首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
The vacuum-encapsulation laser 40Ar39Ar technique allows extremely small (10−6 g) samples of fine-grained materials such as diagenetic clays to be dated. Here we show that the method can be extended to higher-grade clay minerals. The integration of transmission electron microscopic (TEM) characterization with 40Ar39Ar dating of vacuum encapsulated samples permits the resolution of the timing of metamorphic growth/cooling from the time of diagenesis. We have applied this technique to well characterized Lower Paleozoic slates and K-bentonites from the Welsh Basin, which span the transition from anchizonal to epizonal grade, which had been previously studied using RbSr and SmNd dating.

TEM observations of epizonal K-bentonites and slate showed that illite in these samples is of 2M1 polytype, of muscovite-like composition, and oriented parallel to cleavage, suggesting that they are of metamorphic origin. Total gas ages (equivalent to conventional KAr ages) for encapsulated epizonal K-bentonites and slate (340–408 Ma) are considerably variable. The Ar retention ages (calculated from 39Ar and 40Ar atoms retained in the sample after irradiation) are more consistent (383–411 Ma). The 39Ar recoil losses are minor for illites from whole rock samples of epizonal K-bentonites but very significant for clay separates of epizonal slate. Plateaus in age spectra were observed in epizonal K-bentonites and slate. The plateau ages (414–421 Ma) and retention ages (383–411 Ma) can be correlated with the onset of Acadian metamorphism and culmination of uplift and inversion of the Welsh Basin, respectively. These ages are significantly younger than the 450 Ma ages previously reported for diagenetic clays using the same method, suggesting that diagenetic history has been lost in these epizonal K-bentonites and slate.

TEM observations of anchizonal slates showed that there are two modes of illite. The first mode is similar to that observed in epizonal samples, suggesting a metamorphic origin. The second mode consists of the 1Md polytype, has typical diagenetic illite composition, and is oriented parallel to bedding, suggesting a diagenetic origin. Total gas ages for encapsulated anchizonal slates vary considerably (361–422 Ma). The retention ages are more consistent (413–432 Ma) than the total gas ages. The 39Ar recoil losses are more significant than those for epizonal K-bentonites and slate. Plateaus in age spectra are generally not observed. However, the consistent retention ages for the anchizonal slates correspond to the plateau ages for the epizonal samples, and are inferred to represent the onset of Acadian metamorphism.

These data, when combined with our previously published results for diagenetic shales, suggest that thermal conditions near the boundary of anchizonal and epizonal grades are necessary to completely reset Ar systems in shales and slates.  相似文献   


2.
Emerald, occurring in K-metasomatic rocks developed at the contact of the Carnaíba leucogranite with serpentinite (Bahia State, Brazil), has been dated using an original 40Ar/39Ar procedure. It combines step heating and spot fusion experiments on two types of phlogopite crystals: (1) bulk samples and individual grains extracted from the enclosing K-metasomatic host rocks; and (2) syngenetic solid inclusions precipitated along growing zones of the emerald host crystals. The second procedure uses in situ laser probe experiments on rock sections. In spite of the huge amounts of excess 40Ar detected in adjacent emerald, we could measure reliable ages of 1951 ± 8 Ma and 1934 ± 8 Ma for the Trecho Velho and Braulia occurrences, respectively. Spot fusion data had higher discrepancy than the step heating data, but minute crystals of phlogopite included in emeralds bearing excess argon do not reveal excess argon. A muscovite belonging to the same granite hydrothermal complex gave a plateau age of 1976 ± 8 Ma, which may correspond to a higher closure temperature of the KAr system during the cooling of the whole pluton and associated hydrothermal halo.

