首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Storø greenstone belt, southern West Greenland, consists of thrust-imbricated slices of Mesoarchean (>3060 Ma) and Neoarchean (ca. 2800 Ma) mafic to ultramafic volcanic rocks, volcaniclastic sediments, and gabbro–anorthosite associations. The belt underwent polyphase metamorphism at upper amphibolite facies conditions between 2650 and 2600 Ma. The contacts between the Mesoarchean and Neoarchean volcanic rocks, and surrounding Eoarchean to Neoarchean tonalite–trondhjemite–granodiorite (TTG) gneisses are tectonic and typically bounded by high-grade mylonites. Regardless of age, the volcanic rocks are dominated by mafic amphibolites with a tholeiitic basalt composition, near-flat to slightly enriched light rare earth element (LREE) patterns (La/Smcn = 0.91–1.48), relatively flat to slightly depleted heavy-REE (HREE) (Gd/Ybcn = 1.0–1.28), and pronounced negative Nb–Ta anomalies (Nb/Nb* = 0.34–0.73) on chondrite- and primitive mantle-normalized diagrams. These geochemical characteristics are consistent with subduction zone geochemical signatures and partial melting of a shallow (<80 km) mantle source free of residual garnet. There is no geochemical evidence for contamination by older continental crust. The overall field and geochemical characteristics suggest that the thrust-imbricated basaltic rocks were erupted in intra-oceanic subduction zone settings. Sedimentary rocks are represented by garnet–biotite and quartzitic gneisses. They are characterized by relatively high contents of transition metal (Ni = 10–154 ppm; Cr = 7–166 ppm) and enriched LREE patterns (La/Smcn = 1.38–3.79). These geochemical characteristics suggest that the sedimentary rocks were derived from erosion of felsic to mafic igneous source rocks. Collectively, the structural and lithogeochemical characteristics of the Storø greenstone belt are consistent with collision (accretion) of unrelated Archean volcanic rocks formed in supra-subduction zone geodynamic settings. Accordingly, the Mesoarchean and Neoarchean rock record of the Storø greenstone belt may well be explained in terms of modern-style plate tectonic processes.  相似文献   

2.
South Greenland has been the site of historic mining of cryolite, copper, graphite and gold, hosts mineral deposits with gold, uranium, zinc, niobium, tantalum, zirconium, hafnium, REE, iron, titanium, vanadium, fluorite and graphite, and has additional potential for lithium, beryllium, phosphorus, gallium and thorium. Data from stream sediment geochemical surveys document that South Greenland is enriched in a range of these elements relative to the rest of Greenland and to estimates of the upper crust composition. Distribution patterns for individual elements within south Greenland exhibit enriched regions that are spatially related to lithological units, crustal structure and known mineralisation.The Northern Domain of South Greenland includes the southernmost part of the orthogneiss-dominated North Atlantic craton. Orogenic gold mineralisation is hosted by quartz veins and hydrothermally altered rocks associated with shear zones intersecting the Mesoarchaean Tartoq Group of mafic metavolcanic rocks. Geochemical exploration indicates that additional potential for gold mineralisation exists within Palaeoproterozoic supracrustal rocks overlying the Archaean basement.Rocks formed during the Palaeoproterozoic Ketilidian orogeny occupy a major part of South Greenland and has been divided into two domains. The Central Domain is underlain by the Julianehåb igneous complex forming a 100 km wide ENE–WSW zone centrally across South Greenland. Intrusive and extrusive, mostly felsic magmatic rocks were emplaced in two main stages (1850–1830 and 1800–1780 Ma) in a continental arc setting. Positive anomalies in aeromagnetic data indicate that mafic plutons are common in the late igneous complex. Intra-arc mafic metavolcanic rocks contain syngenetic stratabound copper sulphide and epigenetic shear zone-hosted copper–silver–gold mineralisation at Kobberminebugt and Kangerluluk, whereas metasedimentary and metapyroclastic rocks contain stratabound uraninite mineralisation. Orthomagmatic iron–titanium–vanadium mineralisation is hosted by a gabbro. A potential for porphyry-type mineralisation related to the late intrusive stages of the Julianehåb igneous complex is suggested by showings with copper, molybdenum and gold together with stream sediment anomalies for these elements. Vein-type uranium mineralisation occurs in fault zones in the Julianehåb igneous complex related to Mesoproterozoic rifting.The Southern Domain contains an assemblage of Palaeoproterozoic metasedimentary and metavolcanic rocks that underwent moderate to strong deformation, peak HT–LP metamorphism and partial melting with subsequent retrograde exhumation at 1790–1765 Ma. The supracrustal rocks contain syngenetic Au, As, Sb, U, and Zn mineralisation in volcanic or graphite- and sulphide-rich sedimentary environments; graphite was mined historically at two sites. Many stream sediment gold anomalies are located in a NE-trending belt along the boundary between the early Julianehåb complex and the supracrustal rocks to the south. They reflect a number of auriferous quartz vein occurrences, including the Nalunaq gold deposit, hosted in a system of shear zones and probably generated as orogenic gold during Ketilidian accretion. The 1755–1730 Ma, A-type Ilua plutonic suite is the latest magmatic event in the Ketilidian orogen.The 1300–1140 Ma Gardar period involved continental rifting, sedimentation and alkaline magmatism. Numerous dykes and 10 ring-shaped intrusion complexes were formed across South Greenland. An orthomagmatic iron–titanium–vanadium deposit is hosted by troctolitic gabbro. Residual magmas and fluids resulting from extreme magmatic differentiation, possibly combined with assimilation of older crust, created mineral deposits including cryolite that was mined at Ivigtut, large low-grade deposits of uranium–rare earth elements–zinc at Kvanefjeld and tantalum–niobium–rare earth element–zirconium at Kringlerne, in the Ilímaussaq complex, as well as tantalum–niobium–rare earth elements at Motzfeldt Sø in the Igaliko complex.The South Greenland crustal evolution records effects of mantle processes, such as lithospheric extension, subduction and underplating, which resulted in recurrent magma emplacement in tectonically active environments. As such, the geology of South Greenland reflects events and circumstances that are favourable to the generation and preservation of hydrothermal ore-forming fluid systems during the Ketilidian orogeny as well as to the development of extreme rock compositions within the Gardar alkaline igneous province.  相似文献   

