and pisolitic layers of the profiles and also in gravels of streams draining the area. The mineralogy of the duricrust and pisolitic layers is dominated by goethite, gibbsite and quartz, with minor amounts (<5% by volume) of ilmenite, magnetite, haematite, rutile and kaolinite. The kaolinite content increases towards the decomposed rock zone, where talc, vermiculite and other layer lattice silicates become abundant. The heavy-mineral fraction of stream sediments is composed essentially of ilmenite, magnetite, haematite, and traces of rutile, zircon, tourmaline and Au. The Au grains are often characterized by a 10–200-μm-wide rim having a much lower content of Ag (0.3 wt.% or lower) than the grain interior (about 5 wt.% on average). Dissolution effects are also observed on the grain surfaces. It is considered that Au derived from the amphibolite parent rock is dissolved, transported, and redeposited during laterization.The duricrust cover of the laterite profiles is characterized by high contents of Fe2O3 (ca. 60 wt.%) and Al2O3 (ca. 32wt.%) and low content of SiO2 (ca. 9 wt.%). In comparison, the pisolitic layer is higher in SiO2 (ca. 18 wt.%) as well as a slightly higher in Al2O3 (ca. 34 wt.%). Lateritic weathering has resulted in the removal of CaO, Na2O, MgO and SiO2, with relative enrichment of Fe2O3 and Al2O3. The geochemical distribution of the trace elements in the laterite profiles can be related to the occurrence of the auriferous mineralization. The significance of these observations is discussed in relation to the origin of the lateritic Au and the role of the associated trace elements as indicators of the mineralization.  相似文献   

3.
Concentrations of Au, Ag, As, Cd and Sb in aquatic bryophytes collected from the Dolgellau Mineral Belt, North Wales, U.K. are reported. One aquatic liverwort, Scapania undulata (L) Dum. and two mosses, Fontinalis squamosa Hedw. and Racomitrium aciculare (Hedw.) Brid. were collected from sites upstream and downstream of the recently reopened Gwynfyndd Au mine. There was little inter-species variation in metal contents for these three bryophytes, but Scapania undulata appeared the most sensitive to changes in water concentrations of Ag, As and Sb. Gold concentrations varied little between the contaminated and control sites. Concentrations in the range < 4–18 ng Aug g−1 D.W. were typical background levels, while bryophytes collected immediately below the mine contained 6–45 ng Au g−1. Silver and Sb both showed more pronounced ( 5–10 fold) elevations above control concentrations in samples collected downstream of the mine. Background concentrations for these elements were 5–85 ng Ag g−1 and 0.15–1.3 μg Sb g−1.Arsenic concentrations downstream of the mine (160–1080 μg g−1) greatly exceeded the background range of 9–32 μg g−1. It is suggested, therefore, that As may be an ideal ‘pathfinder’ element when prospecting for auriferous deposits using aquatic bryophytes.  相似文献   

4.
《Applied Geochemistry》1995,10(5):517-529
A study to test the use of hydrogeochemical methods for gold prospecting was carried out in the Osilo area, northern Sardinia. The study area, covering about 30 km2 is characterised by Tertiary andesitic rocks. Gold concentrations up to several ppm, associated with abundant pyrite, arsenopyrite, stibnite, tetrahedrite and electrum, and subordinate galena, sphalerite and chalcopyrite, are present in quartz veins associated with a polyphase, incipient and pervasive alteration of the andesitic rocks.Forty-eight water samples (17 streams, 29 springs and 2 boreholes) were analysed for Au and a wide range of major and trace elements, both in solution (< 0.4 μm) and in suspension. Background values for dissolved Au were below the detection limit of the methods used (between 0.3 and 0.5 ng L−1 Au). Gold concentrations in solution up to 3 ng L−1 were found in waters draining the mineralised vein system. The observed dispersion of Au in surface waters was restricted to about 500 m from the auriferous veins. Dissolved Au anomalies do not vary significantly in water samples, taken monthly over a one year period, suggesting that the dispersion of Au is unaffected by seasonal conditions in the Osilo area. For samples where Au was detected both in solution and in suspension, the Au content of the suspended matter was usually lower than that in solution.The best indicators of Au mineralisation, apart from Au itself, both in solution and in suspension, were As and Sb which showed a dispersion clearly related to the known auriferous veins.  相似文献   