These accurate measurements lead to the following conclusions: (1) direct emerald dating is possible; (2) in spite of a polyphase history during the Transamazonian orogenesis (2 Ga), combined step heating and spot fusion experiments give a better precision for granite-related emerald mineralization than the scattered ages obtained by Rb-Sr and K-Ar methods; (3) the late-Transamazonian tectonothermal retrograde event which probably caused the dispersion of previous Rb-Sr and K-Ar data is not revealed by our procedure; (4) the emerald mineralization and K-metamorphism appear to be linked with the thermal history of the leucogranite; (5) in addition to its use in polyphase crustal domains, accurate 40Ar/39Ar dating is of major interest in the field of metallogenic models, even, for instance, for mineralizations characterized by disturbed isotopic systems, which record effects as excess argon.  相似文献   


3.
Primitive basaltic single eruptions in the Big Pine Volcanic Field (BPVF) of Owens Valley, California show systematic temporal–compositional variation that cannot be described by simple models of fractional crystallization, partial melting of a single source, or crustal contamination. We targeted five monogenetic eruption sequences in the BPVF for detailed chemical and isotopic measurements and 40Ar/39Ar dating, focusing primarily on the Papoose Canyon sequence. The vent of the primitive (Mg# = 69) Papoose Canyon sequence (760.8 ± 22.8 ka) produced magmas with systematically decreasing (up to a factor of two) incompatible element concentrations, at roughly constant MgO (9.8 ± 0.3 (1σ) wt.%) and Na2O. SiO2 and compatible elements (Cr and Ni) show systematic increases, while 87Sr/86Sr systematically decreases (0.7063–0.7055) and εNd increases (− 3.4 to − 1.1). 187Os/188Os is highly radiogenic (0.20–0.31), but variations among four samples do not correlate with other chemical or isotopic indices, are not systematic with respect to eruption order, and thus the Os system appears to be decoupled from the dominant trends. The single eruption trends likely result from coupled melting and mixing of two isotopically distinct sources, either through melt-rock interaction or melting of a lithologically heterogeneous source. The other four sequences, Jalopy Cone (469.4 ± 9.2 ka), Quarry Cone (90.5 ±17.6 ka), Volcanic Bomb Cone (61.6 ± 23.4 ka), and Goodale Bee Cone (31.8 ± 12.1 ka) show similar systematic temporal decreases in incompatible elements. Monogenetic volcanic fields are often used to decipher tectonic changes on the order of 105–106 yr through long-term changes in lava chemistry. However, the systematic variation found in Papoose Canyon (100–102 yr) nearly spans that of the entire volcanic field, and straddles cutoffs for models of changing tectonic regime over much longer time-scales. Moreover, ten new 40Ar/39Ar ages combined with chemistry from all BPVF single eruption sequences show the long-term trend of BPVF evolution comprises the overlapping, temporal–compositional trends of the monogenetic vents. This suggests that the single eruption sequences contain the bulk of the systematic chemical variation, whereas their aggregate compositions define the long-term trend of volcanic field evolution.  相似文献   

4.
An evaluation of the precision and resolution of the unspiked K–Ar dating method is presented with particular regard to the statistical significance of ages that are measured near or at the detection limit of the technique. Near-zero (historical) ages can be measured by the unspiked K–Ar technique with a precision that is essentially controlled by the precision with which the 40Ar/36Ar of the sample can be resolved from the present-day atmospheric value of 295.5. The best analytical precision on the isotopic ratio is ±0.05% (1σ) by this technique, which currently limits the lower detection limit of unspiked K–Ar ages to samples featuring at least 0.14% of radiogenic 40Ar. The corresponding youngest resolvable K–Ar age depends on the K content and atmospheric contamination of the sample. Total-fusion analysis of high-K refractory minerals like sanidine is not practicable via K–Ar, and the lowest resolvable age for medium-K samples more amenable to complete fusion is around 1.5 ka (on a single-run basis). It is argued that near-zero age measured with a probability density straddling or narrowing the time-origin cannot be handled without accounting for the non-negativity constraint imposed by the physical requirement of a positive age. The pertinent equations are derived both for the single-run case and for the case of independent replicates made on a single sample. We show that pooled K–Ar replicates can theoretically reduce the nominal uncertainty of individual unspiked ages (typically ±1.5 ka, 2σ) to a value that is close to the smallest 40Ar/39Ar isochron age uncertainty achievable on sanidine in the 0–2 ka range (±0.2 ka, 2σ). However, this performance is obtained at the cost of prohibitively large-sample statistics (n≥15) for medium-K feldspars datable via K–Ar. Coupled with the inability of the K–Ar approach to obviate the problems of excess/fractionated 40Ar and/or xenocrystic contamination, this makes the 40Ar/39Ar technique the method of choice for dating historical events by the K–Ar scheme.  相似文献   