3.
In this paper we present new zircon U–Pb ages, Hf isotope data, and whole-rock major and trace element data for Early Mesozoic intrusive rocks in the Erguna Massif of NE China, and we use these data to constrain the history of southward subduction of the Mongol–Okhotsk oceanic plate, and its influence on NE China as a whole. The zircon U–Pb dating indicates that Early Mesozoic magmatic activity in the Erguna Massif can be subdivided into four stages at ~ 246 Ma, ~ 225 Ma, ~ 205 Ma, and ~ 185 Ma. The ~ 246 Ma intrusive rocks comprise a suite of high-K calc-alkaline diorites, quartz diorites, granodiorites, monzogranites, and syenogranites, with I-type affinities. The ~ 225 Ma intrusive rocks consist of gabbro–diorites and granitoids, and they constitute a bimodal igneous association. The ~ 205 Ma intrusive rocks are dominated by calc-alkaline I-type granitoids that are accompanied by subordinate intermediate–mafic rocks. The ~ 185 Ma intrusive rocks are dominated by I-type granitoids, accompanied by minor amounts of A-types. These Early Mesozoic granitoids mainly originated by partial melting of a depleted and heterogeneous lower crust, whereas the coeval mafic rocks were probably derived from partial melting of a depleted mantle modified by subduction-related fluids. The rock associations and their geochemical features indicate that the ~ 246 Ma, ~ 205 Ma, and ~ 185 Ma intrusive rocks formed in an active continental margin setting related to the southward subduction of the Mongol–Okhotsk oceanic plate. The ~ 225 Ma bimodal igneous rock association formed within an extensional environment in a pause during the subduction process of the Mongol–Okhotsk oceanic plate. Every magmatic stage has its own corresponding set of porphyry deposits in the southeast of the Mongol–Okhotsk suture belt. Taking all this into account, we conclude the following: (1) during the Early Mesozoic, the Mongol–Okhotsk oceanic plate was subducted towards the south beneath the Erguna Massif, but with a pause in subduction at ~ 225 Ma; and (2) the southward subduction of the Mongol–Okhotsk oceanic plate not only caused the intense magmatic activity, but was also favorable to the formation of porphyry deposits.  相似文献   

4.
The Jiangnan orogenic belt (JOB) has been interpreted as a suture zone between the Yangtze craton and Cathaysian terranes in South China. The Neoproterozoic mafic–ultramafic rocks are extensively exposed in the western JOB, providing an ideal opportunity to study the Neoproterozoic assembly and tectonic evolution of South China. We present integrated field and geochemical studies including LA-ICP-MS zircon U–Pb dating, and whole-rock major and trace element and Sm–Nd isotope analyses of the Neoproterozoic mafic–ultramafic rocks exposed in the northern Guangxi Province, South China. Geochronological results show that the magmatic events took place in two distinct periods: the early Neoproterozoic (861–834 Ma) and the late Neoproterozoic (770–750 Ma). Early Neoproterozoic ultramafic rocks of the Sibao Group have positive εNd(t) values (+ 2.7 to + 6.6) whereas mafic rocks exhibit negative εNd(t) values (− 5.8 to − 0.9). The basaltic rocks show TiO2 contents of 0.62–0.69 wt.% and Mg-number of 59–65, and also display an enrichment of light rare earth elements (LREEs) and pronounced negative Nb, Ta and Ti anomalies on chondrite- and primitive mantle-normalized diagrams, consistent with subduction-related geochemical signatures. Late Neoproterozoic rocks of the Danzhou Group show εNd(t) values (− 1.23 to + 3.19) for both ultramafic and mafic rocks. The basaltic rocks have TiO2 contents of 1.01–1.33 wt.% and Mg-number of 57–60, and have a mixture of MORB- and arc-like geochemical affinities, inferred to have formed in an extensional arc environment. Geochemical signatures suggest that all rock types in this study were derived from subarc mantle wedge sources and underwent various degrees of crustal contamination. Thus, we suggest that subduction may have continued to ca. 750 Ma in the western JOB, implying that the amalgamation event between the Yangtze craton and Cathaysian terranes was later than 750 Ma.  相似文献   