5.
Several pilot studies were made in a PGE-mineralized area of central Madagascar in order to compare Pt,Pd halos in heavy mineral concentrates and to select the most suitable stream-sediment fractions, sampling densities and anomaly thresholds for regional PGE surveys. Results show low anomaly thresholds for Pt (30 ppb) and Pd (20 ppb) in the −63 μm fractions of the active sediment, with restricted halos of nearly 300 m for Pt and nearly 500 m for Pd. Using a slightly coarser fraction (−125 μm) increases the anomaly contrast. The Pt anomalies in heavy mineral pan concentrates are considerably enhanced (400–1,000 ppb) but occur further downstream in residual terraces. A regular increase in the weight of the heavy mineral concentrate for a given volume of sediment is noticed downstream. A simple weight correction of the raw Pt grade in the heavy mineral concentrate gives a better definition of the mineralized source upstream. Assessment of the corrected heavy mineral concentrate Pt anomalies together with Pt,Pd anomalies in the finest stream-sediment fraction produces the optimum definition of the target. Optical determination and scanning electron microscope studies of the PGM show sperrylite to be the major Pt-bearing mineral in the stream sediment, whereas the Pd mineralogy remains unresolved. Pt dispersion appears to be a predominantly mechanical process and Pd dispersion a chemical process with deposition controlled mainly by MnO scavenging.  相似文献   

6.
《Applied Geochemistry》2000,15(5):629-646
Stream waters and sediments draining a gossan tailings pile at the Murray Brook massive sulphide deposit were collected to investigate Au mobility. Weathering of the massive sulphides at Murray Brook during the Late Tertiary period resulted in the concentration of Au in the gossan cap overlying the supergene Cu and unoxidized massive sulphide zones of the deposit. The gossan was mined between 1989 and 1992, and Au and Ag were extracted using a cyanide vat leach process. Although stream sediments prior to mining had Au<5 ppb (the detection limit), sediments collected in 1997 had Au contents ranging up to 256 ppm with values up to 6 ppm more than 3 km downstream from the deposit. Dissolved Au contents were similarly anomalous, up to 19 μg/L and in excess of 3 μg/L 3 km downstream. The elevated Au contents in the waters and sediments are interpreted to reflect complexation of Au (as Au(CN)2) by cyanide hosted within the gossan tailings pile. Precipitation recharges through the tailings pile with groundwater flow exiting to Gossan Creek. Degradation of cyanide along the flow path and within Gossan Creek allows colloidal Au to form via reduction of Au(I) by Fe2+, consistent with SEM observations of Au as <1 μm subrounded particles. In the surface waters, the majority of the Au must be in a form <0.45 μm in size to account for the similarity in Au contents between the <0.45 μm and unfiltered samples. The very elevated stream sediment Au values close to the headwaters of Gossan Creek near the tailings indicate that upon exiting to the surface environment, Au(CN)2 complexes are rapidly destroyed and Au removed from solution. However, the high Au<0.004 μm/Autotal in the headwaters and the extended Au dispersion in Gossan Creek waters and sediments suggest that Au(CN)2 complexes persist for the full length of Gossan Creek. The decrease in aqueous Au which is less than 0.004 μm indicates that Au is converted from a complexed form to a colloidal form with increasing distance downstream, consistent with dissolved NO3 contents which decrease from 5210 μg/L near the headwaters to 1350 μg/L at the lower end of the stream.  相似文献   

7.
Ground-water, alluvium, and bedrock samples were collected from drill holes near the Chimney Creek, Preble, Summer Camp, and Rabbit Creek disseminated gold deposits in northern Nevada to determine if Au and ore-related metals, such as As, Sb, and W, are being hydromorphically mobilized from buried mineralized rock, and, if they are, to determine whether the metal-enriched ground water is reacting with the alluvial material to produce a geochemical anomaly within the overburden.Results of chemical analyses of drill-hole water samples show the presence of hydromorphic dispersion anomalies of Au, As, Sb, and W in the local ground-water systems associated with these deposits. Background concentrations for Au in the ground water up-gradient from the buried deposits was less than 1 nanogram per liter (ng/L), near the deposits the Au values ranged from 1 to 140 ng/ L, and in drill holes penetrating mineralized rock, concentrations of Au in the ground water were as high as 4700 ng/L. Highest concentrations of Au were found in ground-water samples where the measured Eh and the distribution of arsenic species, arsenite [As(III)] and arsenate [As(V)], indicated oxidizing redox potentials. Similarly, As, Sb, and W concentrations in the ground water near the deposits were significantly enriched relative to concentrations in the ground water up-gradient from the deposits. In general, however, the highest concentrations of As, Sb, and W occurred in ground-water samples where the measured Eh and the distribution of arsenic species indicated reducing conditions. Arsenic concentrations ranged from 9 to 710 micrograms per liter (μg/L); Sb, from less than 0.1 to 250 μg/L; and W, from 1 to 260 μg/L.In addition, analysis of sequential dissolution and extraction solutions of drill cuttings of alluvium and bedrock indicate geochemical anomalies of gold and ore-related metals in the overburden at depths corresponding to the location of the present-day water table. This relationship suggests that water-rock reactions around these buried deposits are active and that this information could be very useful in exploration programs for concealed disseminated gold deposits.  相似文献   