5.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

6.
Strongly mylonitic rocks associated with the regionally extensive Norumbega fault zone in south-central Maine provide an excellent opportunity for testing the effects of mylonitization on argon isotopic systems in muscovite. 40Ar/39Ar muscovite age spectra from samples outside the zone of mylonitization are relatively undisturbed and have well defined Early Carboniferous plateau ages. In contrast to these nonmylonitized samples, all age spectra for muscovite from the mylonites are highly discordant. They are characterized by young ages at low extraction temperatures, which systematically increase to ages that equal the plateau ages for muscovite collected outside the mylonite zone. Detailed petrographic observations suggest that these systematic discordances reflect a mixing of argon components from older, relict, muscovite porphyroclasts and fine-grained white mica aggregates that recrystallized during mylonitic deformation.

Total gas ages of five different grain size fractions separated from the same mylonite sample become progressively younger with decreasing grain size; indicating a larger component of the recrystallized grains in the finer grain size fractions. Although the three finest grain size fractions give different total gas ages and do not overlap in age for most of their release spectra, their initial increments do coincide, at approximately 290 Ma. This indicates a minimal older age contribution from the relict porphyroclasts in the initial increments and suggests the 290 Ma age provides a good estimate for the time of mineral growth associated with mylonitic deformation. These data, combined with kinematic analysis, reveal that the segment of the Norumbega fault zone studied, the Sandhill Corner fault, is a Late Carboniferous-Early Permian dextral strike-slip fault. A lack of significant offset in regional Early Carboniferous mineral age patterns across the fault suggests that displacement was probably less than 30 km.

This study demonstrates that 40Ar/39Ar dating methods can be used to date deformational events effectively, as long as several important criteria are met. First and foremost, samples must be well characterized prior to analysis. Dynamic recrystallization must have occurred at or below the closure temperature of the mineral to be analyzed. Regional cooling patterns must also be established through detailed thermochronology so that mineral ages and age spectra from the deformed rocks can be compared to regional cooling ages of the same mineral. Finally, the effects of excess argon must be negligible.  相似文献   


7.
A detailed 40Ar/39Ar study, of mineral separates from the Jurassic Atlantic Continental Tholeiites (JACT) of Guyana (French Guyana and Surinam, South America), and Guinea (West Africa) related to the initial opening of the Central Atlantic, has been carried out. In French Guyana, plateau ages of 196.0 ± 5.7 Ma and 196.1 ± 7.5 Ma were obtained on single, small amphibole grains from NNW—SSE trending dykes. In Guinea, single biotite grains from intrusive formations from the Kakoulima and Fouta Djalon areas yielded plateau ages of 200.4 ± 0.2 Ma and 194.8 ± 0.5 Ma, concordant with high temperature apparent ages on other biotites. The bulk plagioclase samples display disturbed age spectra due to alteration and excess argon. However, intermediate temperature, weighted mean plagioclase ages are similar in both regions of Guyana and Guinea, ranging from 200.2 ± 2.4 Ma to 188.7 ± 1.9 Ma, partly in agreement with the amphibole and biotite data.

These data, combined with previous 40Ar/39Ar and U/Pb results from the northern part of the Central Atlantic margins, indicate intense magmatic activity distributed over a large area from Iberia to Liberia (ca. 4500 km long) for a short period of time (204-195 Ma, perhaps less for the bulk of the magmatism) during the initial break-up of Pangea continent. These data do not support an initiation of the magmatism from a radial volcano-tectonic system centred in the south of the region, as suggested by May [1], and the initial break-up seems to affect the whole Central Atlantic during a period of 9 Ma.  相似文献   