5.
《Gondwana Research》2015,28(4):1474-1486
Mafic rocks similar to those of the Gangdese belt have been poorly reported in the Nabang area (SW Yunnan Province in SW China) of the Eastern Himalayan Syntaxis. This led to a widely-accepted assumption that Early Eocene mafic rocks are absent in Nabang. This paper reports new zircon U–Pb, Lu–Hf isotopic, whole-rock elemental and Sr–Nd isotopic data for the recently identified Tongbiguan and Jinzhuzhai metagabbroic plutons. Our data show that the two mafic plutons crystallized at 53.2 ± 0.4 Ma and 53.6 ± 0.7 Ma, respectively, with zircon in-situ εHf(t) values ranging from − 3.1 to + 4.9. Our data confirm the presence of Early Eocene mafic rocks in Nabang, contemporaneous with the major magmatic flare-ups of ~ 52 Ma in South Tibet. The rocks show high-K calc-alkaline basalt and basaltic andesite composition. They are characterized by subparallel spiky patterns with enrichment in LILEs, depletion in HFSEs and P–Ti negative anomalies. They show (Nb/La)n = 0.21–0.63, Ce/Pb = 2.99–9.91 and Nb/U = 5.2–14.1, along with high 87Sr/86Sr(t) ratios of 0.7061–0.7077 and εNd(t) values of − 3.4 to − 5.6. Such geochemical signatures are similar to those of the synchronous Dangxung gabbroic and Yangbajing ultrapotassic rocks. Their least-contaminated samples can petrogenetically be attributed to input of slab-derived fluid into the lithospheric mantle. In conjunction with other available data, the mafic suite can be geochronologically and geochemically correlated to those in South Lhasa and are probably the equivalents of the Gangdese southeastward extension. Their formation might tectonically be related to slab rollback in response to the decreasing convergence rate. The termination of the Neotethyan subduction in SW Yunnan might be later than ~ 52 Ma, identical to that in South Tibet.  相似文献   

6.
《Precambrian Research》2006,144(1-2):126-139
In the western Churchill Province, Canadian Shield, Neoarchean supracrustal and plutonic rocks, intruded by Paleoproterozoic mafic dykes and granitic rocks, comprise the MacQuoid supracrustal belt and the structurally overlying Cross Bay plutonic complex. They form part of the northwestern Hearne subdomain that occupies an intermediate position between the continental Rae domain to the north and west, and the oceanic central Hearne subdomain to the south and east. New geological mapping and supporting geoscience are compatible with the presence of 2550–2500 Ma, southeast-directed, mid-crustal, thick-skinned thrusting that juxtaposed the plutonic complex over the supracrustal belt. The structural contact between the MacQuoid supracrustal belt and the Cross Bay plutonic complex potentially represents a fundamental boundary between isotopically distinct crustal blocks.The ∼2190 Ma MacQuoid mafic dyke swarm cuts across Neoarchean deformation fabrics, but records ∼1.9 Ga, deep-crustal, regional metamorphism that affected both the supracrustal belt and the plutonic complex. Other Paleoproterozoic deformation events that occurred at ∼1850–1810 Ma are of local extent and appear to be relatively minor manifestations of more important events elsewhere, related to the Trans-Hudson orogen.  相似文献   

7.
Neoproterozoic magmatic rocks in the South Qinling Belt of China provide important clues for understanding the mechanism and timing of the amalgamation and breakup of the Rodinia supercontinent. Here we report new geochemical and high-precision LA-ICP-MS zircon U–Pb–Hf isotopic analyses on magmatic suites from the Liuba and Zhashui areas in the South Qinling Belt. Our data show that the crystallization ages of the granitic intrusions from Tiefodian and Tangjiagou in the Liuba area are 863 ± 22 Ma and 794 ± 11 Ma, respectively, whereas those of the dioritic and gabbroic intrusions at Chishuigou in the Zhashui area are 925 ± 28 Ma and 832.6 ± 4.0 Ma, respectively. The diorites at Chishuigou display arc-related geochemical affinity, characterized by strong depletion in Nb, Ta, P and Ti, and enrichment in large-ion lithophile elements (i.e., Rb, Ba, Th and U), indicating a subduction-related arc setting at ca. 925 Ma. The Tiefodian granitic rocks have high SiO2 (68.46–70.98 wt.%), Na2O (3.87–4.51 wt.%), and low K2O (1.34–2.61 wt.%) contents with TTG affinity. However, their Cr, and Ni contents and Cr/Ni, Nb/Ta ratios are similar to those of continental crust, and together with high negative εHf(t) values (− 4.87 to − 14.84), suggesting a continental margin arc at ca. 863 Ma. The gabbros at Chishuigou have high TiO2 content (2.74–3.14 wt.%), Zr/Y (3.93–4.24), Ta/Yb (0.19–0.25) ratios and low Zr/Nb ratios (11.37–13.17), similar to the features of within-plate basalts, indicating an intra-continental rift setting at ca. 833 Ma. The granitoids at Tangjiagou exhibit enrichment of LREE, K and Pb, and depletion of Nb, Ta, P and Ti, suggesting an extensional tectonic environment at ca. 794 Ma.The results indicate that Neoproterozoic magmatic rocks in the South Qinling Belt formed before ca. 833 Ma and might represent the amalgamation of the Rodinia supercontinent in an arc-related subduction environment, whereas the magmatic events with the peak ages at ~ 740 Ma during ca. 833–680 Ma represent the breakup of Rodinia. Integrating our new data with those from previous works, we propose a new tectonic model for the evolutionary history of the South Qinling Belt in the Neoproterozoic, including four key stages: 1) an ocean that separated the South Qinling Belt and the Yangtze Block in the Early Neoproterozoic (ca.1000–956 Ma); 2) bidirectional subduction of the oceanic lithosphere during ca. 956–870 Ma; 3) subduction and collision between the South Qinling Belt and the Yangtze Block during ca. 870–833 Ma, thus suggesting that the South Qinling Belt was as a part of the Yangtze Block from this period; and 4) intra-continental rifting during ca. 833–680 Ma, although the blocks were not entirely rifted apart.  相似文献   