8.
Economic concentrations of heavy-minerals are often associated with fluvial point-bars but prospecting models identifying the heaviest concentrations are poorly developed. Consequently, the dispersal and storage of a heavy-mineral bedload tracer–magnetite–across a rapidly evolving point-bar was studied using magnetic susceptibility as a surrogate measure of magnetite concentration. The bar-head was a preferential area for the development of a placer owing to a lag accumulation of magnetite over an armoured bed surface. In contrast, when viewed in plan, the bar-platform and bar-tail were regions of tracer dilution owing to downstream dispersion and mixing with shale in the vertical as the bar-top rapidly aggraded. However, in section, false-bottom placers developed along bedding planes were evident. The latter consisted of thin layers of concentrated magnetite resulting from the passage of bedload sheets, consisting of a mix of shale and magnetite, moving repeatedly from the bar-head to accrete over the bar-tail. Differential density-sorting of magnetite and shale occurred during transport and deposition, such that the heavier magnetite tended to accumulate as a visible concentrated bed-layer, later to be over-run by layers of shale-sediment in which magnetite was present diffusely. However, the placer thickness was greater than that visible because finer fractions of magnetite from each concentrated layer infiltrated the interstices of the top of the shale bed below. The placer thickness, the infiltration potential of the sediment bed and the actual rate of infiltration of the tracer were determined by fitting a mathematical function to measured variation in magnetic susceptibility with depth in the sediment body. Finally, a simple mathematical model, described in the literature as reproducing the plan-view of flow and topographic patterns in river bends, was found to reproduce patterns of depth, velocity, shear stress and competence in the point-bar environment which were in accordance with the interpretation of the field data. It was concluded that such a model when linked to entrainment functions for sediments of mixed density might be suitable for prospecting for economic heavy minerals in the point-bar environment.  相似文献   

9.
Fe isotope compositions of mineral separates and bulk samples from Xinqiao Cu–S–Fe–Au skarn type deposit were investigated. An overall variation in δ57Fe values from − 1.22‰ to + 0.73‰ has been observed, which shows some regularity. The δ57Fe values of endoskarn and the earliest formed Fe-mineral phase magnetite are ca.1.2‰ and ca. 0.3‰ lower, respectively, relative to the quartz–monzodiorite stock, indicating that fluid exsolved from the stock is enriched in light Fe isotopes. Moreover, spatial and temporal variations in δ57Fe values are observed, which suggest iron isotope fractionation during fluid evolution. Precipitation of Fe-bearing minerals results in the Fe isotope composition of residual fluids evolving with time. Precipitation of Fe (III) minerals incorporating heavy iron isotopes preferentially leaves the remaining fluid enriched in light isotopes, while precipitation of Fe (II) minerals preferentially taking-up light iron isotopes, and makes the Fe isotopic composition of the fluid progressively heavier. The regularity of Fe isotope variations occurred during fluid exsolution and evolution indicates that the dominant Fe source of Xinqiao deposit is magmatic. Overall, this study demonstrates that Fe isotope composition has great potential in unraveling ore-forming processes, as well as constraining the metal sources of ore deposits.  相似文献   

10.
We investigate the degassing of volatile heavy metals from natural basalt and dacite and synthetic rhyolite melts doped with Bi, Pb, Tl, Au, Re, Sb, Sn, Cd, Mo, As, Cu in Pt capsules over a range of temperatures (1200-1430 °C) exposed to air at 0.1 MPa. We also investigated the effects of ligands on degassing by adding known concentrations of Cl and S. During the experiments concentration gradients normal to the melt/gas interface arose for the trace metals Au, Tl, As, Cd, Re, Bi and Pb, as shown by measurements by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on the quenched glasses. In contrast, erratic concentration gradients occurred for Cu, Mo, Sn, Sb due to the development of compositional cords in the glass for those elements. The diffusivities for Au, Tl, As, Cd, Re, Bi and Pb (in decreasing order of volatility) followed an Arrhenius relationship with log D at 1260 °C varying from −12 to −17. The addition of Cl and S were shown to increase by two-to five-fold the volatilities of all metals, with S having a more profound effect. Diffusivities from the experiments were applied in a bubble growth model to examine the behavior of Tl and Pb in volcanic gases. The Tl/Pb ratio in gases shows much greater variation than can be explained by partitioning and magma composition alone, with diffusion serving to drastically enrich or deplete the Tl/Pb of gases to values significantly different from that of the melt.  相似文献   