8.
We present Re–Os, Sm–Nd and Pb–Pb isotope and trace element data for the Konchozero sill, a layered mafic–ultramafic intrusion in the Early Proterozoic Onega plateau, one of the oldest continental flood basalt provinces on Earth. The Sm–Nd and Pb–Pb combined mineral and whole-rock isochron ages of 1988±34 and 1985±57 Ma for the sill coincide with the age of ferropicrites from Pechenga (the Kola Peninsula). The lithostratigraphic, chemical and isotope evidence suggest the derivation of Pechenga lavas and the Onega plateau volcanics from a single mantle plume. Peridotite and gabbro whole-rock samples, and primary ulvospinel and ilmenite mineral separates from the sill yield a Re–Os isochron with a slope corresponding to an age of 1969±18 Ma, γOs(T) =−0.61±5.9. This age is consistent with the other isotope data, and indicates the closed-system behavior of Re and Os in the rocks. The peridotites and ulvospinel have high Os concentrations (2.5–14 ppb) and low 187Re/188Os ratios (0.35–1.1), thus allowing a more accurate determination of the weighted average initial 187Os/188Os of 0.1144±0.0019 (2σpop), γOs(T) =+0.77±1.7. This value is lower than that determined by Walker et al. (Geochim. Cosmochim. Acta 61 (1997) 3145–3160) for the Pechenga lavas (γOs(T) =+6.1±0.7), and implies a substantial Os-isotope heterogeneity in this ancient plume. Compared to the Onega plateau primary basalt magma, Pechenga ferropicrites are relatively enriched in iron and Ni, have lower (Nb/Th)N ratios (2.1 vs 1.1) and less radiogenic Nd-isotope compositions (Nd(T) = +3.1 and +1.4, respectively), but share similar low-radiogenic Pb-isotope characteristics (μ1=8.57 and 8.60). Incorporation of small amounts (1.5%) of outer core material into the hotter central part of the plume and subsequent contamination of the Pechenga ferropicritic magmas with the 2.9 Ga Belomorian gneisses can explain the observed chemical and isotope variations in the two provinces provided that the core had <0.25 ppm of Pb.  相似文献   

9.
In an attempt to constrain the origin of polycrystalline diamond, combined analyses of rare gases and carbon and nitrogen isotopes were performed on six such diamonds from Orapa (Botswana). Helium shows radiogenic isotopic ratios of R/Ra = 0.14–1.29, while the neon ratios (21Ne/22Ne of up to 0.0534) reflect a component from mantle, nucleogenic and atmospheric sources. 40Ar/36Ar ratios of between 477 and 6056 are consistent with this interpretation. The (129Xe/130Xe) isotopic ratios range between 6.54 and 6.91 and the lower values indicate an atmospheric component. The He, Ne, Ar and Xe isotopic compositions and the Xe isotopic pattern are clear evidence for a mantle component rather than a crustal one in the source of the polycrystalline diamonds from Orapa. The δ13C and δ15N isotopic values of − 1.04 to − 9.79‰ and + 4.5 to + 15.5‰ respectively, lie within the range of values obtained from the monocrystalline diamonds at that mine. Additionally, this work reveals that polycrystalline diamonds may not be the most appropriate samples to study if the aim is to consider the compositional evolution of rare gases through time. Our data shows that after crystallization, the polycrystalline diamonds undergo both gas loss (that is more significant for the lighter rare gases such as He and Ne) and secondary processes (such as radiogenic, nucleogenic and fissiogenic, as well as atmospheric contamination). Finally, if polycrystalline diamonds sampled an old mantle (1–3.2 Ga), the determined Xe isotopic signatures, which are similar to present MORB mantle – no fissiogenic Xe from fission of 238U being detectable – imply either that Xe isotopic ratios have not evolved within the convective mantle since diamond crystallization, or that these diamonds are actually much younger.  相似文献   

10.
The igneous rocks of the Pongola Supergroup (PS) and Usushwana Intrusive Suite (UIS) represent a case of late Archaean continental magmatism in the southeastern part of the Kaapvaal craton of South Africa and Swaziland.

U-Pb dating on zircons from felsic volcanic rocks of the PS yields a concordia intercept age of 2940 ± 22Ma that is consistent with a Sm-Nd whole rock age of 2934 ± 114Ma determined on the PS basalt-rhyolite suite. The initial εNd of−2.6 ± 0.9 is the lowest value so far reported for Archaean mantle-derived rocks. Rb-Sr whole rock dating of the PS yields a younger isochron age of 2883 ± 69Ma, which is not significantly different form the accepted U-Pb zircon age.

An internal (cpx-opx-plag-whole rock) isochron for a pyroxenite from the younger UIS yields an age of 2871 ± 30 Ma and initial 143Nd/144Nd that lies off the CHUR growth curve by εNd −2.9 ± 0.2. However, Sm-Nd whole-rock data for the UIS yield an excessively high age of 3.1 Ga that conflicts with firm geological evidence showing the UIS to be intrusive into the PS.