8.
We discuss here the mineralogical and geochemical characteristics of mafic intrusive rocks from the Nagaland-Manipur Ophiolites (NMO) of Indo-Myanmar Orogenic Belt, northeast India to define their mantle source and tectonic environment. Mafic intrusive sequence in the NMO is characterized by hornblende-free (type-I) and hornblende-bearing (type-II) rocks. The type-I is further categorized as mafic dykes (type-Ia) of tholeiitic N-MORB composition, having TiO2 (0.72–1.93 wt.%) and flat REE patterns (LaN/YbN = 0.76–1.51) and as massive gabbros (type-Ib) that show alkaline E-MORB affinity, having moderate to high Ti content (TiO2 = 1.18 to 1.45 wt.%) with strong LREE-HREE fractionations (LaN/YbN = 4.54–7.47). Such geochemical enrichment from N-MORB to E-MORB composition indicates mixing of melts derived from a depleted mantle and a fertile mantle/plume source at the spreading center. On the other hand, type-II mafic intrusives are hornblende bearing gabbros of SSZ-type tholeiitic composition with low Ti content (TiO2 = 0.54 wt.%–0.86 wt.%) and depleted LREE pattern with respect to HREE (LaN/YbN = 0.37–0.49). They also have high Ba/Zr (1.13–2.82), Ba/Nb (45.56–151.66) and Ba/Th (84.58–744.19) and U/Th ratios (0.37–0.67) relative to the primitive mantle, which strongly represents the melt composition generated by partial melting of depleted lithospheric mantle wedge contaminated by hydrous fluids derived from subducting oceanic lithosphere in a forearc setting. Their subduction related origin is also supported by presence of calcium-rich plagioclase (An16.6–32.3). Geothermometry calculation shows that the hornblende bearing (type-II) mafic rocks crystallized at temperature in range of 565°–625 °C ± 50 (at 10 kbar). Based on these available mineralogical and geochemical evidences, we conclude that mid ocean ridge (MOR) type mafic intrusive rocks from the NMO represent the section of older oceanic crust which was generated during the divergent process of the Indian plate from the Australian plate during Cretaceous period. Conversely, the hornblende-bearing gabbros (type-II) represent the younger oceanic crust which was formed at the forearc region by partial melting of the depleted mantle wedge slightly modified by the hydrous fluids released from the subducting oceanic slab during the initial stage of subduction of Indian plate beneath the Myanmar plate.  相似文献   

9.
The Rhyacian (2300–2050 Ma) is a special era of the Paleoproterozoic represented by large layered intrusions in many cratons. It is well known that there are widespread igneous events at ~ 2100 Ma in the Eastern North China Craton; however, their tectonic environments are under debate: whether they were related to an intra-continental rifting or an arc/back-arc setting along a continental margin. These ~ 2100 Ma igneous events comprise several mafic dykes/sills, with some coeval A-type granites and volcanic events in several rifts; among them, the Haicheng mafic sills in the Liaohe rift are unique as their host rock, the Liaohe Group, bears the world's largest magnesium deposit. Most of the mafic sills are E-W-elongated at present coordinates. Exclusive of superimposition caused by deformation, the widths of the individuals are tens to hundreds of meters and the lengths are hundreds to thousands of meters. They have metamorphosed to an assemblage of plagioclase and hornblende, with minor quartz and accessory chlorite, epidote, apatite, ilmenite, and magnetite. However, relic gabbro and ophitic textures with mainly plagioclase and clinopyroxene are well-preserved. SIMS Pb–Pb dating on baddeleyites from one ~ 1000 m thick sill near Xialiulinzi village yields an average 207Pb/206Pb age of 2115 ± 3 Ma (n = 15, MSWD = 2.3), representing the timing of crystallization. SIMS U–Pb dating on zircon yields a similar forming age. They are tholeiitic in composition (MgO: 4.36–8.88 wt.%; SiO2: 45.76–53.39 wt.%), enriched in light rare earth elements ((La/Yb)N = 1.72–4.37) and large ion lithophile elements (i.e., Cs, Rb, Sr, and K) but depleted in high field strength elements (i.e., Nb, Ta, and Ti). These features were unlikely caused by crustal contamination during their emplacement, as there are little variations in Nb/La and Th/Nb. The rocks have experienced significant plagioclase-plus clinopyroxene-dominating fractional crystallization. Their enriched Sr–Nd isotope characteristics (87Sr/86Srt = 0.703 ~ 0.705, εNdt =  1.9 ~ 0.6) and trace element patterns indicate that their source(s) could be the ancient subcontinental lithospheric mantle; and this source is similar to those coeval sills from other parts of the craton. Their arc-like trace element features could be inherited from their source regions formed via a subduction process at the late Archean rather than at the middle-late Paleoproterozoic. These sill swarms, throughout the craton, might have developed in an integrated intra-continental rift system at ~ 2100 Ma.  相似文献   

10.
The intermediate–mafic–ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr–Nd–Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U–Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74–0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu1 = 0.64–0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb–Ta–Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb–Ta and Ti spikes, and typical Th–U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (−2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile sub-continental lithospheric mantle that was metasomatized previously by slab-derived fluids. The lithologies in the JZC are related in space and time and originated from a common parental magma. Geochemical modeling suggests that their primitive parental magma had a basaltic composition. The ultramafic rocks were generated through olivine accumulation, and variable degrees of fractional crystallization with minor crustal contamination produced the diorites. The data presented here suggest that the subduction in West Qinling did not cease before the early stage of the Middle Triassic (∼242 Ma), a back-arc developed in the northern part of West Qinling during this period, and the JZC formed within the incipient back-arc.  相似文献   