11.
Heavy mineral concentrates (SG 3.3) from the Huai Hin Laep, a tributary of the Huai Kho Lo River in northern Thailand, contain strongly anomalous concentrations of gold. In contrast, the gold content of the associated < 149 μm and <53 μm fractions of the sediment is generally less than the 5 ppb detection limit obtained by a conventional fire assay-atomic absorption spectrometry method. To test for the presence of a gold anomaly at concentrations < 5 ppb, we have used an aqua-regia digestion followed by an Amberlite XAD-8 column preconcentration technique that, when used with a spectrometer that enables full display of the analytical spectrum to optimize baseline analysis, gives a detection limit of 0.1 ppb Au.Gold content of the < 53 μm sediment fraction ranges from 1.0 to 3.1 ppb compared to concentrations that typically range from 1000 to more than 100,000 ppb in the heavy mineral concentrates. However, despite gold concentrations in the sediment being several orders of magnitude lower than those in the heavy mineral concentrates, the downstream dispersion patterns are similar, with gold concentrations increasing at high energy sites and downstream away from the assumed source. These results identify the presence of a greatly diluted gold anomaly in the < 53 μm fraction of the sediments and suggest that transport and deposition of this fine grained gold is controlled by the same sedimentological factors that control the behavior of gold in the sand-size range, between 53 μm and 425 μm. Most important from an exploration standpoint, is that by using a sufficiently sensitive analytical method, meaningful gold dispersion patterns can be recognized at concentrations below 5 ppb.  相似文献   

12.
Gold anomalies in drainage sediments are often erratic, reflecting both the nugget effect and hydraulic effects whereby gold is concentrated at favorable sites along a stream. This study investigates these factors in a stream in northeastern Thailand.Bulk sediment samples, consisting of approximately 40 kg of −12 mm material, were collected from bar and pavement sites along an 8 km study reach. Samples were wet sieved into eight size fractions. The five fractions between 425 μm and 53 μm were then processed to obtain heavy mineral concentrates (SG > 3.3). Gold content of all size and density fractions finer than 425 μm was determined by fire assay-atomic absorption.Concentrations of Au in the heavy mineral concentrates typically range from 10,000 to 50,000 ppb (maximum 198,000 ppb), whereas the corresponding light mineral fractions and the −53 μm fraction generally contain <5 ppb gold. Within the heavy mineral fractions concentrations of Au generally increase downstream away from their supposed source and are higher at pavement than at point bar sites. Variations in abundance of gold between point bar sites can be related to stream characteristics (such as width, velocity and bed roughness) that are indicative of changing energy conditions and of the ability of the stream to winnow light minerals from its bed.The estimated median number of gold particles in the heavy mineral concentrates increase from less than one in the 212–425 μm fraction to about three in the 53–106 μm size range. However, because of dilution by the light mineral and −53 μm fractions, the probability of a 30 g analytical sub-sample containing a particle of gold is so low that in thirteen out of sixteen −149 μm sediment samples no gold was detected. Insofar as this results from dilution by large quantities of −53 μm sediment, failure of conventional sieved sediment samples to reliably detect the anomaly is probably a consequence of increased erosion caused by deforestation and land usage.Heavy mineral concentrates from pavement and other high energy sites are more reliable than conventional sediment samples for detecting gold anomalies of the Huai Hin Laep type. A low sample density is adequate but, because anomaly contrast may increase downstream, careful interpretation is required.  相似文献   

13.
The sediments of the upper Swartkops River are almost exclusively gravels and boulder beds derived from the Cretaceous Uitenhage Group and the Paleozoic Cape Supergroup rocks. Many of the cobbles and boulders are second-cycle clasts, the great majority of which are quartzitic in composition. Pebble size and shape were examined and fabric analysis was performed on samples from 22 sites in the study area. Pebble imbrication planes dip consistently upstream at angles of 20? to 50? and pebble long axes generally are aligned normal to the flow direction. Clasts in the braid-plain deposits range from a few millimeters to tens of centimeters (large boulders over a meter in diameter are not uncommon). Pebble roundness ranges from 0.2 to 0.9 (averaging 0.43) and sphericity values range from 0.3 to 0.9 (averaging 0.59). The gravel clasts are angular to well-rounded, but are predominantly subrounded. Zingg diagram plots show a majority of discoidal pebbles, but there is a diversity of shapes reflecting the complex source area from which some resedimented clasts originated.