The negative deviations of initialεNd from the chondritic Nd evolution curve suggest significant contamination of the PS and UIS melts by older continental crust. A mixing process with continental crust after magma segregation is supported by a high initial 87Sr/86Sr ratio of0.703024 ± 24 for a clinopyroxene sample from a UIS pyroxenite, compared with an expected value of 0.701 for the 2.9 Ga mantle. We therefore interpret the linear array of data points for the UIS gabbros as a mixing line between 2.87 Ga old magma and older continental crust.

Parallel LREE-enriched REE patterns, negative Nb-Ti anomalies, a distinctive and uniform ratio of Ti/Zr 46 and a narrow span of initial Nd indicate a common source for both the PS and UIS suites which is different from primitive mantle.  相似文献   


11.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


12.
We report isotope analyses of helium, neon, argon, and xenon using different extraction techniques such as stepwise dynamic and static crushing, and high-resolution stepwise heating of three mantle xenoliths from Réunion Island. He and Ne isotopic compositions were similar to previously reported Réunion data, yielding a more radiogenic composition when compared to the Hawaiian or Icelandic mantle plume sources. We furthermore observed correlated 129Xe/130Xe and 136Xe/130Xe ratios following the mantle trend with maximum values of 6.93 ± 0.14 and 2.36 ± 0.06, respectively. High-resolution argon analyses resulted in maximum 40Ar/36Ar ratios of 9000–11,000, in agreement with maximum values obtained in previous studies. We observed a well-defined hyperbolic mixing curve between an atmospheric and a mantle component in a diagram of 40Ar/36Ar vs. 20Ne/22Ne. Using a mantle 20Ne/22Ne of 12.5 (Ne–B) a consistent 40Ar/36Ar value of 11,053 ± 220 in sample ILR 84-4 was obtained, whereas extrapolations to a higher mantle 20Ne/22Ne ratio of 13.8 (solar wind) would lead to a much higher 40Ar/36Ar ratio of 75,000, far above observed maximum values. This favours a mantle 20Ne/22Ne of about 12.5 considered to be equivalent to Ne–B. Extrapolated and estimated 40Ar/36Ar ratios of the Réunion, Iceland, Loihi, and MORB mantle sources, respectively, tend to be linearly correlated with air corrected 21Ne/22Ne and show the same systematic sequence of increasing relative contributions in radiogenic isotopes (Iceland–Loihi–Réunion–MORB) as observed for 4He/3He. In general, He–Ne–Ar isotope systematics of the oceanic mantle can be explained by following processes: (i) different degree of mixing between pure radiogenic and pure primordial isotopes generating the MORB and primitive plume (Loihi-type) endmembers; (ii) relatively recent fractionation of He relative to Ne and Ar, in one or both endmembers; (iii) after the primary fractionation event, different degrees of mixing between melts or fluids of MORB and primitive plume affinity generate the variety of observed OIB data, also on a local scale; (iv) very late-stage secondary fractionation during magma ascent and magma degassing leads to further strong variation in He/Ne and He/Ar ratios.  相似文献   

13.
Single crystal 40Ar/39Ar dating of K-feldspars from silicic volcanic rocks containing xenocrysts often yields a spectrum of ages slightly older than those of juvenile sanidine phenocrysts. In contrast, feldspars from thin, low-volume units of the Tertiary (14 Ma) McCullough Pass Tuff define discrete age populations at 14 Ma, 15 Ma, and 1.3 Ga, reflecting the time of eruption, xenocrysts from an older ignimbrite exposed in the caldera wall, and Proterozoic basement K-feldspars, respectively. Conductive cooling and diffusion modelling suggests preservation of such discrete populations is likely only when xenocrystic material is incorporated into the magma very near or at the surface, or is engulfed in thin, rapidly cooled pyroclastic flows during emplacement. Incorporation of xenocrysts into the subvolcanic magma chamber, into thick rhyolite domes or lava flows, or into large, welded ignimbrite sheets will result in partial or total resetting of the K/Ar isotopic system. Similarly, petrographic evidence such as exsolution lamellae may be homogenized under these conditions but not in thin ignimbrites. Extremely low diffusion rates for disordering of the Al–Si tetrahedral siting of basement feldspars suggests that they will retain their ordered structural state given rhyolitic magma temperatures. Thus, even when petrographic and K/Ar isotopic evidence for xenocrystic contamination is obscured, it may be preserved in the form of Al–Si ordering.  相似文献   