11.
《Gondwana Research》2014,25(2):585-613
The Belomorian eclogite province was repeatedly affected by multiple deformation episodes and metamorphism under moderate to high pressure. Within the Gridino area, high pressure processes developed in a continental crust of tonalite–trondhjemite–granodiorite (TTG) affinity that contains mafic pods and dykes, in which products of these processes are most clearly evident. New petrological, geochemical and geochronological data on mafic and felsic rocks, including PT-estimates, mineral chemistry, bulk rock chemistries, REE composition of the rocks and zircons and U–Pb and Lu–Hf geochronology presented in the paper make it possible to reproduce the magmatic and high-grade metamorphic evolution in the study area. In the framework of the extremely long-lasting geologic history recorded in the Belomorian province (3–1.7 Ga), new geochronological data enabled us to define the succession of events that includes mafic dyke emplacement between 2.87 and 2.82 Ga and eclogite facies metamorphism of the mafic dykes between ~ 2.82 and ~ 2.72 Ga (most probably in the time span of 2.79–2.73 Ga). The clockwise PT path of the Gridino association crosses the granulite- and amphibolite-facies PT fields during the time period of 2.72 Ga to 2.64 Ga. A special aspect of this work concerns the superposed subisobaric heating (thermal impact) with an increase in the temperature to granulite facies conditions at 2.4 Ga. Later amphibolite facies metamorphism occurred at 2.0–1.9 Ga. Our detailed geochronological and petrological studies reveal a complicated Mesoarchaean–Palaeoproterozoic history that involved deep subduction of the continental crust and a succession of plume-related events.  相似文献   

12.
Continental subduction and its interaction with overlying mantle wedge are recognized as fundamental solid earth processes, yet the dynamics of this system remains ambiguous. In order to get an insight into crust–mantle interaction triggered by partial melting of subudcted continental crust during its exhumation, we carried out a combined study of the Shidao alkaline complex from the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic (K2O: 3.4–9.3 wt.%) gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field studies suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U–Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are slightly younger than the Late Triassic ages (225–210 Ma) of the felsic melts from partial melting of the Sulu UHP terrane during exhumation. The alkaline rocks have wide ranges of SiO2 (49.7–76.7 wt.%), MgO (8.25–0.03 wt.%), Ni (126.0–0.07 ppm), and Cr (182.0–0.45 ppm) contents. The contents of MgO, total Fe2O3, CaO, TiO2 and P2O5 decrease with increasing SiO2 contents. The contents of Na2O, K2O, and Al2O3 increase from gabbro to amphibole syenite, and decrease from amphibole syenite to granite, respectively. The alkaline rocks have characteristics of an arc-like pattern in trace element distribution, e.g., enrichment of LREE, LILE (Rb and Ba), Th and U, depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic rocks to the felsic rocks, the (La/Yb)N ratios and the contents of the total REE, Sr and Ba decrease but the Rb contents increase. The alkaline rocks with high SiO2 contents also display features of an A2-type granitoids, e.g., high contents of total alkalis, Zr and Nb and high ratios of Fe2O3T/MgO, Ga/Al, Yb/Ta and Y/Nb, suggesting a post-collisional magmatism during exhumation of the Sulu UHP terrane. The alkaline rocks have homogeneous initial 87Sr/86Sr ratios (0.7058–0.7093) and negative εNd(t) values (− 18.6 to − 15.0) for whole-rock. The Sr–Nd isotopic data remain almost unchanged with varying SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from the same parental magma. Our studies suggest a crust–mantle interaction in continental subduction interface as follows: (1) hydrous felsic melts from partial melting of subducted continental crust during its exhumation metasomatized the overlying mantle wedge to form a K-rich and amphibole-bearing mantle; (2) partial melting of the enriched lithospheric mantle generated the Late Triassic alkaline complex under a post-collisional setting; and (3) the alkaline magma experienced subsequent fractionational crystallization mainly dominated by olivine, clinopyroxene, plagioclase and alkali feldspar.  相似文献   

13.
The geology of Northern Vietnam offers critical clues on the convergence history between the South China and Indochina blocks. We constrain the tectonic evolution of the South China and Indochina blocks using geochemical, mineral chemical and geochronological data collected from mafic–ultramafic rocks exposed in the Cao Bang area, Northeastern Vietnam. These rocks show significant enrichment in large ionic lithophile elements (LILEs) such as Cs, Rb, Ba, Th, U, and Pb and depletion in high field strength elements (HFSEs) such as Nb, Ta, Zr, and Ti showing [Nb/La]N between 0.28–0.41, [La/Yb]N = 3.94–10.00 and Zr/Y = 2.0–4.4. These geochemical features as well as the petrology and mineral chemistry of the Cao Bang mafic–ultramafic magmas are comparable to those of magmatic complexes formed in a back-arc environment. The basalts yield Rb–Sr whole rock ages of 263 ± 15 Ma, that are consistent with the zircon U–Pb and K–Ar ages reported in previous studies from the same area. The spatial and temporal distribution of the arc magmas within the Indochina block and along the southern margin of the South China block suggest that the Permo-Triassic mafic–ultramafic magmas formed during a tectonic event that is different from the subduction and collision event between the Indochina and South China blocks.  相似文献   