Channel and bar morphology is complex, with gravel bars often merging laterally and longitudinally with main and secondary channels. Both channels and bars are terraced stepwise downstream and across the braid plain. Bar tops are armored by both small and large clasts, whereas channels may be lined with cobbles or boulders, but often exhibit small pebble lags. Algal mats occur as fresh curtains in all standing pools of water and dried crusty deposits on pebbly substrates in inactive channels.

Imbrication studies demonstrate conclusively that pebble imbrication is the most meaningful indicator of flow direction in a gravel deposit and is far more reliable than rare cross-bedding encountered in bar-top sands, where bedforms often migrate laterally rather than downstream. The Swartkops braid-plain gravels resemble the ancient deposits of the Ventersdorp Contact Reef, both deposits being characterized by boulder-rich gravels, poor clast sorting, resedimented pebbles from a proximal fault-bounded source, and algal mats. Although heavy minerals are lacking in the Swartkops, trapping of fines by algal filaments appears to occur during low-flow conditions.  相似文献   

14.
This study investigates Sb speciation in sediments along the drainage of the Upper Peter adit at the Bralorne Au mine in southern British Columbia, Canada, and compares the behavior of Sb with that of As. The Upper Peter mineralization consists of native Au in quartz-carbonate veins with 1 wt.% sulfides dominated by pyrite and arsenopyrite although stibnite, the primary Sb-bearing sulfide mineral, can be locally significant. Dissolved Sb concentrations can reach up to 349 μg L−1 in the mine pool. Sediments were collected for detailed geochemical and mineralogical characterization at locations along the 350-m flow path, which includes a 100-m shallow channel within the adit, a sediment settling pond about 45 m beyond the adit portal and an open wetland another 120 m farther downstream. From the mine pool to the wetland outlet, dissolved Sb in the drainage drops from 199 μg L−1 to below the detection limit due to the combined effect of dilution and removal from solution. Speciation analyses using X-ray absorption near-edge structure (XANES) spectroscopy indicate that Sb(III)–S accounts for around 70% of total Sb in the sediments in the main pool at the far end of the adit. At a short distance (24 m) downstream of the main adit pool, however, Sb(III)–O and Sb(V)–O species represent ?50% of total Sb in the bulk sediments, indicating significant oxidation of the primary sulfides inside the adit. Although Sb appears largely oxidized in the bulk samples collected near the portal, Sb(III)–S species are nevertheless present in the <53-μm fraction, suggesting a higher oxidation rate for stibnite in the coarser grains, possibly due to galvanic interaction with pyrite. Secondary Sb species released from the sulfide oxidation are most likely sorbed/co-precipitated with Fe-, Mn-, and Al-oxyhydroxides along the flow channel in the adit and in the sediment settling pond, with the Fe phase being the dominant sink for Sb.  相似文献   