14.
New noble gas data of ultramafic xenoliths from Réunion Island, Indian Ocean, further constrain the characteristics of primordial and radiogenic noble gases in Earth’s mantle plume reservoirs. The mantle source excess of nucleogenic 21Ne is significantly higher than for the Hawaiian and Icelandic plume reservoirs, similar to excess of radiogenic 4He. 40Ar/36Ar of the Réunion mantle source can be constrained to range between 8000 and 12 000, significant 129Xe and fission Xe excess are present. Regarding the relative contribution of primordial and radiogenic rare gas nuclides, the Réunion mantle source is intermediate between Loihi- and MORB-type reservoirs. This confirms the compositional diversity of plume sources recognized in other radioisotope systematics. Another major result of this study is the identification of the same basic primordial component previously found for the Hawaiian and Icelandic mantle plumes and the MORB reservoir. It is a hybrid of solar-type He and Ne, and ‘atmosphere-like’ or ‘planetary’ Ar, Kr, Xe (Science 288 (2000) 1036). 20Ne/22Ne ratios extend to maximum values close to 12.5 (Ne-B), which is the typical signature of solar neon implanted as solar corpuscular radiation. This suggests that Earth’s solar-type noble gas inventory was acquired by small (less than km-sized) precursor planetesimals that were irradiated by an active early sun in the accretion disk after nebular gas dissipation, or, alternatively, that planetesimals incorporated constituents irradiated in transparent regions of the solar nebula. Previously, such an early irradiation scenario was suggested for carbonaceous chondrites which follow common volatile depletion trends in the sequence CI–CM–CV–Earth. In turn, CV chondrites closely match Earth’s mantle composition in 20Ne/22Ne, 36Ar/22Ne and 36Ar/38Ar. This indicates that mantle Ar could well be a planetary component inherited from precursor planetesimals. However, a corresponding conclusion for mantle Kr and Xe is less convincing yet, but this may be just due to the lack of appropriate ‘meteoritic’ building blocks matching terrestrial composition. Alternatively, heavy noble gases in Earth’s mantle could be due to admixing of severely fractionated air, but this effect must have affected all mantle sources to a very similar extent, e.g. by global subduction before the last homogenization of the mantle reservoirs.  相似文献   

15.
Argon, krypton, chlorine, bromine, and iodine were measured in a homogeneous population of high-salinity hydrothermal fluid inclusions from the Tertiary-age Mississippi Valley-type (MVT) lead-fluorite-barite deposits at Hansonburg, New Mexico to establish new types of evidence for the history of both the fluid and the major dissolved salts. Noble gases and halogens in fluid inclusions containing 10−10–10−9 L of brine (Cl= 3 molal) were analyzed by laser microprobe noble-gas mass spectrometry (lmngms) on neutron-irradiated samples.

The concentrations of36Ar (4.7 × 10−8 molal) and84Kr1.8 × 10−9 molal) in the fluid inclusions are equal to those of fresh surface waters in equilibrium with air at approximately20 ± 5°. The mole ratios ofBr/Cl (1.2 × 10−4) andI/Cl (1–2 × 10−6) are among the lowest measured in any natural waters, similar to those of modern brines formed by dissolution of Permian NaCl-bearing evaporites in southeast New Mexico.40Ar/36Ar ratios (600) are twice that of air, and indicate that the fluid inclusions had excess radiogenic40Ar (1.4 × 10−5 molal) when trapped. The amount of excess40Ar appears to be too large to have been acquired with Cl by congruent dissolution of halite-bearing evaporites, and possibly too small to have been acquired with Pb by congruent dissolution of granitic basement rocks with Proterozoic KAr ages.