14.
《Precambrian Research》2005,136(2):107-123
As the lowest volcanics-bearing unit of the Neoproterozoic succession, the Beiyixi Formation is the key to understanding the early response to the breakup of the Roninia supercontinent in the Tarim Block. The SHRIMP analyses of zircons from the volcanic rocks at the bottom of the Beiyixi Formation yield a weighted mean 206Pb/238U age of 755 ± 15 Ma. This is interpreted as the eruption age of the Beiyixi volcanic rocks. The Beiyixi volcanic rocks consist of bimodal basalt and dacite-rhyolite with a SiO2 gap between 55% and 65%. The mafic rocks display negative ɛNd (755 Ma) values (−9.9 to −10.8), moderate enrichment in LILE and variable depletion in Nb, Ta and P, resembling those of the tholeiitic basalts in continental rift. Geochemical and Nd isotopic characteristics suggest that the mafic rocks were derived from partial melting of an enriched lithospheric mantle reservoir. The felsic rocks show negative ɛNd (755 Ma) values (−7.9 to −9.2), negative Nb, Ta, P and Ti anomalies, very high LaN/YbN (62–92) ratios and LILE abundances, and may be generated by melting of eclogites or garnet amphibolites in the lower crust, as a result of basalt emplacement into continental crust during continental rifting. The age of 755 ± 15 Ma indicates that the Beiyixi glaciation took place later than 755 Ma and it could be correlated with the Chang’an glaciation in the Yangtze Block and the Sturtian–Rapitan glaciation in other Rodinia Blocks. The geochemical characteristics of the Beiyixi volcanic rocks resemble those of the rift-related magmatism in other Rodinia Blocks, suggesting that the Beiyixi volcanism was a part of global magmatism during the breakup of Rodinia supercontinent. The age and geochemical features of the Beiyixi volcanic rocks also reveal that the mantle plume activity spread to the northwestern margin of the Rodinia supercontinent and probably resulted in the breakup between Australia and Tarim Blocks.  相似文献   

15.
《Gondwana Research》2014,25(3-4):865-885
Exhumation of middle and lower crustal rocks during the 450–320 Ma intraplate Alice Springs Orogeny in central Australia provides an opportunity to examine the deep burial of sedimentary successions leading to regional high-grade metamorphism. SIMS zircon U–Pb geochronology shows that high-grade metasedimentary units recording lower crustal pressures share a depositional history with unmetamorphosed sedimentary successions in surrounding sedimentary basins. These surrounding basins constitute parts of a large and formerly contiguous intraplate basin that covered much of Neoproterozoic to early Palaeozoic Australia. Within the highly metamorphosed Harts Range Group, metamorphic zircon growth at 480–460 Ma records mid-to-lower crustal (~ 0.9–1.0 GPa) metamorphism. Similarities in detrital zircon age spectra between the Harts Range Group and Late Neoproterozoic–Cambrian sequences in the surrounding Amadeus and Georgina basins imply that the Harts Range Group is a highly metamorphosed equivalent of the same successions. Maximum depositional ages for parts of the Harts Range Group are as low as ~ 520–500 Ma indicating that burial to depths approaching 30 km occurred ~ 20–40 Ma after deposition. Palaeogeographic reconstructions based on well-preserved sedimentary records indicate that throughout the Cambro–Ordovician central Australia was covered by a shallow, gently subsiding epicratonic marine basin, and provide a context for the deep burial of the Harts Range Group. Sedimentation and burial coincided with voluminous mafic magmatism that is absent from the surrounding unmetamorphosed basinal successions, suggesting that the Harts Range Group accumulated in a localised sub-basin associated with sufficient lithospheric extension to generate mantle partial melting. The presently preserved axial extent of this sub-basin is > 200 km. Its width has been modified by subsequent shortening associated with the Alice Springs Orogeny, but must have been > 80 km. Seismic reflection data suggest that the Harts Range Group is preserved within an inverted crustal-scale half graben structure, lending further support to the notion that it accumulated in a discrete sub-basin. Based on palaeogeographic constraints we suggest that burial of the Harts Range Group to lower crustal depths occurred primarily via sediment loading in an exceptionally deep Late Cambrian to Early Ordovician intraplate rift basin. High-temperature Ordovician deformation within the Harts Range Group formed a regional low angle foliation associated with ongoing mafic magmatism that was coeval with deepening of the overlying marine basin, suggesting that metamorphism of the Harts Range Group was associated with ongoing extension. The resulting lower crustal metamorphic terrain is therefore interpreted to represent high-temperature deformation in the lower levels of a deep sedimentary basin during continued basin development. If this model is correct, it indicates that regional-scale moderate- to high-pressure metamorphism of supracrustal rocks need not necessarily reflect compressional thickening of the crust, an assumption commonly made in studies of many metamorphic terrains that lack a palaeogeographic context.  相似文献   