15.
《Resource Geology》2018,68(4):395-424
Petrochemical characteristics of Permo‐Triassic granitoids from five regions (i) Mung Loei, (ii) Phu Thap Fah – Phu Thep, (iii) Phetchabun, (iv) Nakon Sawan – Lobburi, and (v) Rayong – Chantaburi along the Loei Fold Belt (LFB), northeastern Thailand were studied. The LFB is a north–south trending 800 km fold belt that hosts several gold and base‐metal deposits. The granitoids consist of monzogranite, granodiorite, monzodiorite, tonalite, quartz‐syenite, and quartz‐rich granitoids. These are composed of quartz, plagioclase, and K‐feldspar with mafic minerals such as hornblende and biotite. Accessory minerals, such as titanite, zircon, magnetite, ilmenite, apatite, garnet, rutile, and allanite are also present. Magnetic susceptibilities in the SI unit of granitoids vary from 6.5 × 10−3 to 15.2 × 10−3 in Muang Loei, from 0.1 × 10−3 to 29.4 × 10−3 in Phu Thap Fah – Phu Thep, from 2.7 × 10−3 to 34.6 × 10−3 in Petchabun, from 2.4 × 10−3 to 14.1 × 10−3 in Nakon Sawan – Lobburi, and from 0.03 × 10−3 to 2.8 × 10−3 in Rayong – Chantaburi. Concentration of major elements suggests that these intermediate to felsic plutonic rocks have calc‐alkaline affinities. Concentration of REE of the granitoids normalized to chondrite displays moderately elevated light REE (LREE) and relatively flat heavy (HREE) patterns, with distinct depletion of Eu. Rb versus Y/Nb and Nb/Y tectonic discrimination diagrams illustrate that the granitoids from Muang Loei, Phu Thap Fah – Phu Thep, Phetchabun, Nakon Sawan – Lobburi, and Rayong – Chantaburi formed in continental volcanic‐arc setting. New age data from radiometric K‐Ar dating on K‐feldspar from granodiorite in Loei and Nakhon Sawan areas yielded 171 ± 3 and 221 ± 5 Ma, respectively. K‐Ar dating on hornblende separated from diorite in Lobburi yielded 219 ± 8 Ma. These ages suggest that magmatism of Muang Loei occurred in the Middle Jurassic, and Nakon Sawan – Lobburi occurred in Late Triassic. Both Nb versus Y and Rb versus (Y + Nb) diagrams and age data indicate that Nakon Sawan – Lobburi granitoids intruded in Late Triassic at Nong Bua, Nakon Sawan province and Khao Wong Phra Jun, Lobburi province in volcanic arc setting. Muang Loei granitoids at the Loei province formed later in Middle Jurassic also in volcanic arc setting. The negative δ34SCDT values of ore minerals from the skarn deposit suggest that the I‐type magma has been influenced by light biogenic sulfur from local country rocks. The Au‐Cu‐Fe‐Sb deposits correlate with the magnetite‐series granitoids in Phetchabun, Nakon Sawan – Lobburi and Rayong – Chantaburi areas. Metallogeny of the Au and Cu‐Au skarn deposits and the epithermal Au deposit is related to adakitic rocks of magnetite‐series granitoids from Phetchabun and Nakon Sawan areas. All mineralizations along the LFB are generated in the volcanic arc related to the subduction of Paleo‐Tethys. The total Al (TAl) content of biotite of granitoids increases in the following order: granitoids associated with Fe and Au deposit < with Cu deposit < barren granitoids. XMg of biotite in granitoids in Muang Loei indicates the crystallization of biotite in magnetite‐series granitoids under high oxygen fugacity conditions. On the other hand, low XMg (<0.4) of biotite in magnetite‐series granitoids in Phu Thap Fah – Phu Thep and Rayong – Chantaburi indicates a reduced environment and low oxygen fugacity, associated with Au skarn deposit (Phu Thap Fah) and Sb‐Au deposit (Bo Thong), respectively. The magnetite‐series granitoids at Phu Thap Fah having low magnetic susceptibilities and low XMg of biotite were formed by reduction of initially oxidizing magnetite‐series granitic magma by interaction with reducing sedimentary country rocks as suggested by negative δ34SCDT values.  相似文献   

16.
We have performed experiments to evaluate Au solubility in natural, water-saturated basaltic melts as a function of oxygen fugacity. Experiments were carried out at 1000 °C and 200 MPa, and oxygen fugacity was controlled at the fayalite-magnetite-quartz (FMQ) oxygen fugacity buffer and FMQ + 4. All experiments were saturated with a metal-chloride aqueous solution loaded initially as a 10 wt% NaCl eq. fluid. The stable phase assemblage at FMQ consists of basalt melt, olivine, clinopyroxene, a single-phase aqueous fluid, and metallic Au. The stable phase assemblage at FMQ + 4 consists of basalt melt, clinopyroxene, magnetite-spinel solid solution, a single-phase aqueous fluid, and metallic Au. Silicate glasses (i.e., quenched melt) and their contained crystalline material were analyzed by using both electron probe microanalysis (EPMA) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Measured Au concentrations in the quenched melt range from 4.8 μg g−1 to 0.64 μg g−1 at FMQ + 4, and 0.54 μg g−1 to 0.1 μg g−1 at FMQ. The measured solubility of Au in olivine and clinopyroxene was consistently below the LA-ICP-MS limit of detection (i.e., 0.1 μg g−1). These melt solubility data place important limitations on the dissolved Au content of water-saturated, Cl- and S-bearing basaltic liquids at geologically relevant fO2 values. The new data are compared to published, experimentally-determined values for Au solubility in dry and hydrous silicate liquids spanning the compositional range from basalt to rhyolite, and the effects of melt composition, oxygen fugacity, pressure and temperature are discussed.  相似文献   