From thelmngms data, combined with published Pb and S isotope data, we infer the following sequence of events in the history of the Hansonburg MVT hydrothermal brine: (1) the brine originated as relatively dilute meteoric water, and it did not gain or lose atmospheric Ar or Kr after recharge; (2) the originally dilute fluid acquired the bulk of its Cl and sulfate in the subsurface after recharge by dissolving halite-bearing Permian? marine evaporites; (3) the high salinity brine then acquired most of its Pb and excess radiogenic40Ar from interactions with aquifer rocks other than evaporites, possibly clastic sedimentary rocks or basement rocks with Phanerozoic KAr “ages”; and (4) the brine deposited fluorite without having boiled or degassed.  相似文献   


16.
Gas is extracted from large (6–31 kg) Antarctic ice samples to obtain sufficient CO2 for14C measurements with small low-level proportional counters. The14C ages of Byrd core ice are in accord with glaciological estimates ranging from (2.2−1.1+1.4)×103 yr at 271 m depth to more than 8 × 103 yr at 1071 m depth. The CO2 abundances in gas extracted from Byrd core ice range from 0.0216 to 0.051%, with below present-day atmosphere CO2 abundances for ice from 1068 and 1469 m depths. The CO2 abundance in gas from Allan Hills surface ice samples ranges between four and six times the atmospheric value and the CO2 had a specific activity three times that of contemporary carbon. A possible explanation for the anomalously high specific activity is surface melting with the incorporation into CO2 of14C produced by cosmic ray spallation of oxygen in ice. The CO2 abundance in gas extracted from subsurface Allan Hills ice ranged from 0.030 to 0.065%, and the specific activities are below contemporary carbon, indicating ages greater than 5×103 yr. The18O/16O ratio of oxygen in the trapped gas is the same as that of atmospheric oxygen and differs markedly from the18O/16O ratio in the ice. The O2, N2, and Ar abundances and isotopic compositions are similar to those in contemporary air, except for positive15N/14N ratios in a few samples.  相似文献   

17.
Noble gas systematics of deep rift zone glasses from Loihi Seamount, Hawaii   总被引:3,自引:0,他引:3  
We report new noble gas fusion and crushing data for six pillow rim glasses, recovered between 3 and 5 km water depth on the south rift zone of Loihi Seamount, Hawaii. Helium abundances of the glasses vary from 0.3 to 2.3 μcc/g, with 4He/3He ratios between 30000 and 27000 (24–27 RA), similar to previously reported values. The neon data form a correlation line which is similar to the Loihi-Kilauea line reported by Honda et al. [1], but extends to much higher ratios, up to 12.9 and 0.0382 for the 20Ne/22Ne and 21Ne/22Ne ratios, respectively. This provides conclusive evidence for the suggestion that the Hawaiian plume, thought to originate in the lower mantle, has a solar-like 20Ne/22Ne composition [1], but a slightly higher 21Ne/22Ne ratio. 40Ar/36Ar ratios of the deep rift-zone glasses are as high as 2600, and show a positive correlation with neon isotopic ratios. In contrast to neon and argon, all xenon isotopic compositions are isotopically indistinguishable from air, which either suggests preferential atmospheric contamination of xenon, or could indicate an atmospheric xenon isotopic composition for the lower mantle.  相似文献   

18.
Ion microprobe measurements of Pb isotope ratios in monazites have been obtained, in situ, from thin sections using the Cambridge ISOLAB 120. Molecular interferences are sufficiently resolved at an RP of 6500 to allow 207Pb/206Pb dating of monazite with precisions as low as 4–5 Ma (2σ). The results presented here provide important information on the chronological history of the Late Archean metamorphism of the Wind River Range, Wyoming (USA).

Matrix monazites and monazite inclusions in garnets from a metapelite from the northern Wind River Range have been analysed by SIMS. In a previous study peak metamorphic conditions (T = 800°C; P = 8 ± 1 kb*) were estimated using inclusion assemblages in garnets from this same sample. Isolated monazite inclusions in garnet yield 207Pb/206Pb age estimates of 2781 ± 6 to 2809 ± 10 Ma. Those along fractures yield lower ages (2603–2687 Ma) which are similar to TIMS and SIMS ages of matrix monazites. A single large (500 μm) monazite grain locally preserves growth zoning, but has a recrystallised core and a resorbed (recrystallised?) rim. Age estimates for these three regions are 2788 ± 9 Ma, 2663 ± 4 and 2523 ± 6 Ma, respectively. Thus the inclusion assemblages of Sharp and Essene* may record peak metamorphic conditions at ca. 2.8 Ga, and indicate a phase of metamorphism that predates by over 100 Ma the emplacement of the Bridger Batholith, the major lithologic component of the northern Wind River Range.