16.
《Gondwana Research》2016,29(4):1466-1481
Early Carboniferous volcanic rocks in the Batamayineishan Formation overlie unconformably the molasse deposits and the ophiolitic mélanges and are restricted in narrow zones along both sides of the Kalamaili orogenic belt in North Xinjiang, southern Central Asian Orogenic Belt. These rocks demonstrate the post-collisional setting in East Junggar commenced in Tournaisian and also mark an important transitional period from the final amalgamation to late Paleozoic voluminous juvenile granitoids in East Junggar. The volcanic rocks are composed of basalt, basaltic andesite, andesite, trachyte and rhyolite. Both mafic and felsic rocks are characterized by enrichments in large ion lithophile elements, light rare earth elements and depletion in Nb and Ta, low initial 87Sr/86Sr and high, positive ɛNd(t). Three groups of mafic rocks have been identified: Shoshonitic group 1 has the highest MgO, CaO, Ni and Cr and the lowest Na2O, Al2O3, La, Ba, La/Yb and Ba/Th with primary magma features; group 2 calc-alkaline and high-K calc-alkaline mafic rocks have the lowest K2O, P2O5, Th and Th/Nb, and the highest TiO2; and group 3 (shoshonitic to potassic alkaline) has the highest K2O, P2O5, La, Ba, La/Yb and Th/Nb, and the lowest TiO2. The A-type-like felsic rocks were derived from the differentiation of the mafic magma. Geological and geochemical evidences indicate that the Batamayineishan Formation was generated from the process of slab breakoff (detachment). Group 1 samples are produced by decompressional melting of the upwelling asthenosphere mainly composed of spinel and garnet (50:50) lherzolite which has been enriched by overlying metasomatized lithosphere during ascent. Group 2 is derived from 5–10% partial melting of shallower spinel-bearing lithospheric mantle induced by the hot rising asthenosphere, where the contribution of slab-derived fluid is predominant. Low partial melting (3–5%) of the mantle wedge and/or thickened lithospheric mantle enriched by slab-derived components generates group 3. Slab breakoff as an important geodynamic process accounts for the post-collisional magmatism between 343.5 Ma–330 Ma, providing a model for post-collisional crust–mantle interaction in the CAOB.  相似文献   

17.
The Sri Lankan fragment of Gondwana preserves the records of Neoproterozoic tectonothermal events associated with the final assembly of the supercontinent. Here we investigate a suite of magmatic rocks from the Wanni, Kadugannawa and Highland Complexes through geological, petrological, geochemical and zircon U–Pb and Lu–Hf isotopic techniques. The hornblende biotite gneiss, charnockites, metagabbro and metadiorites investigated in this study show geochemical features consistent with calc-alkaline affinity and subduction-related signature including LILE enrichment relative to HFSE coupled with distinct Nb–Ta depletion and weak negative Zr–Hf anomalies. The felsic suite falls in the volcanic arc granites (VAGs) field and the mafic suite shows island arc basalt affinity in tectonic discrimination plots, suggesting that the protoliths of the rocks were derived from arc-related magmas in a convergent margin setting. LA-ICPMS zircon U–Pb analyses show crystallization of charnockite and dioritic mafic magmatic enclave from the Highland Complex during ca. 565 and 576 Ma corresponding to bimodal magmatism. The diorite also contains metamorphic zircons of ca. 525 Ma. Hornblende–biotite gneiss from the Kadugannawa Complex shows protolith emplacement age at 973–980 Ma, followed by new zircon growth during repeated thermal events through late Neoproterozoic. The dioritic enclaves in these rocks are much younger, and form part of a deformed and metamorphosed dyke suite with emplacement ages of 559 Ma, broadly coeval with the bimodal magmatism in the Highland Complex at that time. The youngest group of zircons in this rock shows ages of 508 Ma, corresponding to the latest thermal event. A charnockite from this locality shows oldest group of zircons at 962 Ma, corresponding to emplacement age similar to that of the magmatic protolith of the hornblende biotite gneiss. This rock also shows zircon growth during repeated thermal events at 832 Ma, 780 Ma, 721 Ma and 661–605 Ma. The lower intercept age of 543 Ma marks the timing of collisional metamorphism. Charnockite from the Wanni Complex shows emplacement age at 1000 Ma, followed by thermal event at 570 Ma, the latter correlating with the bimodal magmatic event in the Highland Complex. The dioritic enclave within this charnockite shows an age of ca. 980 Ma, suggesting intrusion of mafic magma into the felsic magma chamber. Zircons in the diorite also record multiple zircon events during 950 to 750 Ma. Zircons in the Highland Complex charnockite possess negative εHf(t) values in the range − 6.7 to − 12.6 with TDMC of 2039–2306 Ma suggesting magma derivation through melting of Paleoproterozoic source. In contrast, the εHf(t) range of − 11.1 to 1.6 suggests a mixed source of both of older crustal and juvenile material. The εHf(t) values of − 4.5 to 4.5 and TDMC of 1546–1962 Ma for the hornblende biotite gneiss also shows magma derivation from mixed sources that included Paleoproterozoic components. The younger dioritic intrusive, however, has a more juvenile magma source as indicated by the mean εHf(t) value of 1.3. The associated charnockite shows a tight positive cluster of εHf(t) from 0.6 to 5.1, suggesting juvenile input. Charnockite from the Wanni Complex shows clearly positive εHf(t) values of up to 13.1, and TDMC in the range 937–1458 Ma suggesting much younger and depleted mantle source. The diorite enclave also has positive εHf(t) values with an average value of 8.5 and TDMC in the range of 709–1443 Ma clearly suggesting younger juvenile sources. The early and late Neoproterozoic bimodal suites are correlated to convergent margin magmatism associated with the assembly of Sri Lanka within the Gondwana supercontinent.  相似文献   