17.
Foliage from Douglas-fir (Pseudotsuga menziesii) tops was collected from 94 sites around the poorly exposed QR Au deposit in central British Columbia. Locally high concentrations of gold in ashed stems suggest a northwestward (down-ice) dispersion train of Au extending uphill for at least 500 m from the deposit. In addition, a down-slope, hydromorphic dispersion train is evident. All trees sampled are extremely rich in As, but the patterns of As distribution are less clearly related to the mineralization than those of Au enrichment. Summary statistics of analytical data for 35 elements are provided to serve as baseline information for any future studies.The sampling method, which is described in detail, is simple and cost-effective. In one hour the foliage of tree tops from about 50 sites, spaced at intervals of 200 m or more, can be collected by a three-person helicopter crew. The technique is particularly appropriate for rapidly screening rugged or heavily forested terrain, regardless of snow-cover, in order to establish priorities for ground follow-up exploration targets.  相似文献   

18.
The results described relate to an investigation into the nature of Au dispersion in glacial till, undertaken to identify optimum search techniques for use in exploration for Au mineralization.The diversity of Au mineralization, in terms of the host rock lithologies, mineralogy and grain size of the Au, would be expected to give rise to differences in the secondary response in the associated overburden. Common exploration procedures involve the analyses of the heavy-mineral fraction or a particular size fraction of the tills. However, having regard to the expected variable response of Au in associated glacial till, attributed to variations in primary mineralization, effective exploration requires that the methodology employed is capable of locating all types of Au mineralization.Bulk till samples were collected from various sites associated with the Owl Creek deposit near Timmins and the Hemlo deposits. Grain size analyses were carried out on the till samples and on the heavy-mineral concentrates. The concentration of the Au in the various fractions was determined by Instrumental Neutron Activation Analysis.Preliminary results allow a number of provisional conclusions to be drawn:
1. (1) Grain size analysis of the −2 mm fraction of tills indicates that the silt and clay fraction constitutes 20–50%, whereas, in contrast, the equivalent heavy-mineral concentrates are dominantly composed of the coarser −500 + 63 μm material.
2. (2) The amount of Au present in the heavy-mineral concentrates of tills represents only a minor proportion of the total Au in the original till samples. In addition, the proportion of the total Au recovered in the heavy-mineral concentrate varies from 4 to 15%. Both factors indicate that caution is necessary in interpreting the significance of heavy-mineral Au data.
3. (3) Examination of the size distribution of Au within the heavy-mineral concentrate indicates that the majority of the Au is contained in the −125 μm fraction.
4. (4) The concentration factor (the original sample weight divided by the heavy-mineral concentrate weight) varies up to 7-fold between samples due presumably to the differing proportions of heavy minerals. Hence, in Au deposits of equivalent economic significance this gives rise to varying Au concentrations in heavy-mineral concentrates according to the quantity of heavy minerals present. Significant interpretation can only be achieved by re-expressing the Au contents of heavy-mineral concentrates in terms of the absolute amount of Au in heavy-mineral concentrates.
5. (5) A comparison of the heavy-mineral concentrates produced by different laboratories indicates marked differences in the weight of the heavy-mineral concentrate, the Au concentration of the heavy-mineral concentrate, the total weight of Au in the heavy-mineral concentrate and the size distribution of the Au in the heavy-mineral concentrate.
6. (6) Analysis of the −63 μm silt and clay size fraction indicates anomalous Au contents within this fraction of the tills collected from Owl Creek and Hemlo, extending over 500 m down-ice from mineralization at Hemlo.
7. (7) Analysis of the −63 μm silt and clay size fraction is suitable for the detection of fine-grained Au deposits that are not amenable to detection on the basis of heavy-mineral concentrate analyses.
8. (8) The analysis of the silt and clay fraction reduces the sample representativity problems associated with analyzing coarser fractions.
9. (9) A comparison of the Au distribution in heavy-mineral concentrates and the −63 μm fraction of till down-ice from the Owl Creek deposit indicates broadly similar dispersion patterns.
In conclusion, although the results are based on relatively few samples, their consistency permits some general conclusions to be drawn. The silt and the heavy-mineral concentrate analyses provide different information and in view of the diversity of exploration targets and surface environments exploration reliability can be increased by analyzing both the −63 μm silt and clay fraction and the heavy-mineral concentrate.  相似文献   