The analysed monazite grains appear to preserve ca. 300 Ma history, even within a single grain. Monazite inclusions in garnet that are fully armoured may provide estimates for the time of garnet growth, even in high grade terranes where most chronometers are reset. The age pattern preserved by the large monazite grain cannot be simply related to diffusion controlled closure. Instead, a chronology is preserved which can be related to the petrographic setting of indicidual grains through in situ analysis.  相似文献   


19.
Paleocene volcanic rocks in West Greenland and Baffin Island were among the first products of the Iceland mantle plume, forming part of a larger igneous province that is now submerged beneath the northern Labrador Sea. A 40Ar/39Ar dating study shows that volcanism commenced in West Greenland between 60.9 and 61.3 Ma and that 80% of the Paleocene lava pile was erupted in 1 million years or less (weighted mean age of 60.5±0.4 Ma). Minimum estimates of magma production rates (1.3×10−4 km3 year−1 km−1) are similar to the present Iceland rift, except for the uppermost part of the Paleocene volcanic succession where the rate decreases to <0.7×10−4 km3 year−1 km−1 (rift). The timing of onset of volcanism in West Greenland coincides with the opening of the northern Labrador Sea and is also strikingly similar to the age of the oldest Tertiary volcanic rocks from offshore SE Greenland and the British–Irish province. This is interpreted as manifesting the impact and rapid (>1 m/year) lateral spreading of the Iceland plume head at the base of the Greenland lithosphere at 62 Ma. We suggest that the arrival, or at least a major increase in the flux, of the Iceland mantle plume beneath Greenland was a contributing factor in the initiation of seafloor spreading in the northern Labrador Sea. Our study has also revealed a previously unrecognised Early Eocene volcanic episode in West Greenland. This magmatism may be related to movement on the transform Ungava Fault System which transferred drifting from the Labrador Sea to Baffin Bay. A regional change in plate kinematics at 55 Ma, associated with the opening of the North Atlantic, would have caused net extension along parts of this fault. This would have resulted in decompression and partial melting of the underlying asthenosphere. The source of the melts for the Eocene magmatism may have been remnants of still anomalously hot Iceland plume mantle which were left stranded beneath the West Greenland lithosphere in the Early Paleocene.  相似文献   

20.
143Nd/144Nd ratios, and Sm and Nd abundances, are reported for particulates from major and minor rivers of the Earth, continental sediments, and aeolian dusts collected over the Atlantic, Pacific, and Indian Oceans. Overall, Sm/Nd ratios and Nd isotopic compositions in contemporary continental erosion products vary within the small ranges of 147Sm/144Nd= 0.115 ± 0.01 and143Nd/144Nd= 0.51204 ± 0.0002 (εNd = −11.4 ± 4). The average period of residence in the continental crust is estimated to be1.70 ± 0.35Ga.

These results combined with data from the literature have implications for the age, history, and composition of the sedimentary mass and the continental crust: (1) The average “crustal residence age” of the whole sedimentary mass is about 1.9 Ga. (2) The range of Nd isotope compositions in the continent derived particulate input to the oceans is the same as Atlantic sediments and seawater, but lower than those of the Pacific, demonstrating the importance of Pacific volcanism to Pacific Nd chemistry. (3) The average ratio of Sm/Nd is about 0.19 in the upper continental crust, and has remained so since the early Archean. This precludes the likelihood of major mafic to felsic or felsic to mafic trends in the overall composition of the upper continental crust through Earth history. (4) Sediments appear to be formed primarily by erosion of continental crust having similar Sm/Nd ratios, rather than by mixing of mafic and felsic compositions. (5) The average ratio of 143Nd/144Nd≈ 0.5117 (εNd ≈ −17) in the upper continental crust, assuming its mean age is about 2 Ga. (6) The uniformity of the SmNd isotopic systematics in river and aeolian particulates primarily reflects efficient recycling of old sediment by sedimentary processes on a short time scale compared to the amount of time the material has resided in the crust.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号