18.
The mafic magmatic rocks associated with 1720–1700 Ma albitised A-type granites in the northern segment of the Aravalli orogen, NW India show evidence of metasomatism. It is, however, not clear whether the metasomatism of mafic rocks is related to the cooling of these associated granites or whether it took place much later after the emplacement of the granites on a regional scale. For this, we have investigated the mafic magmatic rocks, which occur in close association with these granites. In the Biharipur intrusive, the mafic rocks are intensely commingled with the A-type granites, whereas in the vicinity of the Dosi intrusive, the mafic rocks (clinopyroxenite) do not show any evidence of granite mingling. The commingled and metasomatised Biharipur mafics occur in contact with the albitised granites instead of original granite, indicating that the mafics were metasomatised along with the granites. This is supported by the similarity in REE and spider patterns of the intermixed mafic rocks and the albite granites. On the other hand, the Dosi mafic rocks, free from granite commingling, are scapolitised where the original diopside has been partly transformed to chlorine-rich marialites with a meionite component ranging from Me14.0 to Me16.0. The scapolite, occurring as anastomosing veins, within these rocks is also of similar composition, and the undeformed nature of these veins suggests that the scapolitisation postdates regional metamorphism in the region. Mineralogical, geochemical and Nd isotopic characteristics of the mafic rocks indicate that originally, these were clinopyroxenites, which have been altered to a monomineralic actinolite-bearing rock. The immobile incompatible trace element ratios indicate a continental tholeiite affinity for the mafics, which is in consonance with the A-type nature of the associated granites. During this metasomatic event, the mafic magmatic rocks experienced albitisation and scapolitisation, although the dominance of these processes varied on a local scale depending on the fluid composition.A whole-rock-mineral (clinopyroxene and scapolite) Sm–Nd isochron of the scapolitised clinopyroxenite at Dosi yields an age of 831 ± 15 Ma. Synthesis of this age data along with previously published geochronological data indicate an important Early Cryogenian (850–830 Ma) metasomatic event in the northern Aravalli orogen, which is also synchronous with the Erinpura granite event in the southern Aravalli orogen.  相似文献   

19.
South-East Greenland forms part of the North Atlantic Craton and is characterized by migmatitic orthogneisses, narrow bands of mafic granulite, ultramafic and possible meta-sedimentary rocks, and alkaline-carbonatitic intrusive rocks. Mafic granulite, meta-sedimentary and ultramafic rocks form the basement for the emplacement of granitic intrusions at ca. 2865 Ma that lasted episodically until ca. 2790 Ma and continuously during 2750–2700 Ma. The area is structurally complex with evidence of at least seven deformation events including reclined and mushroom-like fold interference patterns. An older (> 2790 Ma) foliation formed in granitic rocks and the basement during the Timmiarmiut Orogeny (DT). Deformation associated with the ca. 2790–2700 Ma Skjoldungen Orogeny folded this early foliation, and is associated with a penetrative foliation that is refolded progressively in a northeast–southwest oriented stress field. The orientation of the stress field progressively rotated into a northnorthwest–southsoutheast orientation during the last stages of the orogeny. The orogeny is also characterized by syn-deformational anatexis at granulite-facies (at approximately 800 °C and 5–8 kbar, ca. 2790–2740 Ma), which decreased to the amphibolite-facies at ca. 2730 Ma.The late- to post-tectonic granite and alkaline rocks assigned to the Skjoldungen Alkaline Province intruded the central-northern part around 2710 Ma. This was followed by north–south extensional deformation during the Singertat Stage forming discrete shear-zones at greenschist-facies grades, which is coeval with the emplacement of pegmatite, ijolite, and carbonatite emplacement during ca. 2680–2650 Ma.Similar lithology and tectonic processes in the Tasiusarsuaq Terrane of southern West Greenland and the Lewisian Complex in Scotland suggest a possibly large Archaean terrane at that time, which, taking the present size, at least covered around 500–600 km in an east–west direction and approximately 200 km in a north–south direction.  相似文献   

20.
Numerous intrusive rocks of varying ages and compositions exist in the Paleozoic to Tertiary periods in the Eastern Pontides. Carboniferous intrusive rocks are commonly observed in the southern part of the Eastern Pontides. The nature of the rocks in the northern part of the region has not been determined because of Upper Cretaceous and Tertiary volcano-sedimentary units. Whole-rock geochemical, isotopic and geochronological data obtained from five different mapped granitoid bodies located in the northern part of the Eastern Pontides allow for the proper reconstruction of Carboniferous magmatism and the geodynamic evolution of the region.According to laser ablation ICP-MS U–Pb zircon dating, the Özdil, Soğuksu, Seslikaya, Kızılağaç and Şahmetlik plutons have similar 206Pb/238U vs. 207Pb/235U concordia ages of 340.7 ± 1.8 Ma and 323.1 ± 1.5 Ma, 348.4 ± 1.6 Ma, 335.4 ± 1.4 Ma, 337.2 ± 0.6 Ma and 334.5 ± 1.4 Ma, respectively. The aluminium saturation index (ASI) values of all of the samples from the plutons are between 1.0 and 1.32, which indicate peraluminous melt compositions. The plutons have SiO2 contents between 59 and 79 wt.% and show low- to high-K calc-alkaline characteristics. The plutons are enriched in large-ion lithophile and light rare earth elements and are depleted in high-field strength elements. Chondrite-normalized rare earth element patterns are characterized by concave-upward shapes and pronounced negative Eu anomalies, with LaCN/YbCN = 1.9–46.8 and EuCN/Eu* = 0.19–1.76. The studied plutons show considerable variations in 87Sr/86Sr(i) (0.70255 to 0.71006) and εNd(i) values (− 4.8 to − 7.1), as well as Nd model ages (1.15 to 2.47 Ga). The Pb-isotopic ratios are 206Pb/204Pb = 17.11–18.60, 207Pb/204Pb = 15.58–15.64 and 208Pb/204Pb = 36.95–38.62. The crystallization temperatures of the melts range from 676 to 993 °C, as determined by zircon and apatite saturation thermometry.These data suggest that the Carboniferous granitic magmas were produced by the partial melting of meta-mafic to meta-felsic lower crustal source rocks, with minor contributions from the mantle. Collectively, these rocks represent a late stage of Hercynian magmatism in the northern part of the Eastern Pontides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号