19.
The Nickel Plate deposit, in which gold occurs as <25 μm blebs associated with arsenopyrite in garnet-pyroxene skarns, is in the subalpine zone near the southern limit of the Thompson Plateau. During the last glaciation the Cordilleran ice sheet moved south-southwest across the deposit and deposited a stony basal till. A dispersion train with anomalous concentrations of gold in tills and soils now extends 2 km down ice from the deposit.Gold contents of samples of humus (LFH horizon) and the −212 μm fraction of mineral soils (A, B and C horizons) was determined by instrumental neutron activation and fire assay-atomic absorption, respectively. Selected samples were examined in detail to determine distribution of gold between different size and density fractions.Despite erratic variability, Au contents of the −212 μm fraction generally decrease from 200–400 ppb close to the mine site to <50 ppb at distal sites. At most sites there is also a twofold increase of gold values down the soil profile. Within samples concentrations of Au in the −420 + 212 μm, −212 + 106 μm, −106 + 53 μm and −53 μm fractions are usually roughly constant. However, because of its abundance, the −53 μm fraction contains more than 70% of the gold. Amenability of gold in this fraction to cyanidation suggests that it is largely free gold. For size fractions > 53 μm the contribution of the heavy mineral (SG > 3.3) fraction to total gold content increases with decreasing grain size.Distribution of gold between size and density fractions is consistent with its release from the bedrock or pre-glacial regolith by glacial abrasion. The bulk of the gold was incorporated into the fine fractions of the till at or close to the source. However, differences between down ice dilution ratios for gold in different heavy mineral size fractions suggest that comminution of host minerals continued to transfer gold to the finer size fractions during glacial transport.For exploration purposes, B and C horizon samples provide the best anomaly contrast. Estimates of the abundance of gold particles in different size fractions indicate that the nugget effect, which causes erratic gold values in the −212 μm fraction, can be avoided by analysis of 30 g of −53 μm material.  相似文献   

20.
A multidisciplinary geochemical study of the distribution, dispersion, and glacial dispersal, of the pge and associated elements has been undertaken within soil, till, humus, vegetation and water at Ferguson Lake, Northwest Territories, Rottenstone Lake, Saskatchewan and Sudbury, Ontario.As the pge generally are present at low levels in surficial materials, development work on analytical techniques was an essential part of this study.At Ferguson Lake, the spatial distribution patterns of Au, Pt and Pd in till clearly indicate the exposed gossan zones, as expected, but also indicate a possible extension of the zone beneath a peat bog- and till-covered area. Down-ice dispersal of Au, Pt and Pd is limited to one to two hundred metres, in the <63 μm component of the till samples collected from frost boils. In vegetation the pge enrichment extends for several hundred metres down-ice and is best defined by Pd in birch twigs. Detectable, although extremely low, levels of Pt (2.8 ppt) and Pd (2.0 ppt) are present in waters in the vicinity of the gossanous zones at Ferguson Lake.At Rottenstone Lake, moderate to high concentrations of pge, Au, and base metals were found in ashed twigs of black spruce and the hmc of the tills for a distance of less than two hundred metres down-ice of the mineralization. Low Pd and Au concentrations were present in ashed spruce twigs about one kilometre down-ice of the mineralization, where only the hmc of the tills yielded anomalous concentrations of Pt and Au. There appears to be only limited dispersal of the pge and Au. These data indicate that only the hmc and the spruce twigs are of value in detecting Pt and Au in this area. Palladium presents a different picture, being detectable in only some of the soils, absent in the tills and hmc, yet appreciably enriched in the twig ash. The inference is that Pd is moving in solution and is being somewhat adsorbed in the soil but is much more significantly being taken up by the plant roots.At the Sudbury areas the pge, hosted in the Ni-Cu mineralization, are best reflected by elevated levels in the ashed humus of almost all elements examined. There is only minimal response in pge and Au to the mineralization from any of the fractions of the soil; whereas the <2 μm fraction of the B-horizon soil reflects the mineralization by elevated levels of As, Sb, Se, Cr, Co, Ni, Cu, Pb and Zn. Only hmc from the tills show elevated pge, Au and variable enhancement in As, Sb, Se and the base metals. The < 2 μm portion of the tills tends to be highest in As, Se, Cr and the base metals.This ongoing study shows that surficial materials and vegetation are effective in identifying areas of concealed pge mineralization. Various pathfinder elements, primarily Cu and Ni, but perhaps also As, Se, Sb and the other base metals, in the < 2 μm B-horizon soils and tills, may be informative in a preliminary evaluation of the pge potential of an area, prior to undertaking the more expensive precious-metal analyses. Humus and vegetation both appear extremely effective, and most cost efficient, and heavy-mineral concentrates (hmc) appear effective, for identifying areas with pge potential, whereas hmc from tills appear most effective for zeroing in on the site of the pge mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号